Skip to main content

Inflammation and Prostate Cancer

  • Chapter
  • First Online:
Cell & Molecular Biology of Prostate Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1095))

Abstract

Chronic inflammation resulting from infections, altered metabolism, inflammatory diseases or other environmental factors can be a major contributor to the development of several types of cancer. In fact around 20% of all cancers are linked to some form of inflammation. Evidence gathered from genetic, epidemiological and molecular pathological studies suggest that inflammation plays a crucial role at various stages of prostatic carcinogenesis and tumor progression. These include initiation, promotion, malignant conversion, invasion, and metastasis. Detailed basic and clinical research in these areas, focused towards understanding the etiology of prostatic inflammation, as well as the exact roles that various signaling pathways play in promoting tumor growth, is critical for understanding this complex process. The information gained would be useful in developing novel therapeutic strategies such as molecular targeting of inflammatory mediators and immunotherapy-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7(2)

    Article  CAS  PubMed  Google Scholar 

  2. Gonzalgo ML, Isaacs WB (2003) Molecular pathways to prostate cancer. J Urol 170(6 Pt 1):2444–2452

    Article  CAS  PubMed  Google Scholar 

  3. Pihan GA et al (2003) Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 63(6):1398–1404

    CAS  PubMed  Google Scholar 

  4. Savage L (2007) Unreported VA data may affect SEER research, Cancer surveillance, and statistics gathering. JNCI J. Natl. Cancer Inst 99(23):1744–1752

    Article  PubMed  Google Scholar 

  5. Ferlay J et al (2006) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18(3):581–592

    Article  Google Scholar 

  6. Virchow R (1881) An address on the value of pathological experiments. Br Med J 2(1075):198–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elinav E et al (2013) Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 13(11):759–771

    Article  CAS  PubMed  Google Scholar 

  8. Bishayee A (2014) The Inflammation and Liver Cancer, in Advances in Experimental Medicine and Biology. Springer Nature, pp 401–435

    Google Scholar 

  9. Sfanos KS, Isaacs WB, De Marzo AM (2013) Infections and inflammation in prostate cancer. Am J Clin Exp Urol 1(1):3–11

    PubMed  PubMed Central  Google Scholar 

  10. Gurel B et al (2014) Chronic inflammation in benign prostate tissue is associated with high-grade prostate Cancer in the placebo arm of the prostate Cancer prevention trial. Cancer Epidemiol Biomark Prev 23(5):847–856

    Article  Google Scholar 

  11. Mantovani A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444

    Article  CAS  PubMed  Google Scholar 

  12. Sfanos KS, De Marzo AM (2011) Prostate cancer and inflammation: the evidence. Histopathology 60(1):199–215

    Article  Google Scholar 

  13. Lee J et al (2007) Cancer incidence among Korean-American immigrants in the United States and native Koreans in South Korea. Cancer Control 14(1):78–85

    Article  PubMed  Google Scholar 

  14. Pelouze PS (1935) Obscure pseudomembranous Trigonitis: Trigonitis Areata Alba. Ann Surg 101(1):594–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bushman W (2000) In: Lepor H (ed) Etiology of prostate. Prostatic diseases. W B Saunders Company, Philadelphia, pp 550–557

    Google Scholar 

  16. Zambrano A et al (2002) Detection of human polyomaviruses and papillomaviruses in prostatic tissue reveals the prostate as a habitat for multiple viral infections. Prostate 53(4):263–276

    Article  CAS  PubMed  Google Scholar 

  17. Samanta M et al (2003) High prevalence of human cytomegalovirus in prostatic intraepithelial neoplasia and prostatic carcinoma. J Urol 170(3):998–1002

    Article  PubMed  Google Scholar 

  18. Strasner A, Karin M (2015) Immune infiltration and prostate Cancer. Front Oncol 5

    Google Scholar 

  19. Persson BE, Ronquist G (1996) Evidence for a mechanistic association between nonbacterial prostatitis and levels of urate and creatinine in expressed prostatic secretion. J Urol 155(3):958–960

    Article  CAS  PubMed  Google Scholar 

  20. Leitzmann MF et al (2004) Ejaculation frequency and subsequent risk of prostate cancer. JAMA 291(13):1578–1586

    Article  CAS  PubMed  Google Scholar 

  21. Vidal AC et al (2014) Aspirin, NSAIDs, and risk of prostate cancer: Results from the REDUCE study. Clin Cancer Res 21(4):756–762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Masferrer JL et al (2000) Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60(5):1306–1311

    CAS  PubMed  Google Scholar 

  23. Boudreau DM, Yu O, Johnson J (2010) Statin use and cancer risk: a comprehensive review. Expert Opin Drug Saf 9(4):603–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blake GJ, Ridker PM (2000) Are statins anti-inflammatory? Curr Control Trials Cardiovasc Med 1(3):161–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. De Marzo AM et al (1999) Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis. Am J Pathol 155(6):1985–1992

    Article  PubMed  PubMed Central  Google Scholar 

  26. Montironi R, Mazzucchelli R, Scarpelli M (2002) Precancerous lesions and conditions of the prostate: from morphological and biological characterization to chemoprevention. Ann N Y Acad Sci 963:169–184

    Article  PubMed  Google Scholar 

  27. Rich AR (1979) Classics in oncology. On the frequency of occurrence of occult carcinoma of the prostate: Arnold rice Rich, M.D., Journal of urology 33:3, 1935. CA Cancer J Clin 29(2):115–119

    Article  CAS  PubMed  Google Scholar 

  28. McNeal JE et al (1988) Zonal distribution of prostatic adenocarcinoma. Correlation with histologic pattern and direction of spread. Am J Surg Pathol 12(12):897–906

    Article  CAS  PubMed  Google Scholar 

  29. Nakayama M et al (2003) Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection. Am J Pathol 163(3):923–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bethel CR et al (2006) Decreased NKX3.1 protein expression in focal prostatic atrophy, prostatic intraepithelial neoplasia, and adenocarcinoma: association with Gleason score and chromosome 8p deletion. Cancer Res 66(22):10683–10690

    Article  CAS  PubMed  Google Scholar 

  31. Abate-Shen C, Shen MM (2002) Mouse models of prostate carcinogenesis. Trends Genet 18(5):S1–S5

    Article  CAS  PubMed  Google Scholar 

  32. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Flammiger A et al (2012) Intratumoral T but not B lymphocytes are related to clinical outcome in prostate cancer. APMIS 120(11):901–908

    Article  CAS  PubMed  Google Scholar 

  34. Steiner GE et al (2002) The picture of the prostatic lymphokine network is becoming increasingly complex. Rev Urol 4(4):171–177

    PubMed  PubMed Central  Google Scholar 

  35. Steiner GE et al (2003) Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate 56(3):171–182

    Article  CAS  PubMed  Google Scholar 

  36. Steiner GE et al (2003) Cytokine expression pattern in benign prostatic hyperplasia infiltrating T cells and impact of lymphocytic infiltration on cytokine mRNA profile in prostatic tissue. Lab Investig 83(8):1131–1146

    Article  CAS  PubMed  Google Scholar 

  37. Miller AM et al (2006) CD4+CD25high T cells are enriched in the tumor and peripheral blood of prostate cancer patients. J Immunol 177(10):7398–7405

    Article  CAS  PubMed  Google Scholar 

  38. Sfanos KS, Hempel HA, De Marzo AM (2014) The role of inflammation in prostate cancer, in advances in experimental medicine and biology. Springer Nature, pp 153–181

    Google Scholar 

  39. Lanciotti M et al (2014) The role of M1 and M2 macrophages in prostate Cancer in relation to extracapsular tumor extension and biochemical recurrence after radical prostatectomy. Biomed Res Int 2014:1–6

    Article  Google Scholar 

  40. Johansson A et al (2010) Mast cells are novel independent prognostic markers in prostate Cancer and represent a target for therapy. Am J Pathol 177(2):1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fleischmann A et al (2009) Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate 69(9):976–981

    Article  CAS  PubMed  Google Scholar 

  42. Nonomura N et al (2007) Decreased number of mast cells infiltrating into needle biopsy specimens leads to a better prognosis of prostate cancer. Br J Cancer 97:952–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khazaie K et al (2011) The significant role of mast cells in cancer. Cancer Metastasis Rev 30(1):45–60

    Article  CAS  PubMed  Google Scholar 

  44. Richardsen E et al (2008) The prognostic impact of M-CSF, CSF-1 receptor, CD68 and CD3 in prostatic carcinoma. Histopathology 53(1):30–38

    Article  CAS  PubMed  Google Scholar 

  45. Lindahl C et al (2009) Increased levels of macrophage-secreted cathepsin S during prostate cancer progression in TRAMP mice and patients. Cancer Genomics Proteomics 6(3):149–159

    CAS  PubMed  Google Scholar 

  46. Herroon MK et al (2012) Macrophage cathepsin K promotes prostate tumor progression in bone. Oncogene 32(12):1580–1593

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sfanos KS et al (2008) Phenotypic analysis of prostate-infiltrating lymphocytes reveals TH17 and Treg skewing. Clin Cancer Res 14(11):3254–3261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ammirante M et al (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464(7286):302–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Smith JR et al (1996) Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 274(5291):1371–1374

    Article  CAS  PubMed  Google Scholar 

  50. Xu J et al (2002) Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 32(2):321–325

    Article  CAS  PubMed  Google Scholar 

  51. Zheng SL et al (2004) Sequence variants of toll-like receptor 4 are associated with prostate cancer risk: results from the CAncer prostate in Sweden study. Cancer Res 64(8):2918–2922

    Article  CAS  PubMed  Google Scholar 

  52. Lindmark F et al (2004) H6D polymorphism in macrophage-inhibitory cytokine-1 gene associated with prostate cancer. J Natl Cancer Inst 96(16):1248–1254

    Article  CAS  PubMed  Google Scholar 

  53. Lindmark F et al (2005) Interleukin-1 receptor antagonist haplotype associated with prostate cancer risk. Br J Cancer 93(4):493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Khanna RD et al (2014) Inflammation, free radical damage, oxidative stress and cancer. Microinflammation 1:109. https://doi.org/10.4172/2381-8727.1000109

  55. Klaunig JE, Kamendulis LM, Hocevar BA (2009) Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 38(1):96–109

    Article  PubMed  CAS  Google Scholar 

  56. Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5):479–496

    Article  CAS  PubMed  Google Scholar 

  57. Federico A et al (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121(11):2381–2386

    Article  CAS  PubMed  Google Scholar 

  58. Maynard S et al (2008) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30(1):2–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bos JL (1988) The ras gene family and human carcinogenesis. Mutation Research/Reviews in Genetic Toxicology 195(3):255–271

    Article  CAS  Google Scholar 

  60. Takahashi T et al (1989) p53: a frequent target for genetic abnormalities in lung cancer. Science 246(4929):491–494

    Article  CAS  PubMed  Google Scholar 

  61. Franco R et al (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266(1):6–11

    Article  CAS  PubMed  Google Scholar 

  62. Valinluck V, Sowers LC (2007) Endogenous cytosine damage products Alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 67(3):946–950

    Article  CAS  PubMed  Google Scholar 

  63. Long C et al (2007) Promoter Hypermethylation of the RUNX3 gene in esophageal squamous cell carcinoma. Cancer Investig 25(8):685–690

    Article  CAS  Google Scholar 

  64. Akiyama Y et al (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric Cancer. Mol Cell Biol 23(23):8429–8439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma S, Kelly TK, Jones PA (2009) Epigenetics in cancer. Carcinogenesis 31(1):27–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Trachootham D et al (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frohlich DA et al (2008) The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 27(31):4353–4362

    Article  CAS  PubMed  Google Scholar 

  68. Nelson WG et al (2004) The role of inflammation in the pathogenesis of prostate cancer. J Urol 172(5):S6–S12

    Article  CAS  PubMed  Google Scholar 

  69. Zhou M et al (2004) Quantitative GSTP1 methylation levels correlate with Gleason grade and tumor volume in prostate needle biopsies. J Urol 171(6):2195–2198

    Article  CAS  PubMed  Google Scholar 

  70. Khandrika L et al (2009) Oxidative stress in prostate cancer. Cancer Lett 282(2):125–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arbiser JL et al (2002) Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc Natl Acad Sci 99(2):715–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brar SS et al (2003) NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. AJP: Cell Physiol 285(2):C353–C369

    CAS  Google Scholar 

  73. Tam NNC et al (2003) Androgenic regulation of oxidative stress in the rat prostate. Am J Pathol 163(6):2513–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pathak S et al (2008) Androgen manipulation alters oxidative DNA adduct levels in androgen-sensitive prostate cancer cells grown in vitro and in vivo. Cancer Lett 261(1):74–83

    Article  CAS  PubMed  Google Scholar 

  75. Miyake H et al (2004) Oxidative DNA damage in patients with prostate cancer and its response to treatment. J Urol 171(4):1533–1536

    Article  CAS  PubMed  Google Scholar 

  76. de Visser KE, Coussens LM (2005) The interplay between innate and adaptive immunity regulates cancer development. Cancer Immunol Immunother 54(11):1143–1152

    Article  PubMed  Google Scholar 

  77. Lu H (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4(4):221–233

    Article  PubMed  CAS  Google Scholar 

  78. Coussens LM, Werb Z (2001) Inflammatory cells and Cancer. J Exp Med 193(6):F23–F26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lin EY, Pollard JW (2004) Role of infiltrated leucocytes in tumour growth and spread. Br J Cancer 90(11):2053–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Grimshaw MJ, Wilson JL, Balkwill FR (2002) Endothelin-2 is a macrophage chemoattractant: implications for macrophage distribution in tumors. Eur J Immunol 32(9):2393–2400

    Article  CAS  PubMed  Google Scholar 

  81. Pollard JW (2004) Opinion: tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  82. Grivennikov SI, Karin M (2010) Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 20(1):65–71

    Article  CAS  PubMed  Google Scholar 

  83. Crusz SM, Balkwill FR (2015) Inflammation and cancer: advances and new agents. Nat Rev Clin Oncol 12(10):584–596

    Article  CAS  PubMed  Google Scholar 

  84. Medzhitov R (2009) Approaching the asymptote: 20 years later. Immunity 30(6):766–775

    Article  CAS  PubMed  Google Scholar 

  85. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  86. Chen KW et al (2014) In: Hiraku YU, Kawanishi SO, Oshima H (eds) Inflammasomes and inflammation, in cancer and inflammation mechanisms : chemical, biological, and clinical aspects, p 1 online resource (409 pages)

    Google Scholar 

  87. Gu Y et al (1997) Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 275(5297):206–209

    Article  CAS  PubMed  Google Scholar 

  88. Schroder K et al (2004) Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75(2):163–189

    Article  CAS  PubMed  Google Scholar 

  89. Scheede-Bergdahl C et al (2012) Is IL-6 the best pro-inflammatory biomarker of clinical outcomes of cancer cachexia? Clin Nutr 31(1):85–88

    Article  CAS  PubMed  Google Scholar 

  90. Langowski JL et al (2006) IL-23 promotes tumour incidence and growth. Nature 442(7101):461–465

    Article  CAS  PubMed  Google Scholar 

  91. Bunt SK et al (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67(20):10019–10026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zaki MH et al (2010) IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol 185(8):4912–4920

    Article  CAS  PubMed  Google Scholar 

  93. Ghiringhelli F et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178

    Article  CAS  PubMed  Google Scholar 

  94. Gong Z et al (2014) In: Hiraku YU, Kawanishi SO, Oshima H (eds) MicroRNAs and Inflammation-related cancer, in cancer and inflammation mechanisms : chemical, biological, and clinical aspects, p 1 online resource (409 pages)

    Google Scholar 

  95. Sonkoly E, Pivarcsi A (2009) microRNAs in inflammation. Int Rev Immunol 28(6):535–561

    Article  CAS  PubMed  Google Scholar 

  96. Schetter AJ, Heegaard NH, Harris CC (2010) Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis 31(1):37–49

    Article  CAS  PubMed  Google Scholar 

  97. Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5(10):749–759

    Article  CAS  PubMed  Google Scholar 

  98. Murdoch C et al (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8(8):618–631

    Article  CAS  PubMed  Google Scholar 

  99. Loffler D et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood 110(4):1330–1333

    Article  PubMed  CAS  Google Scholar 

  100. Si ML et al (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    Article  CAS  PubMed  Google Scholar 

  101. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Motsch N et al (2007) Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol 4(3):131–137

    Article  CAS  PubMed  Google Scholar 

  103. Gironella M et al (2007) Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A 104(41):16170–16175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pan J et al (2010) Tumor-suppressive mir-663 gene induces mitotic catastrophe growth arrest in human gastric cancer cells. Oncol Rep 24(1):105–112

    CAS  PubMed  Google Scholar 

  105. Bhaumik D et al (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 1(4):402–411

    Article  CAS  Google Scholar 

  106. Sun Q et al (2014) miR-146a functions as a tumor suppressor in prostate cancer by targeting Rac1. Prostate 74(16):1613–1621

    Article  CAS  PubMed  Google Scholar 

  107. Hao Y et al (2011) Enforced expression of miR-101 inhibits prostate cancer cell growth by modulating the COX-2 pathway in vivo. Cancer Prev Res (Phila) 4(7):1073–1083

    Article  CAS  Google Scholar 

  108. Varambally S et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322(5908):1695–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Blower PE et al (2008) MicroRNAs modulate the chemosensitivity of tumor cells. Mol Cancer Ther 7(1):1–9

    Article  CAS  PubMed  Google Scholar 

  110. Zheng T et al (2010) Role of microRNA in anticancer drug resistance. Int J Cancer 126(1):2–10

    Article  CAS  PubMed  Google Scholar 

  111. Dranoff G (2004) Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 4(1):11–22

    Article  CAS  PubMed  Google Scholar 

  112. Vasto S et al (2012) Inflammation and cancer of the prostate, in prostate cancer: a comprehensive perspective. Springer Nature, pp 115–122

    Google Scholar 

  113. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and Cancer. Cell 140(6):883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Giri D, Ittmann M (2000) Interleukin-1α is a paracrine inducer of FGF7, a key epithelial growth factor in benign prostatic hyperplasia. Am J Pathol 157(1):249–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Furbert-Harris P et al (2003) Inhibition of prostate cancer cell growth by activated eosinophils. Prostate 57(2):165–175

    Article  CAS  PubMed  Google Scholar 

  116. Nguyen DP, Li J, Tewari AK (2014) Inflammation and prostate cancer: the role of interleukin 6 (IL-6). BJU Int 113(6):986–992

    Article  CAS  PubMed  Google Scholar 

  117. Culig Z, Bartsch G, Hobisch A (2002) Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth. Mol Cell Endocrinol 197(1–2):231–238

    Article  CAS  PubMed  Google Scholar 

  118. Deeble PD et al (2001) Interleukin-6- and cyclic AMP-mediated signaling potentiates neuroendocrine differentiation of LNCaP prostate tumor cells. Mol Cell Biol 21(24):8471–8482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sottnik JL et al (2011) The PCa tumor microenvironment. Cancer Microenviron 4(3):283–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ancrile B, Lim KH, Counter CM (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21(14):1714–1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yonish-Rouach E et al (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352(6333):345–347

    Article  CAS  PubMed  Google Scholar 

  122. Hodge DR, Hurt EM, Farrar WL (2005) The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41(16):2502–2512

    Article  CAS  PubMed  Google Scholar 

  123. Culig Z et al (2005) Interleukin-6 regulation of prostate cancer cell growth. J Cell Biochem 95(3):497–505

    Article  CAS  PubMed  Google Scholar 

  124. van Zaanen HC et al (1998) Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br J Haematol 102(3):783–790

    Article  PubMed  Google Scholar 

  125. Borsellino N, Belldegrun A, Bonavida B (1995) Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res 55(20):4633–4639

    CAS  PubMed  Google Scholar 

  126. Hudes G et al (2013) A phase 1 study of a chimeric monoclonal antibody against interleukin-6, siltuximab, combined with docetaxel in patients with metastatic castration-resistant prostate cancer. Investig New Drugs 31(3):669–676

    Article  CAS  Google Scholar 

  127. Balkwill F (2002) Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev 13(2):135–141

    Article  CAS  PubMed  Google Scholar 

  128. Karin M, Lin A (2002) NF-κB at the crossroads of life and death. Nat Immunol 3(3):221–227

    Article  CAS  PubMed  Google Scholar 

  129. Nguyen DP et al (2014) Recent insights into NF-kappaB signalling pathways and the link between inflammation and prostate cancer. BJU Int 114(2):168–176

    Article  CAS  PubMed  Google Scholar 

  130. Suh J et al (2002) Mechanisms of constitutive NF-κB activation in human prostate cancer cells. Prostate 52(3):183–200

    Article  CAS  PubMed  Google Scholar 

  131. Shukla S et al (2004) Nuclear factor-κB/p65 (Rel a) is constitutively activated in human prostate adenocarcinoma and correlates with disease progression. Neoplasia 6(4):390–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fuxe, J. and M.C.I. Karlsson, Epithelial–Mesenchymal transition: a link between cancer and inflammation, in cancer and inflammation mechanisms : chemical, biological, and clinical aspects, Y. U. Hiraku, S. O. Kawanishi, and H. Oshima, Editors. p. 1 online resource (409 pages)

    Google Scholar 

  133. Heldin CH, Landstrom M, Moustakas A (2009) Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21(2):166–176

    Article  CAS  PubMed  Google Scholar 

  134. Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172

    Article  CAS  PubMed  Google Scholar 

  135. Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35(3):161–168

    Article  CAS  PubMed  Google Scholar 

  136. Buijs JT et al (2007) TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clin Exp Metastasis 24(8):609–617

    Article  CAS  PubMed  Google Scholar 

  137. Fuxe J, Vincent T, Garcia A (2010) De Herreros, Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle 9(12):2363–2374

    Article  CAS  PubMed  Google Scholar 

  138. Maitah MY et al (2011) Up-regulation of sonic hedgehog contributes to TGF-beta1-induced epithelial to mesenchymal transition in NSCLC cells. PLoS One 6(1):e16068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Oft M et al (1996) TGF-beta1 and ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10(19):2462–2477

    Article  CAS  PubMed  Google Scholar 

  140. Zavadil J et al (2004) Integration of TGF-beta/Smad and Jagged1/notch signalling in epithelial-to-mesenchymal transition. EMBO J 23(5):1155–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Massague J (2008) TGFbeta in Cancer. Cell 134(2):215–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dalal BI, Keown PA, Greenberg AH (1993) Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143(2):381–389

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kawada M et al (2008) Transforming growth factor-beta1 modulates tumor-stromal cell interactions of prostate cancer through insulin-like growth factor-I. Anticancer Res 28(2A):721–730

    CAS  PubMed  Google Scholar 

  144. Bates RC, Mercurio AM (2003) Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14(5):1790–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wu Y et al (2009) Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell 15(5):416–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wyckoff J et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64(19):7022–7029

    Article  CAS  PubMed  Google Scholar 

  147. Jordan CT, Guzman ML, Noble M (2006) Cancer stem cells. N Engl J Med 355(12):1253–1261

    Article  CAS  PubMed  Google Scholar 

  148. Clarke MF et al (2006) Cancer stem cells--perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344

    Article  CAS  PubMed  Google Scholar 

  149. Tanno T, Matsui W (2014) In: Hiraku YU, Kawanishi SO, Oshima H (eds) Stem cell theory and inflammation-related cancer, in cancer and inflammation mechanisms : Chemical, biological, and clinical aspects, p 1 online resource (409 pages)

    Google Scholar 

  150. Widera D et al (2006) Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci 7:64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Audet J et al (2001) Distinct role of gp130 activation in promoting self-renewal divisions by mitogenically stimulated murine hematopoietic stem cells. Proc Natl Acad Sci U S A 98(4):1757–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tothova Z et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2):325–339

    Article  CAS  PubMed  Google Scholar 

  153. Ito K et al (2007) Regulation of reactive oxygen species by Atm is essential for proper response to DNA double-strand breaks in lymphocytes. J Immunol 178(1):103–110

    Article  CAS  PubMed  Google Scholar 

  154. Ito K et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4):446–451

    Article  CAS  PubMed  Google Scholar 

  155. Liu Y et al (2009) p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 4(1):37–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Adelman DM, Maltepe E, Simon MC (1999) Multilineage embryonic hematopoiesis requires hypoxic ARNT activity. Genes Dev 13(19):2478–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gilbertson RJ, Rich JN (2007) Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7(10):733–736

    Article  CAS  PubMed  Google Scholar 

  158. Guzman ML et al (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 105(11):4163–4169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sullivan R, Graham CH (2008) Chemosensitization of cancer by nitric oxide. Curr Pharm Des 14(11):1113–1123

    Article  CAS  PubMed  Google Scholar 

  160. Tiligada E (2006) Chemotherapy: induction of stress responses. Endocr Relat Cancer 13(Suppl 1):S115–S124

    Article  CAS  PubMed  Google Scholar 

  161. Pervaiz S, Clement MV (2004) Tumor intracellular redox status and drug resistance--serendipity or a causal relationship? Curr Pharm Des 10(16):1969–1977

    Article  CAS  PubMed  Google Scholar 

  162. Zavadil J, Bottinger EP (2005) TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24(37):5764–5774

    Article  CAS  PubMed  Google Scholar 

  163. Vesuna F et al (2009) Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia 11(12):1318–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gupta PB et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mani SA et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Nguyen QD et al (2005) Commutators of PAR-1 signaling in cancer cell invasion reveal an essential role of the rho-rho kinase axis and tumor microenvironment. Oncogene 24(56):8240–8251

    Article  CAS  PubMed  Google Scholar 

  167. Yang MH et al (2008) Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol 10(3):295–305

    Article  CAS  PubMed  Google Scholar 

  168. Merchant AA, Matsui W (2010) Targeting hedgehog--a cancer stem cell pathway. Clin Cancer Res 16(12):3130–3140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jamieson CH et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351(7):657–667

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Victoria Hackert for her help in collecting relevant materials. Both KKY and SSY are Prostate Cancer Foundation Young Investigators. AKT is supported by grants from PCF and Deane Prostate Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh K. Tewari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tewari, A.K., Stockert, J.A., Yadav, S.S., Yadav, K.K., Khan, I. (2018). Inflammation and Prostate Cancer. In: Schatten, H. (eds) Cell & Molecular Biology of Prostate Cancer. Advances in Experimental Medicine and Biology, vol 1095. Springer, Cham. https://doi.org/10.1007/978-3-319-95693-0_3

Download citation

Publish with us

Policies and ethics