Skip to main content
Log in

Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objectives of this study were to develop a method to quantitate the displacement and strain fields within articular cartilage during equilibrium confined compression, and to use the method to determine the variation of the equilibrium confined compression modulus with depth from the articular surface in bovine cartilage. The method made use of fluorescently labeled chondrocyte nuclei as intrinsic fiducial markers. Articular cartilage was harvested from the patellofemoral groove of adult bovines and trimmed to rectangular blocks 5 mm long, 0.76 mm wide, and 500 μm deep with the articular surface intact. Test specimens were stained with the DNA binding dye Hoechst 33258, placed in a custom confined compression chamber, and viewed with an epifluorescence microscope equipped for video image acquisition. Image processing was used to localize fluorescing chondrocyte nuclei in uncompressed and compressed (∼ 17%) speciments, allowing determination of the intratissue displacement profile. Strain was determined as the slope of linear regression fits of the displacement data in four sequential 125-μm-thick layers. Equilibrium strains varied 6.1-fold from the articular surface through 500 μm of cartilage depth, with the greatest compressive strain in the superficial 125-μm layer and the least compressive strain in the two deepest 125-μm layers. Thus, the four successive 125-μm layers have moduli that are 0.44 (superficial), 1.07, 2.39, and 2.67 (deep), times the apparent modulus for a 500 μm thick cartilage sample assumed to be homogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, C. G., and V. C. Mow. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content.J. Bone Joint Surg. Am. 64:88–94, 1982.

    PubMed  CAS  Google Scholar 

  2. Bean, H. S., H. E. McGannon, C. W. Briggs, L. D. Kunsman, C. L. Carlson, H. E. Bacon, S. Yorsiadis, H. M. Werner, C. H. de Zeeuw, A. F. Baldo, W. L. Gamble, K. A. Roe, M. I. Smith, and A. S. Vernick. Materials of engineering. In: Marks’ Standard Handbook for Mechanical Engineers, edited by E. A. Avallone and T. Baumeister. New York: McGraw-Hill, 1987, pp. (6)1-(6)206.

    Google Scholar 

  3. Broom, N. D., and D. B. Meyers. A studys of the structural response of wet hyaline cartilage to various loading situations.Connect. Tissue. Res. 7:227–237, 1980.

    PubMed  CAS  Google Scholar 

  4. Buckwalter, J., E. Hunziker, L. Rosenberg, R. Coutts, M. Adams, and D. Eyre. Articulars cartilage: Composition and structure. In: Injury and Repair of the Musculoskeletal Soft Tissues, edited by S. L.-Y. Woo and J. A. Buckwalter. Park Ridge, IL: American Academy or Orthopedic Surgeons, 1988, pp. 405–425.

    Google Scholar 

  5. Buschmann, M. D., and A. J. Grodzinsky. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.J. Biomech. Eng. 117:179–192, 1995.

    PubMed  CAS  Google Scholar 

  6. Eisenberg, S. R., and A. J. Grodzinsky. Electrokinetic micromodel of extracellular matrix and other polyelectrolyte networks.Physicochem. Hydrodynam. 10:517–539, 1988.

    CAS  Google Scholar 

  7. Farquhar, T., P. R. Dawson, and P. A. Torzilli. A microstructural model for the anisotropic drained stiffness of articular cartilage.J. Biomech. Eng. 112:414–425, 1990.

    PubMed  CAS  Google Scholar 

  8. Frank, E. H., A. J. Grodzinsky, N. G. Kavesh, and S. E. Eisenberg. Continuum models for electrokinetic transduction in articular cartilage: homogeneous and layered material properties. In: Advances in Bioengineering, edited by N. A. Langrana. New York: ASME, 1985, pp. 5–6.

    Google Scholar 

  9. Frank, E. H., A. J. Grodzinsky, T. J. Koob, and D. R. Eyre. Streaming potentials: A sensitive index of enzymatic degradation in articular cartilage.J. Orthop Res. 5:497–508, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Fung, Y. C., Biomechanics: Mechanical Properties of Living Tissues, New York: Springer-Verlag, 1981, pp. 406–413.

    Google Scholar 

  11. Gore, D. M., G. R. Higginson, and R. J. Minns. Compliance of articular cartilage and its variation through the thickness.Phys. Med. Biol. 28:233–247, 1983.

    Article  PubMed  CAS  Google Scholar 

  12. Grodzinsky, A. J., and E. H. Frank. Electromechanical and physicochemical regulation of cartilage strength and metabolism. In: Connective Tissue Matrix, Vol. 2, Topics in Molecular and Structural Biology, edited by D. W. L. Hukins. Boca Raton, FL: CRC Press, 1990, pp. 91–126.

    Google Scholar 

  13. Guilak, F. Cytoskeletal regulation of nuclear deformation and intracellular prestress in chondrocytes.ASME Adv. Bioeng. BED-28:213–214, 1994.

    Google Scholar 

  14. Guilak, F., B. C. Meyer, A. Ratcliffe, and V. C. Mow. The effects of matrix compression on proteoglycan metabolism in articular cartilage explants.Osteoarthritis Cartilage. 2:91–101, 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Guilak, F., and V. C. Mow. Determination of the mechanical response of the chondrocyte in situ using finite element modeling and confocal microscopy.ASME Adv. Bioeng. BED-22:21–24, 1992.

    Google Scholar 

  16. Guilak, F., A. Ratcliffe, and V. C. Mow. Chondrocyte deformation and local tissue strain in articular cartilage: A confocal microscopy study.J. Orthop. Res. 13:410–421, 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Haugland, R. P., Molecular Probes Handbook of Fluorescent Probes and Research Chemicals. Eugene, OR: Molecular Probes, 1992.

    Google Scholar 

  18. Holmes, M. H., W. M. Lai, and V. C. Mow. Singular perturbation analysis of the nonlinear, flow-dependent com-pressive stress relaxation behavior of articular cartilage.J. Biomech. Eng. 107:206–218, 1985.

    PubMed  CAS  Google Scholar 

  19. Hunziker, E. B.. Articular cartilage structure in humans and experimental animals. In: Articular Cartilage and Osteoarthritis, edited by K. E. Kuettneret al., New York: Raven Press, 1992, pp. 183–199.

    Google Scholar 

  20. Intaglietta, M., and W. R. Tompkins. On-line measurement of microvascular dimensions by television microscopy.J. Appl. Physiol. 32:546–551, 1972.

    PubMed  CAS  Google Scholar 

  21. Khala, P. S., and S. R. Eisenberg. Direct measurement of axial and radial confining stresses in articular cartilage during uniaxial confined compression.Trans. Orthop. Res. Soc. 20:519, 1995.

    Google Scholar 

  22. Kim, Y. J., R. L. Sah, A. J. Grodzinsky, A. H. K. Plaas, and J. D. Sandy. Mechanical regulation of cartilage biosynthetic behavior: Physical stimuli.Arch. Biochem. Biophys. 311:1–12, 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Kim, Y. J., R. L. Y. Sah, J. Y. H. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258.Anal. Biochem. 174:168–176, 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Kwan, M. K., W. M. Lai, and V. C. Mow. A finite deformation theory for cartilage and other soft hydrated connective tissues. I. Equilibrium results.J. Biomech. 23:145–155, 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Lai, W. M., J. S. Hou, and V. C. Mow. A triphasic theory for the swelling and deformation behaviors of articular cartilage.J. Biomech. Eng. 113:245–258, 1991.

    PubMed  CAS  Google Scholar 

  26. Lee, R. C., E. H. Frank, A. J. Grodzinsky, and D. K. Roylance. Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties.J. Biomech. Eng. 103:280–292, 1981.

    PubMed  CAS  Google Scholar 

  27. Lipshitz, H., R. Etheredge, and M. J. Glimcher. Changes in the hexosamine content and swelling ratio of articular cartilage as functions of depth from the surface.J. Bone Joint Surg. Am. 58:1149–1153, 1976.

    PubMed  CAS  Google Scholar 

  28. Macirowski, T., S. Tepic, and R. W. Mann. Cartilage stresses in the human hip joint.J. Biomech. Eng. 116:10–18, 1994.

    PubMed  CAS  Google Scholar 

  29. Maroudas, A.. Physico-chemical properties of articular cartilage. In: Adult Articular Cartilage, edited by M. A. R. Freeman. Tunbridge Wells, England: Pitman, 1979, pp. 215–290.

    Google Scholar 

  30. Maroudas, A., and P. Bullough. Permeability of articular cartilage.Nature 219:1260–1261, 1968.

    Article  PubMed  CAS  Google Scholar 

  31. Maroudas, A., H. Muir, and J. Wingham. The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage.Biochim. Biophys. Acta 177:492–500, 1969.

    PubMed  CAS  Google Scholar 

  32. McCulloch, A. D., and J. H. Omens. Non-homogeneous analysis of three-dimensional transmural finite deformation in canine ventricular myocardium.J. Biomech. 24:539–548, 1991.

    Article  PubMed  CAS  Google Scholar 

  33. Meier, G. D., A. A. Bove, W. P. Santamore, and P. R. Lynch. Contractile function in canine right ventricle.Am. J. Physiol. 239:H794-H804, 1980.

    PubMed  CAS  Google Scholar 

  34. Mizrahi, J., A. Maroudas, Y. Lanir, I. Ziv, and T. J. Webber. The “instantaneous” deformation of cartilage: Effects of collagen fiber orientation and osmotic stress.Biorheology 23:311–330, 1986.

    PubMed  CAS  Google Scholar 

  35. Mow, V. C., and F. Guilak. Deformation of chondrocytes within the extracellular matrix of articular cartilage. In: Tissue Engineering: Current Perspectives, edited by E. Bell. Boston: Birkauser, 1993, pp. 128–145.

    Google Scholar 

  36. Mow, V. C., M. H. Holmes, and W. M. Lai. Fluid transport and mechanical properties of articular cartilage: A review.J. Biomech. 17:377–394, 1984.

    Article  PubMed  CAS  Google Scholar 

  37. Mow, V. C., S. C. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: Theory and experiment.J. Biomech. Eng. 102:73–84, 1980.

    Article  PubMed  CAS  Google Scholar 

  38. Mow, V. C., and L. J. Soslowsky. Friction, lubrication, and wear of diathrodial joints. In: Basic Orthopaedic Biomechanics, edited by V. C. Mow and W. C. Hayes. New York: Raven Press, 1991, pp. 245–292.

    Google Scholar 

  39. Mow, V. C., and L. J. Soslowsky. Friction, lubrication, and wear of diathrodial joints. In: Basic Orthopaedic Biomechanics, edited by V. C. Mow and W. C. Hayes. New York: Raven Press, 1991, pp. 143–198.

    Google Scholar 

  40. Neter, J., W. Wasserman, and M. H. Kutner. Applied Linear Statistical Models. Boston: Richard D. Irwin, Inc., 1990.

    Google Scholar 

  41. O’Connor, P., C. R. Oxford, and D. L. Gardner. Differential response to compressive loads of zones of canine hyaline articular cartilage: Micromechanical light and electron microscopic studies.Ann. Rheum. Dis. 47:414–420, 1988.

    Article  PubMed  CAS  Google Scholar 

  42. Palmoski, M. J., and K. D. Brandt. Effects of static and cyclic compressive loading on articular cartilage plugs in vitro.Arthritis Rheum. 27:675–681, 1984.

    Article  PubMed  CAS  Google Scholar 

  43. Parkkinen, J. J., M. J. Lammi, H. J. Helminen, and M. Tammi: Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro.J. Orthop. Res. 10:610–620, 1992.

    Article  PubMed  CAS  Google Scholar 

  44. Prinzen, T. T., T. Arts, F. W. Prinzen, and R. S. Reneman. Mapping of epicardial deformation using a video processing technique.J. Biomech. 19:263–273, 1986.

    Article  PubMed  CAS  Google Scholar 

  45. Roth, V., and V. C. Mow. The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age.J. Bone Joint Surg. Am. 62:1102–1117, 1980.

    PubMed  CAS  Google Scholar 

  46. Sah, R. L., A. C. Chen, A. J. Grodzinsky, and S. B. Trippel. Differential effects of IGF-I and bFGF on matrix metabolism in calf and adult bovine cartilage explants.Arch. Biochem. Biophys. 308:137–147, 1994.

    Article  PubMed  CAS  Google Scholar 

  47. Schinagl, R. M., M. K. Ting, J. H. Price, D. A. Gough, and R. L. Sah. Video microscopy to quantitate the inhomogeneous strain within articular cartilage during confined compression.ASME Adv. Bioeng. BED 26:303–306, 1993.

    Google Scholar 

  48. Schneiderman, R., D. Kevet, and A. Maroudas. Effects of mechanical and osmotic pressure on the rate of glycosaminoglycan synthesis in the human adult femoral head cartilage: Anin vitro study.J. Orthop. Res. 4:393–408, 1986.

    Article  PubMed  CAS  Google Scholar 

  49. Schwartz M. H., P. H. Leo, and J. L. Lewis. A micro-structural model for the elastic response of articular cartilage.J. Biomech. 27:865–873, 1994.

    Article  PubMed  CAS  Google Scholar 

  50. Setton, L., W. Lai, and V. Mow. Swelling-induced residual stress and the mechanism of curling in articular cartilage in vivo.ASME Adv. Bioeng. BED-26:59–62, 1993.

    Google Scholar 

  51. Setton, L. A., W. Zhu, and V. C. Mow. The biphasic poroviscoelastic behavior of articular cartilage: Role of the surface zone in governing the compressive behavior.J. Biomech. 26:581–592, 1993.

    Article  PubMed  CAS  Google Scholar 

  52. Sokal, R. R., and F. J. Rohlf. Biometry. New York: W. H. Freeman and Co., 1995 859 pp.

    Google Scholar 

  53. Spilker, R. L., P. S. Donzelli, and V. C. Mow. A transversely isotropic biphasic finite element model of the meniscus.J. Biomech. 25:1027–1045, 1992.

    Article  PubMed  CAS  Google Scholar 

  54. Stockwell, R. A., and G. Meachim. The chondrocytes. In: Adult Articular Cartilage, edited by M. A. R. Freeman. Tunbridge Wells, England: Pitman, 1979, pp. 69–144.

    Google Scholar 

  55. Torzilli, P. A.. Measurement of the compressive properties of thin cartilage slices: Evaluating tissue inhomogeneity. In: Methods in Cartilage Research, edited by A. Maroudas and K. Kuettner. London: Academic Press, 1990, pp. 304–308.

    Google Scholar 

  56. Torzilli, P. A., S. M. Niver, and S. R. Beaupre. Effect of articular surface compression on cartilage deformation.ASME Tissue Eng. BED-14:79–82, 1989.

    Google Scholar 

  57. Visser, N. A., G. P. J. van Kampen, M. H. M. T. Dekoning, and J. K. van der Korst. The effects of loading on the synthesis of biglycan and decorin in intact mature articular cartilage in vitro.Connect. Tissue Res. 30:241–250, 1994.

    PubMed  CAS  Google Scholar 

  58. Wayne, J. S., S. L. Y. Woo, and M. K. Kwan. Application of the u-p finite element method to the study of articular cartilage.J. Biomech. Eng. 113:397–403, 1991.

    PubMed  CAS  Google Scholar 

  59. Woo, S. L.-Y., W. H. Akeson, and G. F. Jemmott. Measurements of nonhomogeneous directional mechanical properties of articular cartilage in tension.J. Biomech. 9:785–791, 1976.

    Article  PubMed  CAS  Google Scholar 

  60. Woo, S. L.-Y., P. Lubock, M. A. Gomez, G. F. Jemmott, S. C. Kuei, and W. H. Akeson. Large deformation nonhomogeneous and directional properties of articular cartilage in uniaxial tension.J. Biomech. 12:437–446, 1979.

    Article  PubMed  CAS  Google Scholar 

  61. Woo, S. L.-Y., V. C. Mow, and W. M. Lai. Biomechanical properties of articular cartilage. In: Handbook of Bioengineering, edited by R. Skalak, and S. Chien. New York, McGraw-Hill, 1987, pp. 4.1–4.44.

    Google Scholar 

  62. Zar, J. H.. Biostatistical Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schinagl, R.M., Ting, M.K., Price, J.H. et al. Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann Biomed Eng 24, 500–512 (1996). https://doi.org/10.1007/BF02648112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648112

Keywords

Navigation