Skip to main content
Log in

The influence of uncertainties and random noise on the dynamic integrity analysis of a system liable to unstable buckling

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Slender structural systems liable to unstable buckling usually become unstable at load levels lower than the linear buckling load of the perfect structure. In some cases, experimental buckling loads can be just a small fraction of the theoretical critical load. This is mainly due to the imperfections present in real structures. The imperfection sensitivity of structures under static loading is well studied in the literature, but little is known on the sensitivity of these structures under dynamic conditions. In a dynamic environment not only geometric imperfections but also initial conditions (disturbances), physical and geometrical system parameters uncertainties and excitation noise influence the bifurcation scenario and basins of attraction. The aim of this work is to investigate the influence of inherent uncertainties of real systems and load noise on the dynamic integrity and stability of their solutions in a dynamic environment. To illustrate the system sensitivity, an archetypal model of slender systems liable to unstable buckling is used. Special attention is given to the influence of uncertainties and random noise on the basins of attraction of the system and consequently on the integrity measures of the unforced and forced system. The Melnikov criterion, erosion profiles based on different integrity measures and stochastic differential equations and polynomial chaos are discussed as possible tools to obtain reliable lower bounds for design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Croll, J.G.A., Walker, A.C.: Elements of Structural Stability. Wiley, New York (1972)

    Google Scholar 

  2. Thompson, J.M.T., Hunt, G.W.: A General Theory of Elastic Stability. Wiley, New York (1973)

    MATH  Google Scholar 

  3. Bazant, Z., Cedolin, L.: Stability of Structures. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  4. Koiter, W.T.: On the stability of elastic equilibrium. Ph.D. dissertation, Delft, Holland (1945) [English Translation, NASA, TTF-10833, 1967]

  5. Gonçalves, P.B., Croll, J.G.A.: Axisymmetric buckling of pressure-loaded spherical caps. ASCE J. Struct. Eng. 118, 970–985 (1992)

    Article  Google Scholar 

  6. Batista, R.C., Gonçalves, P.B.: Non-linear lower bounds for shell buckling design. J. Constr. Steel Res. 29, 101–120 (1994)

    Article  Google Scholar 

  7. Thompson, J.M.T.: Chaotic phenomena triggering the escape from a potential well. Proc. R. Soc. Lond. A 421, 195–225 (1989)

    Article  MATH  Google Scholar 

  8. Soliman, M.S., Thompson, J.M.T.: Integrity measures quantifying the erosion of smooth and fractal basins of attraction. J. Sound Vib. 135, 453–475 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Soliman, M.S., Thompson, J.M.T.: Global dynamics underlying sharp basin erosion in nonlinear driven oscillators. Phys. Rev. A 45, 3425–3431 (1992)

    Article  Google Scholar 

  10. Rega, G., Lenci, S.: Identifying, evaluating, and controlling dynamical integrity measures in nonlinear mechanical oscillators. Nonlinear Anal. Theory Methods Appl. 63, 902–914 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rega, G., Lenci, S.: Dynamical integrity and control of nonlinear mechanical oscillators. J. Vib. Control 14, 159–179 (2008)

    Article  MATH  Google Scholar 

  12. Lenci, S., Rega, G.: Competing dynamic solutions in a parametrically excited pendulum: attractor robustness and basin integrity. ASME J. Comput. Nonlinear Dyn. 3, 041010 (2008). doi:10.1115/1.2960468

    Article  Google Scholar 

  13. Lenci, S., Rega, G.: Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: a dynamical integrity perspective. Phys. D 240, 814–824 (2011)

    Article  MATH  Google Scholar 

  14. Lenci, S., Rega, G., Ruzziconi, L.: The dynamical integrity concept for interpreting/predicting experimental behavior: from macro- to nano-mechanics. Philos. Trans. R. Soc. A 371, 20120423 (2013)

    Article  Google Scholar 

  15. Ruzziconi, L., Younis, M.I., Lenci, S.: An electrically actuated imperfect microbeam: dynamical integrity for interpreting and predicting the device response. Meccanica 48, 1761–1775 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ruzziconi, L., Younis, M.I., Lenci, S.: Multistability in an electrically actuated carbon nanotube: a dynamical integrity perspective. Nonlinear Dyn. 74, 533–549 (2013)

    Article  MathSciNet  Google Scholar 

  17. Soliman, M., Gonçalves, P.B.: Chaotic behaviour resulting in transient and steady-state instabilities of pressure loaded shallow spherical shells. J. Sound Vib. 259, 497–512 (2003)

    Article  Google Scholar 

  18. Gonçalves, P.B., Silva, F.M.A., Rega, G., Lenci, S.: Global dynamics and integrity of a two-dof model of a parametrically excited cylindrical shell. Nonlinear Dyn. 63, 61–82 (2011)

    Article  MATH  Google Scholar 

  19. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcation of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  20. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (1990)

    Book  MATH  Google Scholar 

  21. Soliman, M.S., Thompson, J.M.T.: Stochastic penetration of smooth and fractal basin boundaries under noise excitation. Dyn. Stab. Syst. 5, 281–298 (1990)

    MATH  MathSciNet  Google Scholar 

  22. Lai, Y.-C., Winslow, R.L.: Fractal basin boundaries in coupled map lattices. Phys. Rev. E 50, 3470–3473 (1994)

    Article  Google Scholar 

  23. Kraut, S., Feudel, U., Grebogi, C.: Preference of attractors in noisy multistable systems. Phys. Rev. E 59, 5253–5260 (1999)

    Article  Google Scholar 

  24. Kraut, S., Feudel, U.: Multistability, noise, and attractor hopping: the crucial role of chaotic saddles. Phys. Rev. E 66, 015207 (2002). doi:10.1103/PhysRevE.66.015207

    Article  MathSciNet  Google Scholar 

  25. Zhang, Y., Luo, G., Cao, Q., Lin, M.: Wada basin dynamics of a shallow arch oscillator with more than 20 coexisting low-period periodic attractors. Int. J. Non-Linear Mech. 58, 151–161 (2014)

    Article  Google Scholar 

  26. Rong, H., Wang, X., Xu, W., Fang, T.: Erosion of safe basins in a nonlinear oscillator under bounded noise excitation. J. Sound Vib. 313, 46–56 (2008)

    Article  Google Scholar 

  27. Xu, W., He, Q., Fang, T., Rong, H.: Stochastic bifurcation in Duffing system subject to harmonic excitation and in presence of random noise. Int. J. Non-Linear Mech. 39, 1473–1479 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gonçalves, P.B., Santee, D.M.: Influence of uncertainties on the dynamic buckling loads of structures liable to asymmetric post-buckling behavior. Math. Probl. Eng. Article ID 490137 (2008)

  29. Silva, F.M.A., Gonçalves, P.B., Del Prado, Z.J.G.N.: Influence of physical and geometrical system parameters uncertainties on the nonlinear oscillations of cylindrical shells. J. Braz. Soc. Mech. Sci. Eng. 34, 622–632 (2013)

    Google Scholar 

  30. Wiebe, R., Spottswood, S.M.: Co-existing responses and stochastic resonance in post-buckled structures: a combined numerical and experimental study. J. Sound Vib. 333, 4682–4694 (2014)

    Article  Google Scholar 

  31. Wiebe, R., Spottswood, S.M.: Complex behavior of a buckled beam under combined harmonic and random loading. Nonlinear Dyn. Springer Int. Publ. 2, 11–18 (2014)

    Google Scholar 

  32. Eason, R.P., Dick, A.J., Nagarajaiah, S.: Numerical investigation of coexisting high and low amplitude responses and safe basin erosion for a coupled linear oscillator and nonlinear absorber system. J. Sound Vib. 333, 3490–3504 (2014)

    Article  Google Scholar 

  33. Coccolo, M., Seoane, J.M., Sanjuán, M.A.: Controlling unpredictability in the randomly driven Hénon–Heiles system. Commun. Nonlinear Sci. Numer. Simul. 18, 3449–3457 (2013)

  34. Lenci, S., Orlando, D., Rega, G., Gonçalves, P.B.: Controlling practical stability and safety of mechanical systems by exploiting chaos properties. Chaos: interdisciplinary. J. Nonlinear Sci. 22, 047502 (2014)

  35. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ghanem, R., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Dover, NY (1991)

  37. Ogura, H.: Orthogonal functionals of the Poisson process. IEEE Trans. Inf. Theory 18, 473–481 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wiener, N.: The homogeneous chaos. Am. J. Math. 60, 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  39. Roorda, J.: Instability of imperfect elastic structures. Ph.D. Thesis, University College London, London, UK (1965)

  40. Galvão, A.S., Gonçalves, P.B., Silveira, R.A.M.: Postbuckling behavior and imperfection sensitivity of L-frames. Int. J. Struct. Stab. Dyn. 5, 19–35 (2005)

    Article  Google Scholar 

  41. Malasoma, J.M., Lamarque, C.H.: Chaotic behavior of a parametrically excited nonlinear mechanical system. Nonlinear Dyn. 5, 153–160 (1994)

    Google Scholar 

  42. Szemplinska-Stupnicka, W.: The analytical predictive criteria for chaos and escape in nonlinear oscillators: a survey. Nonlinear Dyn. 7, 129–147 (1995)

    Article  MathSciNet  Google Scholar 

  43. Bisagni, C.: Dynamic buckling of fiber composite shells under impulsive axial compression. Thin-Walled Struct. 43, 499–514 (2005)

    Article  Google Scholar 

  44. Alsaleem, F.M., Younis, M.I., Ruzziconi, L.: An experimental and theoretical investigation of dynamic pull-in in mems resonators actuated electrostatically. J. Microeletromechanical Syst. 19, 794–806 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by the support of the Brazilian Ministry of Education—CAPES, CNPq, FAPERJ-CNE and FAPEG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo B. Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, F.M.A., Gonçalves, P.B. The influence of uncertainties and random noise on the dynamic integrity analysis of a system liable to unstable buckling. Nonlinear Dyn 81, 707–724 (2015). https://doi.org/10.1007/s11071-015-2021-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2021-5

Keywords

Navigation