Skip to main content

Dynamical Integrity: A Novel Paradigm for Evaluating Load Carrying Capacity

  • Chapter
  • First Online:
Global Nonlinear Dynamics for Engineering Design and System Safety

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 588))

Abstract

The chapter offers an overview of the effects of the research advancements in nonlinear dynamics on the evaluation of system safety. The achievements developed over the last 30 years entailed a substantial change of perspective. After recalling the outstanding contributions due to Euler and Koiter, we focus on Thompson’s intuition of global safety. This concept represents a paramount enhancement, full of theoretical and practical implications. Its relevance as a novel paradigm for evaluating the load carrying capacity of a system is highlighted. Making reference to a variety of different case studies, we emphasize that global safety has induced a deep development in the analysis, control, and design of mechanical and structural systems. Recent results are presented, and the possibility to implement effective dedicated control procedures based on global safety concepts is explored. We stress the importance of global safety for valorizing all the potential of the system and guaranteeing superior targets. The very general character of the dynamical integrity approach to design is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsaleem, F. M., Younis, M. I., & Ruzziconi, L. (2010). An experimental and theoretical investigation of dynamic pull-in in MEMS resonators actuated electrostatically. Journal of Microelectromechanical Systems, 19(4), 794–806.

    Article  Google Scholar 

  • Awrejcewicz, J., & Lamarque, C.-H. (2003). Bifurcation and chaos in nonsmooth mechanical systems. Singapore: World Scientific.

    Book  Google Scholar 

  • Bazant, Z., & Cedolin, L. (1991). Stability of structures. New York: Oxford University Press.

    MATH  Google Scholar 

  • Belardinelli, P., & Lenci, S. (2016a). A first parallel programming approach in basins of attraction computation. International Journal of Non-Linear Mechanics, 80, 76–81.

    Article  Google Scholar 

  • Belardinelli, P., & Lenci, S. (2016b). An efficient parallel implementation of cell mapping methods for MDOF systems. Nonlinear Dynamics, 86(4), 2279–2290.

    Article  MathSciNet  Google Scholar 

  • Belardinelli, P., Lenci, S., & Rega, G. (2018). Seamless variation of isometric and anisometric dynamical integrity measures in basins’ erosion. Communications in Nonlinear Science and Numerical Simulation, 56, 499–507.

    Article  MathSciNet  Google Scholar 

  • Bishop, S. R., & Clifford, M. J. (1996). Zones of chaotic behavior in the parametrically excited pendulum. Journal of Sound and Vibration, 189, 142–147.

    Article  MathSciNet  Google Scholar 

  • Budiansky, B., & Hutchinson, J. W. (1964). Dynamics buckling of imperfection-sensitive structures. In Proceedings of the Eleventh International Congress of Applied Mechanics, Munich, Germany (pp. 636–651).

    Google Scholar 

  • Das, S., & Wahi, P. (2016). Initiation and directional control of period-1 rotation for parametric pendulum. Proceedings of the Royal Society of London A, 472, 20160719.

    Article  MathSciNet  Google Scholar 

  • de Souza Jr, J. R., & Rodrigues, M. L. (2002). An investigation into mechanisms of loss of safe basins in a 2 D.O.F. nonlinear oscillator. Journal of the Brazilian Society of Mechanical Sciences, 24, 93–98.

    Article  Google Scholar 

  • Eason, R., & Dick, A. J. (2014). A parallelized multi-degrees-of-freedom cell map method. Nonlinear Dynamics, 77(3), 467–479.

    Article  Google Scholar 

  • Euler, L. (1744). Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Sive Solutio Problematis Isoperimetrici Latissimo Sensu Accepti, Addentamentum 1: de Curvis Elasticis. Laussanae et Genevae, Apud Marcum-Michaelem, Bousquet et Socios.

    Google Scholar 

  • Gan, C. B., & He, S. M. (2007). Studies on structural safety in stochastically excited Duffing oscillator with double potential wells. Acta Mechanica Sinica, 23(5), 577–583.

    Article  MathSciNet  Google Scholar 

  • Gonçalves, P. B., & Del Prado, Z. J. G. N. (2002). Nonlinear oscillations and stability of parametrically excited cylindrical shells. Meccanica, 37, 569–597.

    Article  Google Scholar 

  • Gonçalves, P. B., & Del Prado, Z. J. G. N. (2005). Low-dimensional Galerkin models for nonlinear vibration and instability analysis of cylindrical shells. Nonlinear Dynamics, 41, 129–145.

    Article  MathSciNet  Google Scholar 

  • Gonçalves, P. B., Orlando, D., Lenci, S., & Rega, G. (2018). Nonlinear dynamics, safety and control of structures liable to interactive unstable buckling. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 167–228). CISM Courses and Lectures. Cham: Springer.

    Google Scholar 

  • Gonçalves, P. B., & Santee, D. (2008). Influence of uncertainties on the dynamic buckling loads of structures liable to asymmetric post-buckling behavior. Mathematical Problems in Engineering, 2008, 490137-1–490137-24.

    Google Scholar 

  • Gonçalves, P. B., Silva, F. M. A., & Del Prado, Z. J. G. N. (2007). Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries. Nonlinear Dynamics, 50, 121–145.

    Article  MathSciNet  Google Scholar 

  • Gonçalves, P. B., Silva, F. M. A., Rega, G., & Lenci, S. (2011). Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dynamics, 63, 61–82.

    Article  MathSciNet  Google Scholar 

  • Grebogi, C., Ott, E., & Yorke, J. A. (1983). Crises, sudden changes in chaotic attractors and transient chaos. Physica D: Nonlinear Phenomena, 7, 181–200.

    Article  MathSciNet  Google Scholar 

  • Guckenheimer, J., & Holmes, P. J. (1983). Nonlinear oscillations, dynamical systems and bifurcation of vector fields. New York: Springer.

    Book  Google Scholar 

  • Hong, L., & Sun, J. (2006). Bifurcations of a forced Duffing oscillator in the presence of fuzzy noise by the generalized cell mapping method. International Journal of Bifurcation and Chaos, 16(10), 3043–3051.

    Article  Google Scholar 

  • Housner, G. W. (1963). The behaviour of inverted pendulum structures during earthquakes. Bulletin of the Seismological Society of America, 53(2), 403–417.

    Google Scholar 

  • Hsu, C. S. (1987). Cell to cell mapping: A method of global analysis for nonlinear system. New York: Springer.

    Book  Google Scholar 

  • Hsu, C. S., & Chiu, H. M. (1987). Global analysis of a system with multiple responses including a strange attractor. Journal of Sound and Vibration, 114(2), 203–218.

    Article  MathSciNet  Google Scholar 

  • Kirkpatrick, P. (1927). Seismic measurements by the overthrow of columns. Bulletin of the Seismological Society of America, 17, 95–109.

    Google Scholar 

  • Koch, B. P., & Leven, R. W. (1985). Subharmonic and homoclinic bifurcations in a parametrically forced pendulum. Physica D: Nonlinear Phenomena, 16, 1–13.

    Article  MathSciNet  Google Scholar 

  • Koh, A. S. (1986). Rocking of rigid blocks on randomly shaking foundations. Nuclear Engineering and Design, 97, 269–276.

    Article  Google Scholar 

  • Koiter, W. T. (1945). Over de Stabiliteit van het Elastisch Evenwicht. Ph.D. Thesis, Delft University, Delft, The Netherlands. English translation: Koiter, W. T. (1967). On the stability of elastic equilibrium. NASA technical translation F-10, 833, Clearinghouse, US Department of Commerce/National Bureau of Standards N67–25033.

    Google Scholar 

  • Kreuzer, E., & Lagemann, B. (1996). Cell mapping for multi-degree-of-freedom-systems parallel computing in nonlinear dynamics. Chaos, Solitons & Fractals, 7(10), 1683–1691.

    Article  MathSciNet  Google Scholar 

  • Kustnezov, Y. A. (1995). Elements of applied bifurcation theory. New York: Springer.

    Google Scholar 

  • Lansbury, A. N., Thompson, J. M. T., & Stewart, H. B. (1992). Basin erosion in the twin-well Duffing oscillator: Two distinct bifurcation scenarios. International Journal of Bifurcation and Chaos, 2, 505–532.

    Article  MathSciNet  Google Scholar 

  • Leine, R. I. (2010). The historical development of classical stability concepts: Lagrange, Poisson and Lyapunov stability. Nonlinear Dynamics, 59, 173–182.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., Brocchini, M., & Lorenzoni, C. (2012a). Experimental rotations of a pendulum on water waves. ASME Journal of Computational and Nonlinear Dynamics, 7(1), 011007-1–011007-9.

    Article  Google Scholar 

  • Lenci, S., Orlando, D., Rega, G., & Gonçalves, P. B. (2012b). Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos, 22(4), 047502-1–047502-15.

    Google Scholar 

  • Lenci, S., & Rega, G. (1998a). A procedure for reducing the chaotic response region in an impact mechanical system. Nonlinear Dynamics, 15, 391–409.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (1998b). Controlling nonlinear dynamics in a two-well impact system. Part I. Attractors and bifurcation scenario under symmetric excitations. International Journal of Bifurcation and Chaos, 8, 2387–2408.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (1998c). Controlling nonlinear dynamics in a two-well impact system. Part II. Attractors and bifurcation scenario under unsymmetric optimal excitations. International Journal of Bifurcation and Chaos, 8, 2409–2424.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2003a). Optimal control of homoclinic bifurcation: Theoretical treatment and practical reduction of safe basin erosion in the Helmholtz oscillator. Journal of Vibration and Control, 9, 281–315.

    MathSciNet  MATH  Google Scholar 

  • Lenci, S., & Rega, G. (2003b). Optimal control of nonregular dynamics in a Duffing oscillator. Nonlinear Dynamics, 33, 71–86.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2003c). Optimal numerical control of single-well to cross-well chaos transition in mechanical systems. Chaos, Solitons & Fractals, 15, 173–186.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2004a). A dynamical systems analysis of the overturning of rigid blocks. In CD-Rom Proceedings of the XXI International Conference of Theoretical and Applied Mechanics, IPPT PAN, Warsaw, Poland, 15–21 August 2004. ISBN 83-89687-01-1.

    Google Scholar 

  • Lenci, S., & Rega, G. (2004b). A unified control framework of the nonregular dynamics of mechanical oscillators. Journal of Sound and Vibration, 278(4–5), 1051–1080.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2004c). Global optimal control and system-dependent solutions in the hardening Helmholtz-Duffing oscillator. Chaos, Solitons & Fractals, 21, 1031–1046.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2004d). Numerical aspects in the optimal control and anti-control of rigid block dynamics. In Proceedings of the Sixth World Conference on Computational Mechanics, WCCM VI, Beijing, China, 5–10 September 2004.

    Google Scholar 

  • Lenci, S., & Rega, G. (2005). Heteroclinic bifurcations and optimal control in the nonlinear rocking dynamics of generic and slender rigid blocks. International Journal of Bifurcation and Chaos, 15(6), 1901–1918.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2006a). A dynamical systems approach to the overturning of rocking blocks. Chaos, Solitons & Fractals, 28, 527–542.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2006b). Control of pull-in dynamics in a nonlinear thermoelastic electrically actuated microbeam. Journal of Micromechanics and Microengineering, 16, 390–401.

    Article  Google Scholar 

  • Lenci, S., & Rega, G. (2006c). Optimal control and anti-control of the nonlinear dynamics of a rigid block. Philosophical Transactions of the Royal Society A, 364, 2353–2381.

    Article  MathSciNet  Google Scholar 

  • Lenci, S., & Rega, G. (2008). Competing dynamic solutions in a parametrically excited pendulum: Attractor robustness and basin integrity. ASME Journal of Computational and Nonlinear Dynamics, 3, 041010-1–041010-9.

    Article  Google Scholar 

  • Lenci, S., & Rega, G. (2011a). Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective. Physica D: Nonlinear Phenomena, 240, 814–824.

    Article  Google Scholar 

  • Lenci, S., & Rega, G. (2011b). Forced harmonic vibration in a Duffing oscillator with negative linear stiffness and linear viscous damping. In I. Kovacic & M. J. Brennan (Eds.), The Duffing equation: Nonlinear oscillators and their behaviour (pp. 219–276). Wiley.

    Google Scholar 

  • Lenci, S., & Rega, G. (2011c). Load carrying capacity of systems within a global safety perspective. Part I. Robustness of stable equilibria under imperfections. International Journal of Nonlinear Mechanics, 46, 1232–1239.

    Article  Google Scholar 

  • Lenci, S., & Rega, G. (2011d). Load carrying capacity of systems within a global safety perspective. Part II. Attractor/basin integrity under dynamic excitations. International Journal of Nonlinear Mechanics, 46, 1240–1251.

    Article  Google Scholar 

  • Lenci, S., Rega, G., & Ruzziconi, L. (2013). Dynamical integrity as a conceptual and operating tool for interpreting/predicting experimental behavior. Philosophical Transactions of the Royal Society of London A, 371(1993), 20120423-1–20120423-19.

    Google Scholar 

  • Lyapunov, A. M. (1892). The general problem of the stability of motion. Ph.D. Thesis, Moscow University, Moscow, Russia. English translation: Lyapunov, A. M. (1992). The general problem of the stability of motion. London: Taylor & Francis.

    Google Scholar 

  • Mang, H. A., Jia, X., & Hoenger, G. (2009). Hilltop buckling as the A and Ω in sensitivity analysis of the initial postbuckling behavior of elastic structures. Journal of Civil Engineering and Management, 15, 35–46.

    Article  Google Scholar 

  • Milne, J. (1881). Experiments in observational seismology. Transactions of the Seismological Society of Japan, 3, 12–64.

    Google Scholar 

  • Moon, F. C. (1980). Experiments on chaotic motions of a forced nonlinear oscillator: Strange attractors. Journal of Applied Mechanics, 47(3), 638–644.

    Article  Google Scholar 

  • Moon, F. C. (1987). Chaotic vibrations. New York: Wiley.

    MATH  Google Scholar 

  • Moon, F. C. (1992). Chaotic and fractal dynamics. An introduction for applied scientists and engineers. New York: Wiley.

    Google Scholar 

  • Nayfeh, A. H., & Balachandran, B. (1995). Applied nonlinear dynamics. New York: Wiley.

    Book  Google Scholar 

  • Novak, M. (1969). Aeroelastic galloping of prismatic bodies. ASCE Journal of the Engineering Mechanics Division, 95(1), 115–142.

    Google Scholar 

  • Oppenheim, I. J. (1992). The masonry arch as a four-link mechanism under base motion. Earthquake Engineering and Structural Dynamics, 21, 1005–1017.

    Article  Google Scholar 

  • Orlando, D., Gonçalves, P. B., Rega, G., & Lenci, S. (2011). Influence of modal coupling on the nonlinear dynamics of Augusti’s model. ASME Journal of Computational and Nonlinear Dynamics, 6, 041014-1–041014-11.

    Article  Google Scholar 

  • Perry, J. (1881). Note on the rocking of a column. Transactions of the Seismological Society of Japan, 3, 103–106.

    Google Scholar 

  • Pignataro, M., Rizzi, N., & Luongo, A. (1990). Stability, bifurcation and postcritical behaviour of elastic structures. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Plaut, R. H., Fielder, W. T., & Virgin, L. N. (1996). Fractal behaviour of an asymmetric rigid block overturning due to harmonic motion of a tilted foundation. Chaos, Solitons & Fractals, 7, 177–196.

    Article  Google Scholar 

  • Rainey, R. C. T., & Thompson, J. M. T. (1991). The transient capsize diagram—A new method of quantifying stability in waves. Journal of Ship Research, 35(1), 58–62.

    Google Scholar 

  • Rega, G., & Lenci, S. (2003). Bifurcations and chaos in single-d.o.f. mechanical systems: Exploiting nonlinear dynamics for their control. In A. Luongo (Ed.), Recent research development in structural dynamics (pp. 331–369). Kerala: Research Signpost.

    Google Scholar 

  • Rega, G., & Lenci, S. (2005). Identifying, evaluating, and controlling dynamical integrity measures in nonlinear mechanical oscillators. Nonlinear Analysis, 63, 902–914.

    Article  MathSciNet  Google Scholar 

  • Rega, G., & Lenci, S. (2008). Dynamical integrity and control of nonlinear mechanical oscillators. Journal of Vibration and Control, 14, 159–179, 2008.

    Article  Google Scholar 

  • Rega, G., & Lenci, S. (2009). Recent advances in control of complex dynamics in mechanical and structural systems. In M. A. F. Sanjuan & C. Grebogi (Eds.), Recent progress in controlling chaos (pp. 189–237). Singapore: World Scientific.

    MATH  Google Scholar 

  • Rega, G., & Lenci, S. (2015). A global dynamics perspective for system safety from macro- to nanomechanics: Analysis, control, and design engineering. Applied Mechanics Reviews, 67, 050802-1–050802-19.

    Google Scholar 

  • Rega, G., Lenci, S., & Thompson, J. M. T. (2010). Controlling chaos: The OGY method, its use in mechanics, and an alternative unified framework for control of non-regular dynamics. In M. Thiel, J. Kurths, M. C. Romano, G. Károlyi, & A. Moura (Eds.), Nonlinear dynamics and chaos: Advances and perspectives (pp. 211–269). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Rega, G., & Settimi, V. (2013). Bifurcation, response scenarios and dynamic integrity in a single-mode model of noncontact atomic force microscopy. Nonlinear Dynamics, 73(1–2), 101–123.

    Article  MathSciNet  Google Scholar 

  • Ruzziconi, L., Bataineh, A. M., Younis, M. I., Cui, W., & Lenci, S. (2013a). Nonlinear dynamics of an electrically actuated imperfect microbeam resonator: Experimental investigation and reduced-order modeling. Journal of Micromechanics and Microengineering, 23(7), 075012-1–075012-14.

    Article  Google Scholar 

  • Ruzziconi, L., Lenci, S., & Younis, M. I. (2013b). An imperfect microbeam under an axial load and electric excitation: Nonlinear phenomena and dynamical integrity. International Journal of Bifurcation and Chaos, 23(2), 1350026-1–1350026-17.

    Article  MathSciNet  Google Scholar 

  • Ruzziconi, L., Lenci, S., & Younis, M. I. (2018). Interpreting and predicting experimental responses of micro and nano devices via dynamical integrity. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 113–166). CISM Courses and Lectures. Cham: Springer.

    Google Scholar 

  • Ruzziconi, L., Younis, M. I., & Lenci, S. (2012). An efficient reduced-order model to investigate the behavior of an imperfect microbeam under axial load and electric excitation. ASME Journal of Computational and Nonlinear Dynamics, 8, 011014-1–011014-9.

    Google Scholar 

  • Ruzziconi, L., Younis, M. I., & Lenci, S. (2013c). An electrically actuated imperfect microbeam: Dynamical integrity for interpreting and predicting the device response. Meccanica, 48(7), 1761–1775.

    Article  MathSciNet  Google Scholar 

  • Ruzziconi, L., Younis, M. I., & Lenci, S. (2013d). Dynamical integrity for interpreting experimental data and ensuring safety in electrostatic MEMS. In M. Wiercigroch, & G. Rega (Eds.), IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design (Vol. 32, pp. 249–261). IUTAM Bookseries. Springer.

    Google Scholar 

  • Ruzziconi, L., Younis, M. I., & Lenci, S. (2013e). Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dynamics, 74(3), 533–549.

    Google Scholar 

  • Ruzziconi, L., Younis, M. I., & Lenci, S. (2013f). Parameter identification of an electrically actuated imperfect microbeam. International Journal of Non-Linear Mechanics, 57, 208–219.

    Article  Google Scholar 

  • Settimi, V., Gottlieb, O., & Rega, G. (2015). Asymptotic analysis of a noncontact AFM microcantilever sensor with external feedback control. Nonlinear Dynamics, 79(4), 2675–2698.

    Article  MathSciNet  Google Scholar 

  • Settimi, V., & Rega, G. (2016a). Exploiting global dynamics of a noncontact atomic force microcantilever to enhance its dynamical robustness via numerical control. International Journal of Bifurcation and Chaos, 26, 1630018-1–1630018-17.

    Article  MathSciNet  Google Scholar 

  • Settimi, V., & Rega, G. (2016b). Global dynamics and integrity in noncontacting atomic force microscopy with feedback control. Nonlinear Dynamics, 86(4), 2261–2277.

    Article  Google Scholar 

  • Settimi, V., & Rega, G. (2016c). Influence of a locally-tailored external feedback control on the overall dynamics of a non-contact AFM model. International Journal of Non-Linear Mechanics, 80, 144–159.

    Article  Google Scholar 

  • Settimi, V., & Rega, G. (2018). Local versus global dynamics and control of an AFM model in a safety perspective. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 229–286). CISM Courses and Lectures. Cham: Springer.

    Google Scholar 

  • Silva, F. M. A., & Gonçalves, P. B. (2015). The influence of uncertainties and random noise on the dynamic integrity analysis of a system liable to unstable buckling. Nonlinear Dynamics, 81(1–2), 707–724.

    Article  Google Scholar 

  • Silva, F. M. A., Gonçalves, P. B., & Del Prado, Z. J. G. N. (2013). Influence of physical and geometrical system parameters uncertainties on the nonlinear oscillations of cylindrical shells. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 34, 622–632.

    Google Scholar 

  • Soliman, M. S., & Gonçalves, P. B. (2003). Chaotic behavior resulting in transient and steady state instabilities of pressure-loaded shallow spherical shells. Journal of Sound and Vibration, 259(3), 497–512.

    Article  Google Scholar 

  • Soliman, M. S., & Thompson, J. M. T. (1989). Integrity measures quantifying the erosion of smooth and fractal basins of attraction. Journal of Sound and Vibration, 135, 453–475.

    Article  MathSciNet  Google Scholar 

  • Soliman, M. S., & Thompson, J. M. T. (1990). Stochastic penetration of smooth and fractal basin boundaries under noise excitation. Dynamics and Stability of Systems, 5(4), 281–298.

    Article  MathSciNet  Google Scholar 

  • Soliman, M. S., & Thompson, J. M. T. (1991). Transient and steady state analysis of capsize phenomena. Applied Ocean Research, 13(2), 82–92.

    Article  Google Scholar 

  • Soliman, M. S., & Thompson, J. M. T. (1992). Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. Physical Review A, 45(6), 3425–3431.

    Article  Google Scholar 

  • Sun, J. Q. (1994). Effect of small random disturbance on the ‘Protection Thickness’ of attractors of nonlinear dynamic systems. In J. M. T. Thompson & S. R. Bishop (Eds.), Nonlinearity and chaos in engineering dynamics (pp. 435–437). Chichester: Wiley.

    Google Scholar 

  • Sun, J. Q. (2013). Control of nonlinear dynamic systems with the cell mapping method. In O. Schütze, C. A. Coello Coello, A.-A. Tantar, E. Tantar, P. Bouvry, & P. Del Moral (Eds.), EVOLVE—A bridge between probability, set oriented numerics, and evolutionary computation II. Advances in intelligent systems and computing (pp. 3–18). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Xiong, F. R., Han, Q., Hong, L., & Sun, J. Q. (2018). Global analysis of nonlinear dynamical systems. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 287–318). CISM Courses and Lectures. Cham: Springer.

    Google Scholar 

  • Sun, J. Q., & Hsu, C. S. (1991). Effects of small random uncertainties on the non-linear systems studied by the generalized cell mapping methods. Journal of Sound and Vibration, 147(2), 185–201.

    Article  MathSciNet  Google Scholar 

  • Szemplińska-Stupnicka, W. (1995). The analytical predictive criteria for chaos and escape in nonlinear oscillators: A survey. Nonlinear Dynamics, 7(2), 129–147.

    Article  MathSciNet  Google Scholar 

  • Szemplińska-Stupnicka, W., & Rudowski, J. (1993). Steady state in the twin-well potential oscillator: Computer simulations and approximate analytical studies. Chaos, 3, 375–385.

    Article  Google Scholar 

  • Szemplińska-Stupnicka, W., Tyrkiel, E., & Zubrzycki, A. (2000). The global bifurcations that lead to transient tumbling chaos in a parametrically driven pendulum. International Journal of Bifurcation and Chaos, 10, 2161–2175.

    MathSciNet  MATH  Google Scholar 

  • Thom, R. (1972). Structural stability and morphogenesis. Massachusetts: W.A. Benjamin Inc.

    Google Scholar 

  • Thompson, J. M. T. (1982). Instability and catastrophe in science and engineering. Wiley.

    Google Scholar 

  • Thompson, J. M. T. (1989). Chaotic phenomena triggering the escape from a potential well. Proceedings of the Royal Society of London A, 421, 195–225.

    Article  MathSciNet  Google Scholar 

  • Thompson, J. M. T. (1997). Designing against capsize in beam seas: Recent advances and new insights. Applied Mechanics Reviews, 50(5), 307–325.

    Article  Google Scholar 

  • Thompson, J. M. T. (2018). Dynamical integrity: Three decades of progress from macro to nano mechanics. In S. Lenci & G. Rega (Eds.), Global nonlinear dynamics for engineering design and system safety (Vol. 588, pp. 1–26). CISM Courses and Lectures. Cham: Springer.

    Google Scholar 

  • Thompson, J. M. T., & Hunt, G. W. (1973). A general theory of elastic stability. London: Wiley.

    MATH  Google Scholar 

  • Thompson, J. M. T., Rainey, R. C. T., & Soliman, M. S. (1990). Ship stability criteria based on chaotic transients from incursive fractals. Philosophical Transactions of the Royal Society of London A, 332(1624), 149–167.

    Article  MathSciNet  Google Scholar 

  • Thompson, J. M. T., & Soliman, M. S. (1990). Fractal control boundaries of driven oscillators and their relevance to safe engineering design. Proceedings of the Royal Society of London A, 428(1874), 1–13.

    Article  Google Scholar 

  • Thompson, J. M. T., & Stewart, H. B. (1986). Nonlinear dynamics and chaos. Chichester: Wiley (second extended edition, 2002).

    Google Scholar 

  • Thompson, J. M. T., & Ueda, Y. (1989). Basin boundary metamorphoses in the canonical escape equation. Dynamics and Stability of Systems, 4(3–4), 285–294.

    Article  MathSciNet  Google Scholar 

  • Troger, H., & Steindl, A. (1991). Nonlinear stability and bifurcation theory. Wien: Springer.

    Book  Google Scholar 

  • van Campen, D. H., van de Vorst, E. L. B., van der Spek, J. A. W., & de Kraker, A. (1995). Dynamics of a multi-DOF beam system with discontinuous support. Nonlinear Dynamics, 8(4), 453–466.

    Article  Google Scholar 

  • van der Heijden, A. M. A. (ed.). (2009). W. T. Koiter’s elastic stability of solids and structures. Cambridge University Press.

    Google Scholar 

  • Wiercigroch, M. (2010). A new concept for energy extraction from waves via parametric pendulor. UK Patent Application.

    Google Scholar 

  • Wiercigroch, M., & Pavlovskaia, E. (2008). Non-linear dynamics of engineering systems. International Journal of Non-Linear Mechanics, 43(6), 459–461.

    Article  Google Scholar 

  • Wiercigroch, M., & Rega, G. (2013). Introduction to NDATED. In M. Wiercigroch & G. Rega (Eds.), IUTAM Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design (Vol. 32, pp. v–viii). IUTAM Bookseries. Springer.

    Google Scholar 

  • Wiggins, S. (1990). Introduction to applied nonlinear dynamical systems and chaos. New York, Heidelberg, Berlin: Springer.

    Book  Google Scholar 

  • Winkler, T., Meguro, K., & Yamazaki, F. (1995). Response of rigid body assemblies to dynamic excitation. Earthquake Engineering and Structural Dynamics, 24, 1389–1408.

    Article  Google Scholar 

  • Xu, T., Ruzziconi, L., & Younis, M. I. (2017). Global investigation of the nonlinear dynamics of carbon nanotubes. Acta Mechanica, 228(3), 1029–1043.

    Article  MathSciNet  Google Scholar 

  • Xu, X., Pavlovskaia, E., Wiercigroch, M., Romeo, R., & Lenci, S. (2007). Dynamic interactions between parametric pendulum and electrodynamical shaker. ZAMM—Journal of Applied Mathematics and Mechanics, 87, 172–186.

    Article  MathSciNet  Google Scholar 

  • Xu, X., & Wiercigroch, M. (2007). Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dynamics, 47, 311–320.

    Article  MathSciNet  Google Scholar 

  • Xu, X., Wiercigroch, M., & Cartmell, M. P. (2005). Rotating orbits of a parametrically excited pendulum. Chaos, Solitons & Fractals, 23, 1537–1548.

    Article  Google Scholar 

  • Younis, M. I. (2011). MEMS linear and nonlinear statics and dynamics. New York: Springer.

    Book  Google Scholar 

  • Zeeman, E. C. (1977). Catastrophe theory: Selected papers, 1972–1977. Oxford, England: Addison-Wesley.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 CISM International Centre for Mechanical Sciences

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rega, G., Lenci, S., Ruzziconi, L. (2019). Dynamical Integrity: A Novel Paradigm for Evaluating Load Carrying Capacity. In: Lenci, S., Rega, G. (eds) Global Nonlinear Dynamics for Engineering Design and System Safety. CISM International Centre for Mechanical Sciences, vol 588. Springer, Cham. https://doi.org/10.1007/978-3-319-99710-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99710-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99709-4

  • Online ISBN: 978-3-319-99710-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics