Skip to main content

Simple Sequence Repeat

  • Chapter
  • First Online:
The Allium Genomes

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 609 Accesses

Abstract

DNA markers are powerful tools for molecular breeding or checking the genetic homogeneity of F1 hybrid seeds. For the simple and fast approach to detect DNA polymorphisms, simple sequence repeats (SSRs), which are tandem repeats of short sequence motifs (mainly 1–6 bases), are powerful markers because of their codominant mode of inheritance, higher reliability, and abundance in genomes. In Allium, GT/CA repeats are abundant than GA/CT repeats, and AAG/CTT motif is the most frequent in the trinucleotide SSRs. NGS technologies including public sequence data will be a mainstream for identifying new SSR markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelkrim J, Robertson BC, Stanton JAL, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192

    Article  CAS  Google Scholar 

  • Baldwin S, Pither-Joyce M, Wright K, Chen L, McCallum J (2012a) Development of robust genomic simple sequence repeat markers for estimation of genetic diversity within and among bulb onion (Allium cepa L.) populations. Mol Breed 30:1401–1411

    Article  CAS  Google Scholar 

  • Baldwin S, Revanna R, Thomson S, Pither-Joyce M, Wright K, Crowhurst R, Fiers M, Chen L, Macknight R, McCallum JA (2012b) Toolkit for bulk PCR-based marker design from next-generation sequence data: application for development of a framework linkage map in bulb onion (Allium cepa L.). BMC Genom 13:637

    Article  CAS  Google Scholar 

  • Baldwin S, Revanna R, Pither-Joyce M, Shaw M, Wright K, Thomson S, Moya L, Lee R, Macknight R, McCallum JA (2014) Genetic analyses of bolting in bulb onion (Allium cepa L.). Theor Appl Genet 127:535–547

    Article  CAS  Google Scholar 

  • Bradeen JM, Havey MJ (1995) Randomly amplified polymorphic DNA in bulb onion and its use to assess inbred integrity. J Am Soc Hortic Sci 120:752–758

    CAS  Google Scholar 

  • Bredemeijer GMM, Arens P, Wouters D, Visser D, Vosman B (1998) The use of semi-automated fluorescent microsatellite analysis for tomato cultivar identification. Theor Appl Genet 97:584–590

    Article  CAS  Google Scholar 

  • Castoe TA, Poole AW, Gu W, Konin APJ, Daza JM, Smith EN, Pollock DD (2010) Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol Ecol Res 10:341–347

    Article  CAS  Google Scholar 

  • Crockett PA, Bhalla PL, Lee CK, Singh MB (2000) RAPD analysis of seed purity in a commercial hybrid cabbage (Brassica oleracea var. capitata) cultivar. Genome 43:317–321

    Article  CAS  Google Scholar 

  • Cunha CP, Hoogerheide ES, Zucchi MI, Monteiro M, Pinheiro JB (2014) SSR-based genetic diversity and structure of garlic accessions from Brazil. Genetica 142:419–431

    Article  Google Scholar 

  • Cunha CP, Resende FV, Zucchi MI, Pinheiro JB (2012) New microsatellite markers for garlic, Allium sativum (Alliaceae). Am J Bot 99:e17–e19

    Article  Google Scholar 

  • Duangjit J, Bohanec B, Chan AP, Town CD, Havey MJ (2013) Transcriptome sequencing to produce SNP-based genetic maps of onion. Theor Appl Genet 126:2093–2101

    Article  CAS  Google Scholar 

  • Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760

    Article  CAS  Google Scholar 

  • Fischer D, Bachmann K (1998) Microsatellite enrichment in organisms with large genomes (Allium cepa L.). Biotechniques 24:796–802

    Article  CAS  Google Scholar 

  • Fischer D, Bachmann K (2000) Onion microsatellites for germplasm analysis and their use in assessing intra- and interspecific relatedness within the subgenus Rhizirideum. Theor Appl Genet 101:153–164

    Article  CAS  Google Scholar 

  • Frary A, Xu YM, Liu JP, Mitchell S, Tedeschi E, Tanksley S (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312

    Article  CAS  Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–165

    Article  CAS  Google Scholar 

  • Han J, Thamilarasan SK, Natarajin S, Park JI, Chung MY, Nou IS (2016) de novo assembly and transcriptome analysis of bulb onion (Allium cepa L.) during cold acclimation using constasting genotypes. PLoS ONE 11:e0161987

    Article  Google Scholar 

  • Hang TTM, Shigyo M, Yamauchi N, Tashiro Y (2004) Production and characterization of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of Japanese bunching onion (A. fistulosum L.). Genes Genet Syst 79:263–269

    Article  Google Scholar 

  • Ipek M, Ipek A, Simon PW (2003) Comparison of AFLPs, RAPD markers, and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections. J Am Soc Hortic Sci 128:246–252

    CAS  Google Scholar 

  • Ipek M, Ipek A, Almquist SG, Simon PW (2005) Demonstration of linkage and development of the first low-density genetic map of garlic, based on AFLP markers. Theor Appl Genet 110:228–236

    Article  CAS  Google Scholar 

  • Ipek M, Sahin N, Ipek A, Cansev A, Simon PW (2015) Development and validation of new SSR markers from expressed regions in the garlic genome. Sci Agric 72:41–46

    Article  CAS  Google Scholar 

  • Jakše J, Martin W, McCallum J, Havey MJ (2005) Single nucleotide polymorphisms, indels, and simple sequence repeats for onion cultivar identification. J Am Soc Hortic Sci 130:912–917

    Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A, Brettschneider R, Bettini R, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vazquez A, Karp A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breed 3:381–390

    Article  CAS  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Khar A, Lawande KE, Negi KS (2011) Microsatellite marker based analysis of genetic diversity in short day tropical Indian onion and cross amplification in related Allium spp. Genet Resour Crop Evol 58:741–752

    Article  Google Scholar 

  • Kim DW, Jung TS, Nam SH, Kwon HR, Kim A, Chae SH, Choi SH, Kim DQ, Kim RN, Park HS (2009) GarlicESTdb: an online database and mining tool for garlic EST sequences. BMC Plant Biol 9:61

    Article  Google Scholar 

  • King JJ, Bradeen JM, Bark O, McCallum JA, Havey MJ (1998) A low-density map of onion reveals a role for tandem duplication in the evolution of an extremely large diploid genome. Theor Appl Genet 96:52–62

    Article  CAS  Google Scholar 

  • Kirk JTO, Rees H, Evans G (1970) Base composition of nuclear DNA within the genus Allium. Heredity 25:507–512

    Article  CAS  Google Scholar 

  • Khosa JS, Lee R, Bräuning S, Lord J, Pither-Joyce M, McCallum J, Macknight RC (2016) Doubled haploid ‘CUDH2107’ as a reference for bulb onion (Allium cepa L.) research: development of a transcriptome catalogue and identification of transcripts associated with male fertility. PLoS ONE 11:e0166568

    Article  Google Scholar 

  • Kuhl JC, Cheung F, Yuan Q, Martin W, Zewdie Y, McCallum J, Catanach A, Rutherford P, Sink KC, Jenderk M, Prince JP, Town CD, Havey MJ (2004) A unique set of 11,008 onion expressed sequence tags reveals expressed sequence and genomic differences between the monocot orders Asparagales and Poales. Plant Cell 16:114–125

    Article  Google Scholar 

  • Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acid Res 21:1111–1115

    Article  CAS  Google Scholar 

  • Li HZ, Yin YP, Zhang CQ, Zhang M, Li JM (2008) Comparison of characteristics of SRAP and SSR markers in genetic diversity analysis of cultivars in Allium fistulosum L. Seed Sci Tech 36:423–434

    Article  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  Google Scholar 

  • Liu Q, Wen C, Zhao H, Zhang L, Wang J, Wang Y (2014) RNA-seq reveals leaf cuticular wax-related genes in Welsh onion. PLoS ONE 9:e113290

    Article  Google Scholar 

  • Ma KH, Kwang JG, Zhao W, Dixit A, Lee GA, Kim HH, Chung IM, Kim NS, Lee JS, Ji JJ, Kim TS, Park YJ (2009) Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Sci Hortic 122:355–361

    Article  CAS  Google Scholar 

  • Mahajan V, Jakse J, Havey MJ, Lawande KE (2009) Genetic fingerprinting of onion cultivars using SSR markers. Indian J Hortic 66:62–68

    Google Scholar 

  • Martin WJ, McCallum J, Shigyo M, Jakše J, Kuhl JC, Yamane N, Pither-Joyce M, Gökçe AF, Sink KC, Town CD, Havey MJ (2005) Genetic mapping of expressed sequences in onion and in silico comparisons with rice show scant colinearity. Mol Gen Genomics 274:197–204

    Article  CAS  Google Scholar 

  • McCallum J, Clarke A, Pither-Joyce M, Shaw M, Butler R, Brash D, Scheffer J, Sims I, van Heusden S, Shigyo M, Havey M (2006) Genetic mapping of a major gene affecting onion bulb fructan content. Theor Appl Genet 112:958–967

    Article  CAS  Google Scholar 

  • McCallum J, Pither-Joyce M, Shaw M, Kanel F, Davis S, Butler R, Schffer J, Jakše J, Havey MJ (2007) Genetic mapping of sulfur assimilation genes a QTL for bulb onion pungency. Theor Appl Genet 114:815–822

    Article  CAS  Google Scholar 

  • McCallum J, Thompson S, Pither-Joyce M, Kenel F (2008) Genetic diversity analysis and single-nucleotide polymorphism marker development in cultivated bulb onion based on expressed sequence tag-simple sequence repeat markers. J Am Soc Hortic Sci 133:810–818

    Google Scholar 

  • Nunome T, Negoro S, Miyatake K, Yamaguchi H, Fukuoka H (2006) A protocol for the construction of microsatellite enriched genomic library. Plant Mol Biol Rep 24:305–312

    Article  CAS  Google Scholar 

  • Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, Ohyama A, Fukuoka H (2009) Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet 119:1143–1153

    Article  Google Scholar 

  • Ohara T, Song YS, Tsukazaki H, Wako T, Nunome T, Kojima A (2005) Construction of a genetic linkage map of Japanese bunching onion (Allium fistulosum) based on AFLP and SSR markers. Euphytica 144:255–263

    Article  CAS  Google Scholar 

  • Ohara T, Tsukazaki H, Song YS, Wako T, Yamashita K, Kojima A (2009) Mapping of quantitative trait loci controlling seedling growth in bunching onion (Allium fistulosum L.). J Jpn Soc Hortic Sci 78:436–442

    Article  CAS  Google Scholar 

  • Ohyama A, Asamizu E, Negoro S, Miyatake K, Yamaguchi H, Tabata S, Fukuoka H (2009) Characterization of tomato SSR markers developed using BAC-end and cDNA sequences from genome databases. Mol Breed 23:685–691

    Article  CAS  Google Scholar 

  • Peffley EB (1986) Evidence for chromosomal differentiation of Allium fistulosum and A. cepa. J Am Soc Hortic Sci 111:126–129

    Google Scholar 

  • Powell W, Machray GC, Provan J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  • Ricroch A, Yockteng R, Brown SC, Nadot S (2005) Evolution of genome size across some cultivated Allium species. Genome 48:511–520

    Article  CAS  Google Scholar 

  • Shigyo M, Tashiro Y, Issiki S, Miyazaki S (1996) Establishments of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L.) with extra chromosomes from shallot (A. cepa L. Aggregatum group). Genes Genet Syst 71:363–371

    Article  CAS  Google Scholar 

  • Song YS, Suwabe K, Wako T, Ohara T, Nunome T, Kojima A (2004) Development of microsatellite markers in bunching onion (Allium fistulosum L.). Breed Sci 54:361–365

    Article  CAS  Google Scholar 

  • Stack SM, Coming DE (1979) The chromosomes an DNA of Allium cepa. Chromosoma 70:161–181

    Article  CAS  Google Scholar 

  • Sun X, Zhou S, Meng F, Liu S (2012) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31:1823–1828

    Article  CAS  Google Scholar 

  • Sun XD, Yu XH, Zhou SM, Liu SQ (2016) De novo assembly and characterization of the Welsh onion (Allium fistulosum L.) bud transcriptome using Illumina technology. Mol Genet Genomics 291:647–659

    Article  CAS  Google Scholar 

  • Tsukazaki H, Fukuoka H, Song YS, Yamashita K, Wako T, Kojima A (2006) Considerable heterogeneity in commercial F1 varieties of bunching onion (Allium fistulosum) and the proposal of a breeding scheme for conferring genetic traceability using SSR markers. Breed Sci 56:321–326

    Article  CAS  Google Scholar 

  • Tsukazaki H, Nunome T, Fukuoka H, Kanamori H, Kono I, Yamashita K, Wako T, Kojima A (2007) Isolation of 1,796 SSR clones from SSR-enriched DNA libraries of bunching onion (Allium fistulosum). Euphytica 157:83–94

    Article  CAS  Google Scholar 

  • Tsukazaki H, Yamashita K, Yaguchi S, Masuzaki S, Fukuoka H, Yonemaru J, Kanamori H, Kono I, Hang TTH, Shigho M, Kojima A, Wako T (2008) Construction of SSR-based chromosome map in bunching onion (Allium fistulosum). Theor Appl Genet 117:1213–1223

    Article  CAS  Google Scholar 

  • Tsukazaki H, Honjo M, Yamashita K, Ohara T, Kojima A, Ohsawa R, Wako T (2010) Classification and identification of bunching onion (Allium fistulosum) varieties based on SSR markers. Breed Sci 60:139–152

    Article  Google Scholar 

  • Tsukazaki H, Yamashita K, Yaguchi S, Yamashita K, Hagihara T, Shigyo M, Kojima A, Wako T (2011) Direct determination of the chromosomal location of bunching onion and bulb onion markers using bunching onion-shallot monosomic additions and allotriploid-bunching onion single alien deletions. Theor Appl Genet 122:501–510

    Article  Google Scholar 

  • Tsukazaki H, Yaguchi S, Yamashita K, Shigyo M, Kojima A, Wako T (2012) QTL analysis for pseudostem pungency in bunching onion (Allium fistulosum). Mol Breed 30:1689–1698

    Article  CAS  Google Scholar 

  • Tsukazaki H, Yaguchi S, Sato S, Hirakawa H, Katayose Y, Kanomori H, Kurita K, Itoh T, Kumagai M, Mizuno S, Hamada M, Fukuoka H, Yamashita K, McCallum JA, Shigyo M, Wako T (2015) Development of transcriptome shotgun assembly-derived markers in bunching onion (Allium fistulosum). Mol Breed 35:55

    Article  Google Scholar 

  • Tsukazaki H, Yaguchi S, Yamashita K, Wako T (2017) QTL analysis of morphological traits and pseudostem pigmentation in bunching onion (Allium fistulosum). Euphytica 213:152

    Article  Google Scholar 

  • van Heusden AW, van Ooijen JW, Vrielink-van Ginkel R, Verbeek WHK, Wietsma WA, Kik C (2000) A genetic map of an interspecific cross Allium based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 100:118–126

    Article  Google Scholar 

  • Wako T, Tsukazaki H, Yaguchi S, Yamashita K, Ito S, Shigyo M (2016) Mapping of quantitative trait loci for bolting time in bunching onion (Allium fistulosum L.). Euphytica 209:537–546

    Article  Google Scholar 

  • Weising K, Winter P, Huttel B, Kahl G (1998) Microsatellite markers for molecular breeding. In: Basra AS (ed) Crop science: recent advances. The Haworth Press, pp 113–143

    Google Scholar 

  • Wilkie SE, Isaac PG, Slater RJ (1993) Random amplified polymorphic DNA (RAPD) markers for genetic analysis in Allium. Theor Appl Genet 86:497–504

    Article  CAS  Google Scholar 

  • Yaguchi S, Hang TTM, Tsukazaki H, Hoa VQ, Masuzaki S, Wako T, Masamura N, Onodera S, Shimoi N, Yamauchi N, Shigyo M (2009) Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.). Genes Genet Syst 84:43–55

    Article  Google Scholar 

  • Zane I, Bergelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  CAS  Google Scholar 

  • Zhang TY, Chen HK, Zhang CR (2014) Polymorphic microsatellite markers for Allium mongolicum Regel (Amaryllidaceae). Genes Genet Syst 89:133–136

    Article  CAS  Google Scholar 

  • Zhao WG, Chung JW, Lee GA, Ma KH, Kim HH, Kim KT, Chung IM, Lee JK, Kim NS, Kim SM, Park YJ (2011) Molecular genetic diversity and population structure of a selected core set in garlic and its relatives using novel SSR markers. Plant Breed 130:46–54

    Article  CAS  Google Scholar 

  • Zhou SM, Chen LM, Liu SQ, Wang XF, Sun XD (2015) De novo assembly and annotation of the Chinese chive (Allium tuberosum Rottler ex Spr.) transcriptome using the Illumina platform. PLoS ONE 10:e0133312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikaru Tsukazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsukazaki, H. (2018). Simple Sequence Repeat. In: Shigyo, M., Khar, A., Abdelrahman, M. (eds) The Allium Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-95825-5_8

Download citation

Publish with us

Policies and ethics