Skip to main content

Nano and Microencapsulation Using Food Grade Polymers

  • Chapter
  • First Online:
Polymers for Food Applications

Abstract

Encapsulation is the technique in which an active component (core material) is entrapped in a polymeric (wall) material. This can be done at the macro, micro or nano-level. In the food industry, apart from providing protection to the core material, encapsulation has found several applications in terms of controlled release, targeted delivery, enhanced bioavailability, improved storage stability and control over unpleasant flavours. These attributes are highly linked to surface-volume ratios and hence differentiates nano and microencapsulation from macroencapsulation. Common wall materials include lipids and food grade polymers such as polysaccharides and proteins or their combinations. This chapter presents a detailed note on various approaches for nano and microencapsulation, emphasising on the types and potential of using different types of food grade polymers. A summary of research on such aspects and the various core materials of interest are also presented. Methods to characterize encapsulated materials and challenges faced in these practices are included to provide an in-depth understanding on the subject.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aceituno-Medina M, Mendoza S, Lagaron JM, López-Rubio A (2015a) Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate–Pullulan electrospun fibers. LWT Food Sci Technol 62(2):970–975

    Article  CAS  Google Scholar 

  • Aceituno-Medina M, Mendoza S, Rodríguez BA, Lagaron JM, López-Rubio A (2015b) Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. J Funct Foods 12:332–341

    Article  CAS  Google Scholar 

  • Aghbashlo M, Mobli H, Madadlou A, Rafiee S (2012a) Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food Bioprocess Technol 6(6):1561–1569

    Article  CAS  Google Scholar 

  • Aghbashlo M, Mobli H, Madadlou A, Rafiee S (2012b) The correlation of wall material composition with flow characteristics and encapsulation behavior of fish oil emulsion. Food Res Int 49(1):379–388

    Article  CAS  Google Scholar 

  • Alvim ID, Stein MA, Koury IP, Dantas FB, Cruz CL (2016) Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT Food Sci Technol 65:689–694

    Article  CAS  Google Scholar 

  • Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18(5):240–251

    Article  CAS  Google Scholar 

  • Anandharamakrishnan C (2014) Techniques for nanoencapsulation of food ingredients. Springer, New York

    Book  Google Scholar 

  • Anandharamakrishnan C, Ishwarya SP (2015) Spray drying techniques for food ingredient encapsulation. Wiley, Hoboken

    Book  Google Scholar 

  • Anandharamakrishnan C, Rielly CD, Stapley AG (2010) Spray-freeze-drying of whey proteins at sub-atmospheric pressures. Dairy Sci Technol 90(2–3):321–334

    Article  CAS  Google Scholar 

  • Arpagaus C, John P, Collenberg A, Rutti D (2017) Nanocapsules formation by nano spray drying. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic, New York, pp 1–34

    Google Scholar 

  • Arslan S, Erbas M, Tontul I, Topuz A (2015) Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. LWT Food Sci Technol 63(1):685–690

    Article  CAS  Google Scholar 

  • Asghari-Varzaneh E, Shahedi M, Shekarchizadeh H (2017) Iron microencapsulation in gum tragacanth using solvent evaporation method. Int J Biol Macromol 103:640–647

    Article  PubMed  CAS  Google Scholar 

  • Augustin MA, Hemar Y (2009) Nano-and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev 38(4):902–912

    Article  PubMed  CAS  Google Scholar 

  • Augustin MA, Sanguansri P (2009) Nanostructured materials in the food industry. Adv Food Nutr Res 58:183–213

    Article  PubMed  CAS  Google Scholar 

  • Aytac Z, Dogan SY, Tekinay T, Uyar T (2014) Release and antibacterial activity of allyl isothiocyanate/β-cyclodextrin complex encapsulated in electrospun nanofibers. Colloids Surf B: Biointerfaces 120:125–131

    Article  PubMed  CAS  Google Scholar 

  • Aytac Z, Ipek S, Durgun E, Tekinay T, Uyar T (2017) Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem 233:117–124

    Article  PubMed  CAS  Google Scholar 

  • Badri W, Miladi K, Eddabra R, Fessi H, Elaissari A (2015) Elaboration of nanoparticles containing indomethacin: argan oil for transdermal local and cosmetic application. J Nanomater 16(1):113

    Google Scholar 

  • Balassa LL, Fanger GO, Wurzburg OB (1971) Microencapsulation in the food industry. Crit Rev Food Sci Nutr 2(2):245–265

    Google Scholar 

  • Ballesteros LF, Ramirez MJ, Orrego CE, Teixeira JA, Mussatto SI (2017) Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem 237:623–631

    Article  PubMed  CAS  Google Scholar 

  • Bareras-Urbina CG, Ramírez-Wong B, López-Ahumada GA, Burruel-Ibarra SE, Martínez-Cruz O, Tapia-Hernández JA, Rodriguez Felix F (2016) Nano-and micro-particles by nanoprecipitation: possible application in the food and agricultural industries. Int J Food Prop 19(9):1912–1923

    Article  CAS  Google Scholar 

  • Battista JV, Lindlof JA, Wurster DE (1965) Process for preparing agglomerates. US Patent 3207824

    Google Scholar 

  • Bazylińska U, Lewińska A, Lamch Ł, Wilk KA (2014) Polymeric nanocapsules and nanospheres for encapsulation and long sustained release of hydrophobic cyanine-type photosensitizer. Colloids Surf A Physicochem Eng Asp 442:42–49

    Article  CAS  Google Scholar 

  • Belščak-Cvitanović A, Bušić A, Barišić L, Vrsaljko D, Karlović S, Špoljarić I, Vojvodic A, Mrsic G, Komes D (2016) Emulsion templated microencapsulation of dandelion (Taraxacum officinale L.) polyphenols and β-carotene by ionotropic gelation of alginate and pectin. Food Hydrocoll 57:139–152

    Article  CAS  Google Scholar 

  • Bernardos A, Marina T, Žáček P, Pérez-Esteve É, Martínez-Mañez R, Lhotka M, Kouřimská L, Pulkrábek J, Klouček P (2015) Antifungal effect of essential oil components against Aspergillus niger when loaded into silica mesoporous supports. J Sci Food Agric 95(14):2824–2831

    Article  PubMed  CAS  Google Scholar 

  • Bhushani JA, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci Technol 38(1):21–33

    Article  CAS  Google Scholar 

  • Bhushani JA, Kurrey NK, Anandharamakrishnan C (2017) Nanoencapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability. J Food Eng 199:82–92

    Article  CAS  Google Scholar 

  • Biddeci G, Cavallaro G, Di Blasi F, Lazzara G, Massaro M, Milioto S, Parisi F, Riela S, Spinelli G (2016) Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film. Carbohydr Polym 152:548–557

    Article  PubMed  CAS  Google Scholar 

  • Boschetto DL, Dalmolin I, de Cesaro AM, Rigo AA, Ferreira SR, Meireles MA, Batista EA, Oliveira JV (2013) Phase behavior and process parameters effect on grape seed extract encapsulation by SEDS technique. Ind Crop Prod 50:352–360

    Article  CAS  Google Scholar 

  • Botrel DA, Borges SV, de Barros Fernandes RV, Lourenço Do Carmo E (2014a) Optimization of fish oil spray drying using a protein: inulin system. Dry Technol 32(3):279–290

    Article  CAS  Google Scholar 

  • Botrel DA, de Barros Fernandes RV, Borges SV, Yoshida MI (2014b) Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Res Int 62:344–352

    Article  CAS  Google Scholar 

  • Botrel DA, Borges SV, de Barros Fernandes RV, Antoniassi R, de Faria-Machado AF, de Andrade Feitosa JP, de Paula RCM (2017) Application of cashew tree gum on the production and stability of spray-dried fish oil. Food Chem 221:1522–1529

    Article  PubMed  CAS  Google Scholar 

  • Bourbon AI, Cerqueira MA, Vicente AA (2016) Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: curcumin and caffeine as model compounds. J Food Eng 180:110–119

    Article  CAS  Google Scholar 

  • Boydston-White S, Gopen T, Houser S, Bargonetti J, Diem M (1999) Infrared spectroscopy of human tissue. V. Infrared spectroscopic studies of myeloid leukemia (ML-1) cells at different phases of the cell cycle. Biospectroscopy 5(4):219–227

    Article  PubMed  CAS  Google Scholar 

  • Calderón-Oliver M, Pedroza-Islas R, Escalona-Buendía HB, Pedraza-Chaverri J, Ponce-Alquicira E (2017) Comparative study of the microencapsulation by complex coacervation of nisin in combination with an avocado antioxidant extract. Food Hydrocoll 62:49–57

    Article  CAS  Google Scholar 

  • Çam M, İçyer NC, Erdoğan F (2014) Pomegranate peel phenolics: microencapsulation, storage stability and potential ingredient for functional food development. LWT Food Sci Technol 55(1):117–123

    Article  CAS  Google Scholar 

  • Carneiro HC, Tonon RV, Grosso CR, Hubinger MD (2013) Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng 115(4):443–451

    Article  CAS  Google Scholar 

  • Celebioglu A, Kayaci-Senirmak F, İpek S, Durgun E, Uyar T (2016) Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct 7(7):3141–3153

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Varankovich N, Nickerson MT (2016) Microencapsulation of canola oil by lentil protein isolate-based wall materials. Food Chem 212:264–273

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Zhong F, Wen J, McGillivray D, Quek SY (2013) Properties and stability of spray-dried and freeze-dried microcapsules co-encapsulated with fish oil, phytosterol esters, and limonene. Dry Technol 31(6):707–716

    Article  CAS  Google Scholar 

  • Cherukuri SR, Mansukhani G (1989) Sweetener delivery systems containing polyvinyl acetate. US Patent 4816265

    Google Scholar 

  • Cherukuri SR, Mansukhani G (1990) Multiple encapsulated sweetener delivery system. US Patent 4933190

    Google Scholar 

  • Cherukuri SR, Mansukhani G, Faust SM (1991) Food acid delivery systems containing polyvinyl acetate. US Patent 5057328

    Google Scholar 

  • Chow SF, Wan KY, Cheng KK, Wong KW, Sun CC, Baum L, Chow AH (2015) Development of highly stabilized curcumin nanoparticles by flash nanoprecipitation and lyophilization. Eur J Pharm Biopharm 94:436–449

    Article  PubMed  CAS  Google Scholar 

  • Chranioti C, Tzia C (2014) Arabic gum mixtures as encapsulating agents of freeze-dried fennel oleoresin products. Food Bioprocess Technol 7(4):1057–1065

    Article  CAS  Google Scholar 

  • Clogston JD, Patri AK (2011) Zeta potential measurement. In: McNeil SE (ed) Characterization of nanoparticles intended for drug delivery, vol 697. Humana Press, New York, pp 63–70

    Chapter  Google Scholar 

  • Cocero MJ, Martín Á, Mattea F, Varona S (2009) Encapsulation and co-precipitation processes with supercritical fluids: fundamentals and applications. J Supercrit Fluids 47(3):546–555

    Article  CAS  Google Scholar 

  • Coghetto CC, Brinques GB, Siqueira NM, Pletsch J, Soares RMD, Ayub MAZ (2016) Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids. J Funct Foods 24:316–326

    Article  CAS  Google Scholar 

  • Coronel-Aguilera CP, San Martín-González MF (2015) Encapsulation of spray dried β-carotene emulsion by fluidized bed coating technology. LWT Food Sci Technol 62(1):187–193

    Article  CAS  Google Scholar 

  • Costa LM, Bretas RE, Gregorio R (2010) Effect of solution concentration on the electrospray/electrospinning transition and on the crystalline phase of PVDF. Mater Sci Appl 1(04):247

    CAS  Google Scholar 

  • Dal Magro C, Aguiar GP, Veneral JG, dos Santos AE, de Chaves LM, Oliveira JV, Lanza M (2017) Co-precipitation of trans-resveratrol in PHBV using Solution Enhanced Dispersion by Supercritical Fluids technique. J Supercrit Fluids 127:182–190

    Article  CAS  Google Scholar 

  • De Barros Fernandes RV, Borges SV, Botrel DA (2014a) Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr Polym 101:524–532

    Article  CAS  Google Scholar 

  • De Barros Fernandes RV, Borges SV, Botrel DA, Oliveira CRD (2014b) Physical and chemical properties of encapsulated rosemary essential oil by spray drying using whey protein–inulin blends as carriers. Int J Food Sci Technol 49(6):1522–1529

    Article  CAS  Google Scholar 

  • De Oca HM, Ward IM, Klein PG, Ries ME, Rose J, Farrar D (2004) Solid state nuclear magnetic resonance study of highly oriented poly (glycolic acid). Polymer 45(21):7261–7272

    Article  CAS  Google Scholar 

  • De Paz E, Martín Á, Cocero MJ (2012) Formulation of β-carotene with soybean lecithin by PGSS (Particles from Gas Saturated Solutions)-drying. J Supercrit Fluids 72:125–133

    Article  CAS  Google Scholar 

  • Deng J, Li W, Lin Q (2016) Study on preparation and migration behavior of polyvinyl alcohol active packaging film based on clove essential oil/β-cyclodextrin inclusion complex. J Nanosci Nanotechnol 16(12):12617–12620

    Article  CAS  Google Scholar 

  • Depypere F, Pieters JG, Dewettinck K (2009) PEPT visualisation of particle motion in a tapered fluidised bed coater. J Food Eng 93(3):324–336

    Article  Google Scholar 

  • Desobry SA, Netto FM, Labuza TP (1997) Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J Food Sci 62(6):1158–1162

    Article  CAS  Google Scholar 

  • Dianawati D, Mishra V, Shah NP (2013) Survival of Bifidobacterium longum 1941 microencapsulated with proteins and sugars after freezing and freeze drying. Food Res Int 51(2):503–509

    Article  CAS  Google Scholar 

  • Dima C, Cotârlet M, Alexe P, Dima S (2014) Microencapsulation of essential oil of pimento [Pimenta dioica (L) Merr.] by chitosan/k-carrageenan complex coacervation method. Innovative Food Sci Emerg Technol 22:203–211

    Article  CAS  Google Scholar 

  • Do Carmo CS, Pais R, Simplício AL, Mateus M, Duarte CM (2017) Improvement of aroma and shelf-life of non-alcoholic beverages through cyclodextrins-limonene inclusion complexes. Food Bioprocess Technol 10(7):1297–1309

    Article  CAS  Google Scholar 

  • Drosou CG, Krokida MK, Biliaderis CG (2017) Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: a comparative assessment of food-related applications. Dry Technol 35(2):139–162

    Article  CAS  Google Scholar 

  • Duangkhamchan W, Ronsse F, Depypere F, Dewettinck K, Pieters JG (2012) CFD study of droplet atomisation using a binary nozzle in fluidised bed coating. Chem Eng Sci 68(1):555–566

    Article  CAS  Google Scholar 

  • Duangkhamchan W, Ronsse F, Siriamornpun S, Pieters JG (2015) Numerical study of air humidity and temperature distribution in a top-spray fluidised bed coating process. J Food Eng 146:81–91

    Article  CAS  Google Scholar 

  • Echegoyen Y, Fabra MJ, Castro-Mayorga JL, Cherpinski A, Lagaron JM (2017) High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications. Trends Food Sci Technol 60:71–79

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Indrani D, Jena BS, Anandharamakrishnan C (2013a) Freeze drying technique for microencapsulation of Garcinia fruit extract and its effect on bread quality. J Food Eng 117(4):513–520

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C (2013b) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6(3):628–647

    Article  CAS  Google Scholar 

  • Ezhilarasi PN, Indrani D, Jena BS, Anandharamakrishnan C (2014) Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality. J Sci Food Agric 94(6):1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Fathi M, Martín Á, McClements DJ (2014) Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci Technol 39(1):18–39

    Article  CAS  Google Scholar 

  • Fernández-Ponce MT, Masmoudi Y, Djerafi R, Casas L, Mantell C, de La Ossa EM, Badens E (2015) Particle design applied to quercetin using supercritical anti-solvent techniques. J Supercrit Fluids 105:119–127

    Article  CAS  Google Scholar 

  • Freiberger EB, Kaufmann KC, Bona E, de Araújo PH, Sayer C, Leimann FV, Gonçalves OH (2015) Encapsulation of roasted coffee oil in biocompatible nanoparticles. LWT Food Sci Technol 64(1):381–389

    Article  CAS  Google Scholar 

  • Frey C (2014) Fluid bed coating-based microencapsulation. In: Gaonkar AG, Vasisht N, Khare AR, Sobel R (eds) Microencapsulation in the food industry: a practical implementation guide. Elsevier, pp 65–79

    Google Scholar 

  • Galvão JG, Silva VF, Ferreira SG, França FR, Santos DA, Freitas LS, Alves PB, Araújo AA, Cavalcanti SC, Nunes RS (2015) β-cyclodextrin inclusion complexes containing Citrus sinensis (L.) Osbeck essential oil: an alternative to control Aedes aegypti larvae. Thermochim Acta 608:14–19

    Article  CAS  Google Scholar 

  • Gharibzahedi SMT, Jafari SM (2017) Nanocapsule formation by cyclodextrin. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic, pp 187–261

    Google Scholar 

  • Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40(9):1107–1121

    Article  CAS  Google Scholar 

  • Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll 51:227–240

    Article  CAS  Google Scholar 

  • Ghorani B, Alehosseini A, Tucker N (2017) Nanocapsule formation by electrospinning. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic, pp 264–319

    Google Scholar 

  • Ghosh SK (ed) (2006) Functional coatings: by polymer microencapsulation. Wiley, Hoboken

    Google Scholar 

  • Giufrida WM, Cabral VF, Cardoso-Filho L, dos Santos Conti D, de Campos VE, da Rocha SR (2016) Medroxyprogesterone-encapsulated poly (3-hydroxybutirate-co-3-hydroxyvalerate) nanoparticles using supercritical fluid extraction of emulsions. J Supercrit Fluids 118:79–88

    Article  CAS  Google Scholar 

  • Goldburg WI (1999) Dynamic light scattering. Am J Phys 67(12):1152–1160

    Article  Google Scholar 

  • Gómez-Estaca J, Gavara R, Hernández-Muñoz P (2015) Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Sci Emerg Technol 29:302–307

    Article  CAS  Google Scholar 

  • Gomez-Estaca J, Comunian TA, Montero P, Ferro-Furtado R, Favaro-Trindade CS (2016) Encapsulation of an astaxanthin-containing lipid extract from shrimp waste by complex coacervation using a novel gelatin–cashew gum complex. Food Hydrocoll 61:155–162

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, Balaguer MP, López-Carballo G, Gavara R, Hernández-Muñoz P (2017) Improving antioxidant and antimicrobial properties of curcumin by means of encapsulation in gelatin through electrohydrodynamic atomization. Food Hydrocoll 70:313–320

    Article  CAS  Google Scholar 

  • Gómez-Mascaraque LG, Lagarón JM, López-Rubio A (2015) Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll 49:42–52

    Article  CAS  Google Scholar 

  • Gómez-Mascaraque LG, Ambrosio-Martín J, Fabra MJ, Pérez-Masiá R, López-Rubio A (2016) Novel nanoencapsulation structures for functional foods and nutraceutical applications. In: Sen S, Pathak Y (eds) Nanotechnology in nutraceuticals: production to consumption. CRC Press, Taylor & Francis Group, New York, pp 373–395

    Google Scholar 

  • Gong L, Li T, Chen F, Duan X, Yuan Y, Zhang D, Jiang Y (2016) An inclusion complex of eugenol into β-cyclodextrin: preparation, and physicochemical and antifungal characterization. Food Chem 196:324–330

    Article  PubMed  CAS  Google Scholar 

  • Gouin S (2004) Microencapsulation: industrial appraisal of existing technologies and trends. Trends Food Sci Technol 15(7):330–347

    Article  CAS  Google Scholar 

  • Gupta C, Chawla P, Arora S, Tomar SK, Singh AK (2015) Iron microencapsulation with blend of gum arabic, maltodextrin and modified starch using modified solvent evaporation method–milk fortification. Food Hydrocoll 43:622–628

    Article  CAS  Google Scholar 

  • Gupta S, Khan S, Muzafar M, Kushwaha M, Yadav AK, Gupta AP (2016) Encapsulation: entrapping essential oil/flavors/aromas in food. In: Grumezescu A (ed) Encapsulations, vol 2. Academic, pp 229–268

    Google Scholar 

  • Gutiérrez TJ (2018) Processing nano- and microcapsules for industrial applications. In: Chaudhery Mustansar Hussain (ed) Handbook of nanomaterials for industrial applications. Elsevier, pp. 989–1011. https://doi.org/10.1016/B978-0-12-813351-4.00057-2. EE.UU. ISBN: 978-0-12-813351-4

  • Gutiérrez TJ, Álvarez K (2017) Biopolymers as microencapsulation materials in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: part 2. Bentham Science Publishers, pp 296–322. https://doi.org/10.2174/9781681085449117010009. EE.UU. ISBN: 978-1-68108-545-6. eISBN: 978-1-68108-544-9

  • Heunis T, Bshena O, Klumperman B, Dicks L (2011) Release of bacteriocins from nanofibers prepared with combinations of poly (D, L-lactide) (PDLLA) and poly (ethylene oxide) (PEO). Int J Mol Sci 12(4):2158–2173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill LE, Gomes C, Taylor TM (2013) Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT Food Sci Technol 51(1):86–93

    Article  CAS  Google Scholar 

  • Hohne G, Hemminger WF, Flammersheim HJ (2013) Differential scanning calorimetry, 2nd edn. Springer, New York

    Google Scholar 

  • Hronsky V, Kovalakova M, Vrabel P, Uhrinova M, Olcak D (2014) Estimation of the degree of crystallinity of partially crystalline polypropylenes using 13C NMR. In: Proceedings of the 15th Czech and Slovak conference on magnetism, Kosice, Slovakia, vol 126

    Google Scholar 

  • Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75(1):R50–R57

    Article  PubMed  CAS  Google Scholar 

  • Hundre SY, Karthik P, Anandharamakrishnan C (2015) Effect of whey protein isolate and b-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. Food Chem 174:16–24

    Article  PubMed  CAS  Google Scholar 

  • Ishwarya SP, Anandharamakrishnan C, Stapley AG (2015) Spray-freeze-drying: a novel process for the drying of foods and bioproducts. Trends Food Sci Technol 41(2):161–181

    Article  CAS  Google Scholar 

  • Jafari SM (2017) An overview of nanoencapsulation techniques and their classification. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic, pp 1–34

    Google Scholar 

  • Jafari SM, Esfanjani AF (2017) Instrumental analysis and characterization of nanocapsules. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic, pp 524–544

    Google Scholar 

  • Jafari SM, Mahdavi-Khazaei K, Hemmati-Kakhki A (2016) Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydr Polym 140:20–25

    Article  PubMed  CAS  Google Scholar 

  • Jafari SM, Paximada P, Mandala I, Assadpour E, Mehrnia MA (2017) Encapsulation by nanoemulsions. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic, pp 36–73

    Google Scholar 

  • Jain A, Thakur D, Ghoshal G, Katare OP, Shivhare US (2016) Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. Int J Biol Macromol 87:101–113

    Article  PubMed  CAS  Google Scholar 

  • Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27(3):187–197

    Article  PubMed  CAS  Google Scholar 

  • Kailasapathy K (2016) Bioencapsulation technologies for incorporating bioactive components into functional foods. In: Rai VR (ed) Advances in food biotechnology. Wiley, Hoboken, pp 313–333

    Google Scholar 

  • Karim FT, Ghafoor K, Ferdosh S, Al-Juhaimi F, Ali E, Yunus KB, Hamed MH, Islam A, Asif M, Sarker MZI (2017) Microencapsulation of fish oil using supercritical antisolvent process. J Food Drug Anal 25(3):654–666

    Article  PubMed  CAS  Google Scholar 

  • Karthik P, Anandharamakrishnan C (2013) Microencapsulation of docosahexaenoic acid by spray-freeze-drying method and comparison of its stability with spray-drying and freeze-drying methods. Food Bioprocess Technol 6(10):2780–2790

    Article  CAS  Google Scholar 

  • Kayaci F, Ertas Y, Uyar T (2013) Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J Agric Food Chem 61(34):8156–8165

    Article  PubMed  CAS  Google Scholar 

  • Kayaci F, Sen HS, Durgun E, Uyar T (2014) Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: high thermal stability and enhanced durability of geraniol. Food Res Int 62:424–431

    Article  CAS  Google Scholar 

  • Kfoury M, Hadaruga NG, Hadaruga DI, Fourmentin S (2016) Cyclodextrins as encapsulation material for flavors and aroma. In: Grumezescu A (ed) Encapsulations, vol 2. Academic, pp 127–192

    Google Scholar 

  • Khadiran T, Hussein MZ, Zainal Z, Rusli R (2015) Encapsulation techniques for organic phase change materials as thermal energy storage medium: a review. Sol Energy Mater Sol Cells 143:78–98

    Article  CAS  Google Scholar 

  • Kumar LR, Chatterjee NS, Tejpal CS, Vishnu KV, Anas KK, Asha KK, Anandan R, Mathew S (2017) Evaluation of chitosan as a wall material for microencapsulation of squalene by spray drying: characterization and oxidative stability studies. Int J Biol Macromol 104(Pt B):1986–1995

    Article  CAS  Google Scholar 

  • Lakkis JM (2016) Introduction. In: Lakkis JM (ed) Encapsulation and controlled release technologies in food systems. Wiley, Hoboken, pp 1–15

    Chapter  Google Scholar 

  • Laokuldilok T, Kanha N (2015) Effects of processing conditions on powder properties of black glutinous rice (Oryza sativa L.) bran anthocyanins produced by spray drying and freeze drying. LWT Food Sci Technol 64(1):405–411

    Article  CAS  Google Scholar 

  • Laokuldilok N, Thakeow P, Kopermsub P, Utama-ang N (2016) Optimisation of microencapsulation of turmeric extract for masking flavour. Food Chem 194:695–704

    Article  PubMed  CAS  Google Scholar 

  • Lee SJ, Wong M (2014) Nano-and microencapsulation of phytochemicals. In: Kwak HS (ed) Nano-and microencapsulation for foods. Wiley, pp 117–165

    Google Scholar 

  • Lemma SM, Scampicchio M, Mahon PJ, Sbarski I, Wang J, Kingshott P (2015) Controlled release of retinyl acetate from β-cyclodextrin functionalized poly (vinyl alcohol) electrospun nanofibers. J Agric Food Chem 63(13):3481–3488

    Article  PubMed  CAS  Google Scholar 

  • Lepeltier E, Bourgaux C, Couvreur P (2014) Nanoprecipitation and the “Ouzo effect”: application to drug delivery devices. Adv Drug Deliv Rev 71:86–97

    Article  PubMed  CAS  Google Scholar 

  • Lévai G, Martín Á, Moro A, Matias AA, Gonçalves VS, Bronze MR, Duarte CM, Rodríguez-Rojo S, Cocero MJ (2017) Production of encapsulated quercetin particles using supercritical fluid technologies. Powder Technol 317:142–153

    Article  CAS  Google Scholar 

  • Li C, Wang J, Shi J, Huang X, Peng Q, Xue F (2015) Encapsulation of tomato oleoresin using soy protein isolate-gum acacia conjugates as emulsifier and coating materials. Food Hydrocoll 45:301–308

    Article  CAS  Google Scholar 

  • Li R, Roos YH, Miao S (2016) Characterization of mechanical and encapsulation properties of lactose/maltodextrin/WPI matrix. Food Hydrocoll 63:149–159

    Article  CAS  Google Scholar 

  • Lindlof JA, Wurster DE (1964) Apparatus for coating particles in a fluidized bed. US Patent 3117027

    Google Scholar 

  • Lindlof JA, Wurster DE (1965) Apparatus for the encapsulation of discrete particles. US Patent 3196827

    Google Scholar 

  • López-Rubio A, Lagaron JM (2012) Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Sci Emerg Technol 13:200–206

    Article  CAS  Google Scholar 

  • Lv Y, Yang F, Li X, Zhang X, Abbas S (2014) Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocoll 35:305–314

    Article  CAS  Google Scholar 

  • Machado FR Jr, Reis DF, Boschetto DL, Burkert JF, Ferreira SR, Oliveira JV, Burkert CA (2014) Encapsulation of astaxanthin from Haematococcus pluvialis in PHBV by means of SEDS technique using supercritical CO2. Ind Crop Prod 54:17–21

    Article  CAS  Google Scholar 

  • Mahdavi SA, Jafari SM, Assadpoor E, Dehnad D (2016) Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int J Biol Macromol 85:379–385

    Article  CAS  Google Scholar 

  • Mallardo S, De Vito V, Malinconico M, Volpe MG, Santagata G, Di Lorenzo ML (2016) Poly (butylene succinate)-based composites containing β-cyclodextrin/d-limonene inclusion complex. Eur Polym J 79:82–96

    Article  CAS  Google Scholar 

  • Meiners JA (2012) Fluid bed microencapsulation and other coating methods for food ingredient and nutraceutical bioactive compounds. In: Garti N, McClements DJ (eds) Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Elsevier, Woodhead Publishing Limited, Cambridge, pp 150–176

    Google Scholar 

  • Mohammed NK, Tan CP, Manap YA, Alhelli AM, Hussin ASM (2017) Process conditions of spray drying microencapsulation of Nigella sativa oil. Powder Technol 315:1–14

    Article  CAS  Google Scholar 

  • Mora-Huertas CE, Garrigues O, Fessi H, Elaissari A (2012) Nanocapsules prepared via nanoprecipitation and emulsification–diffusion methods: comparative study. Eur J Pharm Biopharm 80(1):235–239

    Article  PubMed  CAS  Google Scholar 

  • Morales E, Rubilar M, Burgos-Díaz C, Acevedo F, Penning M, Shene C (2017) Alginate/Shellac beads developed by external gelation as a highly efficient model system for oil encapsulation with intestinal delivery. Food Hydrocoll 70:321–328

    Article  CAS  Google Scholar 

  • Morales-Cruz M, Flores-Fernández GM, Morales-Cruz M, Orellano EA, Rodriguez-Martinez JA, Ruiz M, Griebenow K (2012) Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results Pharma Sci 2:79–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Murali S, Kar A, Mohapatra D, Kalia P (2015) Encapsulation of black carrot juice using spray and freeze drying. Revista de Agaroquimica y Tecnologia de Alimentos 21(8):604–612

    CAS  Google Scholar 

  • Nandiyanto AB, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22(1):1–9

    Article  CAS  Google Scholar 

  • Neo YP, Ray S, Jin J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Liu D, Quek SY (2013) Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein–gallic acid system. Food Chem 136(2):1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Nieuwland M, Geerdink P, Brier P, Van Den Eijnden P, Henket JT, Langelaan ML, Stroeks N, van Deventer HC, Martin AH (2013) Food-grade electrospinning of proteins. Innovative Food Sci Emerg Technol 20:269–275

    Article  CAS  Google Scholar 

  • Noronha CM, Granada AF, de Carvalho SM, Lino RC, de OB Maciel MV, Barreto PL (2013) Optimization of α-tocopherol loaded nanocapsules by the nanoprecipitation method. Ind Crop Prod 50:896–903

    Article  CAS  Google Scholar 

  • Noronha CM, de Carvalho SM, Lino RC, Barreto PL (2014) Characterization of antioxidant methylcellulose film incorporated with α-tocopherol nanocapsules. Food Chem 159:529–535

    Article  PubMed  CAS  Google Scholar 

  • Oliveira AC, Moretti TS, Boschini C, Baliero JC, Freitas O, Favaro-Trindade CS (2007) Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. J Microencapsul 24(7):685–693

    Article  CAS  Google Scholar 

  • Oliveira DA, Angonese M, Ferreira SR, Gomes CL (2017a) Nanoencapsulation of passion fruit by-products extracts for enhanced antimicrobial activity. Food Bioprod Process 104:137–146

    Article  CAS  Google Scholar 

  • Oliveira DA, Mezzomo N, Gomes C, Ferreira SRS (2017b) Encapsulation of passion fruit seed oil by means of supercritical antisolvent process. J Supercrit Fluids 129:96–105

    Article  CAS  Google Scholar 

  • Palamanit A, Soponronnarit S, Prachayawarakorn S, Tungtrakul P (2013) Effects of inlet air temperature and spray rate of coating solution on quality attributes of turmeric extract coated rice using top-spray fluidized bed coating technique. J Food Eng 114(1):132–138

    Article  CAS  Google Scholar 

  • Pang SF, Yusoff MM, Gimbun J (2014) Assessment of phenolic compounds stability and retention during spray drying of Orthosiphon stamineus extracts. Food Hydrocoll 37:159–165

    Article  CAS  Google Scholar 

  • Parthasarathi S, Anandharamakrishnan C (2016) Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food Bioprod Process 100:469–476

    Article  CAS  Google Scholar 

  • Patel AR, Bhandari B (2014) Nano-and microencapsulation of vitamins. In: Kwak HS (ed) Nano-and microencapsulation for foods. Wiley, pp 223–248

    Google Scholar 

  • Peng C, Zhao SQ, Zhang J, Huang GY, Chen LY, Zhao FY (2014) Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem 165:560–568

    Article  PubMed  CAS  Google Scholar 

  • Peres IMNFV (2011) Encapsulation of active compounds: particle characterization, loading efficiency and stability. Doctoral dissertation, Universidade do Porto (Portugal)

    Google Scholar 

  • Pillai DS, Prabhasankar P, Jena BS, Anandharamakrishnan C (2012) Microencapsulation of Garcinia cowa fruit extract and effect of its use on pasta process and quality. Int J Food Prop 15(3):590–604

    Article  CAS  Google Scholar 

  • Piornos JA, Burgos-Díaz C, Morales E, Rubilar M, Acevedo F (2017) Highly efficient encapsulation of linseed oil into alginate/lupin protein beads: optimization of the emulsion formulation. Food Hydrocoll 63:139–148

    Article  CAS  Google Scholar 

  • Premi M, Sharma HK (2017) Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behaviour and oxidative stability of spray dried drumstick (Moringa oleifera) oil. Int J Biol Macromol 105(Pt 1):1232–1240

    Article  PubMed  CAS  Google Scholar 

  • Prieto C, Calvo L (2017a) Supercritical fluid extraction of emulsions to nanoencapsulate vitamin E in polycaprolactone. J Supercrit Fluids 119:274–282

    Article  CAS  Google Scholar 

  • Prieto C, Calvo L (2017b) The encapsulation of low viscosity omega-3 rich fish oil in polycaprolactone by supercritical fluid extraction of emulsions. J Supercrit Fluids 128:227–234

    Article  CAS  Google Scholar 

  • Prosapio V, Reverchon E, De Marco I (2017) Incorporation of liposoluble vitamins within PVP microparticles using supercritical antisolvent precipitation. J CO2 Util 19:230–237

    Article  CAS  Google Scholar 

  • Quispe-Condori S, Saldaña MD, Temelli F (2011) Microencapsulation of flax oil with zein using spray and freeze drying. LWT Food Sci Technol 44(9):1880–1887

    Article  CAS  Google Scholar 

  • Rachmawati H, Yanda YL, Rahma A, Mase N (2016) Curcumin-loaded PLA nanoparticles: formulation and physical evaluation. Sci Pharm 84(1):191–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rajam R, Anandharamakrishnan C (2015a) Microencapsulation of Lactobacillus plantarum (MTCC 5422) with fructooligosaccharide as wall material by spray drying. LWT Food Sci Technol 60(2):773–780

    Article  CAS  Google Scholar 

  • Rajam R, Anandharamakrishnan C (2015b) Spray freeze drying method for microencapsulation of Lactobacillus plantarum. J Food Eng 166:95–103

    Article  CAS  Google Scholar 

  • Rajam R, Kumar SB, Prabhasankar P, Anandharamakrishnan C (2014) Microencapsulation of Lactobacillus plantarum MTCC 5422 in fructooligosaccharide and whey protein wall systems and its impact on noodle quality. J Food Sci Technol 52(7):4029–4041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2(1):8–21

    Article  PubMed  CAS  Google Scholar 

  • Saikia S, Mahnot NK, Mahanta CL (2015) Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chem 171:144–152

    Article  PubMed  CAS  Google Scholar 

  • Santiago-Adame R, Medina-Torres L, Gallegos-Infante JA, Calderas F, González-Laredo RF, Rocha-Guzmán NE, Ochoa-Martinez LA, Bernad-Bernad MJ (2015) Spray drying-microencapsulation of cinnamon infusions (Cinnamomum zeylanicum) with maltodextrin. LWT Food Sci Technol 64(2):571–577

    Article  CAS  Google Scholar 

  • Santos MG, Bozza FT, Thomazini M, Favaro-Trindade CS (2015) Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chem 171:32–39

    Article  PubMed  CAS  Google Scholar 

  • Schell D, Beermann C (2014) Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Res Int 62:308–314

    Article  CAS  Google Scholar 

  • Schrooyen PM, van der Meer R, De Kruif CG (2001) Microencapsulation: its application in nutrition. Proc Nutr Soc 60(4):475–479

    Article  PubMed  CAS  Google Scholar 

  • Semalty A (2014) Cyclodextrin and phospholipid complexation in solubility and dissolution enhancement: a critical and meta-analysis. Expert Opin Drug Deliv 11(8):1255–1272

    Article  PubMed  CAS  Google Scholar 

  • Semyonov D, Ramon O, Kaplun Z, Levin-Brener L, Gurevich N, Shimoni E (2010) Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res Int 43(1):193–202

    Article  CAS  Google Scholar 

  • Shahidi F, Han XQ (1993) Encapsulation of food ingredients. Crit Rev Food Sci Nutr 33(6):501–547

    Article  PubMed  CAS  Google Scholar 

  • Sharif HR, Goff HD, Majeed H, Shamoon M, Liu F, Nsor-Atindana J, Haider J, Liang R, Zhong F (2017) Physicochemical properties of β-carotene and eugenol co-encapsulated flax seed oil powders using OSA starches as wall material. Food Hydrocoll 73:274–283

    Article  CAS  Google Scholar 

  • Shemesh R, Krepker M, Nitzan N, Vaxman A, Segal E (2016) Active packaging containing encapsulated carvacrol for control of postharvest decay. Postharvest Biol Technol 118:175–182

    Article  CAS  Google Scholar 

  • Shen Q, Quek SY (2014) Microencapsulation of astaxanthin with blends of milk protein and fiber by spray drying. J Food Eng 123:165–171

    Article  CAS  Google Scholar 

  • Shpigelman A, Shoham Y, Israeli-Lev G, Livney YD (2014) β-Lactoglobulin–naringenin complexes: nano-vehicles for the delivery of a hydrophobic nutraceutical. Food Hydrocoll 40:214–224

    Article  CAS  Google Scholar 

  • Silva EK, Zabot GL, Cazarin CB, Maróstica MR, Meireles MAA (2016) Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity. Carbohydr Polym 144:149–158

    Article  PubMed  CAS  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1):1–20

    Article  PubMed  CAS  Google Scholar 

  • Souza ACP, Gurak PD, Marczak LDF (2017) Maltodextrin, pectin and soy protein isolate as carrier agents in the encapsulation of anthocyanins-rich extract from jaboticaba pomace. Food Bioprod Process 102:186–194

    Article  CAS  Google Scholar 

  • Takeungwongtrakul S, Benjakul S, H‐kittikun A. (2015) Wall materials and the presence of antioxidants influence encapsulation efficiency and oxidative stability of micro-encapsulated shrimp oil. Eur J Lipid Sci Technol 117(4):450–459. https://doi.org/10.1002/ejlt.201400235

  • Tao F, Hill LE, Peng Y, Gomes CL (2014) Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT Food Sci Technol 59(1):247–255

    Article  CAS  Google Scholar 

  • Tapia-Hernández JA, Rodríguez-Félix F, Katouzian I (2017) Nanocapsule formation by electrospraying. In: Jafari SM (ed) Nanoencapsulation technologies for the food and nutraceutical industries. Academic, pp 320–345

    Google Scholar 

  • Teo A, Lee SJ, Goh KK, Wolber FM (2017) Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chem 221:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Tewes F, Boury F, Benoit JP (2006) Biodegradable microspheres: advances in production technology. In: Benita S (ed) Microencapsulation: methods and industrial applications. CRC Press: Taylor and Francis Group, pp 1–53

    Google Scholar 

  • Tice TR, Gilley RM (1985) Preparation of injectable controlled-release microcapsules by a solvent-evaporation process. J Control Release 2:343–352

    Article  CAS  Google Scholar 

  • Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25(7):795–821

    Article  CAS  Google Scholar 

  • Vishnu KV, Chatterjee NS, Ajeeshkumar KK, Lekshmi RGK, Tejpal CS, Mathew S, Ravishankar CN (2017) Microencapsulation of sardine oil: application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydr Polym 174:540–548

    Article  PubMed  CAS  Google Scholar 

  • Vishwakarma GS, Gautam N, Babu JN, Mittal S, Jaitak V (2016) Polymeric encapsulates of essential oils and their constituents: a review of preparation techniques, characterization, and sustainable release mechanisms. Polym Rev 56(4):668–701

    Article  CAS  Google Scholar 

  • Wandrey C, Bartkowiak A, Harding SE (2010) Materials for encapsulation. In: Zuidam NJ, Nedovic VA (eds) Encapsulation technologies for active food ingredients and food processing. Springer, New York, pp 31–100

    Chapter  Google Scholar 

  • Wei YC, Cherukuri SR, Hriscisce F, Piccolo DJ, Bilka KP (1986) Elastomer encapsulation of flavors and sweeteners, long lasting flavored chewing gum compositions based thereon and process of preparation. US Patent 4590075

    Google Scholar 

  • Wen P, Zhu DH, Feng K, Liu FJ, Lou WY, Li N, Zong MH, Wu H (2016a) Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chem 196:996–1004

    Article  PubMed  CAS  Google Scholar 

  • Wen P, Zhu DH, Wu H, Zong MH, Jing YR, Han SY (2016b) Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59:366–376

    Article  CAS  Google Scholar 

  • Wilkowska A, Ambroziak W, Czyżowska A, Adamiec J (2016) Effect of microencapsulation by spray-drying and freeze-drying technique on the antioxidant properties of blueberry (Vaccinium myrtillus) juice polyphenolic compounds. Polish J Food Nutr Sci 66(1):11–16

    Article  CAS  Google Scholar 

  • Williams DB, Carter CB (1996) Transmission electron microscopy. Springer, New York

    Book  Google Scholar 

  • Wittorff H, Lund K (2017) Confectionery product comprising low molecular weight polyvinyl acetate. US Patent 9565867

    Google Scholar 

  • Wrona M, Nerín C, Alfonso MJ, Caballero MÁ (2017) Antioxidant packaging with encapsulated green tea for fresh minced meat. Innovative Food Sci Emerg Technol 41:307–313

    Article  CAS  Google Scholar 

  • Wu Y, Zou L, Mao J, Huang J, Liu S (2014) Stability and encapsulation efficiency of sulforaphane microencapsulated by spray drying. Carbohydr Polym 102:497–503

    Article  PubMed  CAS  Google Scholar 

  • Wurster DE (1957) Means for applying coatings to tablets or the like. US Patent 2799241

    Google Scholar 

  • Wurster DE (1963) Granulating and coating process for uniform granules. US Patent 3089824

    Google Scholar 

  • Wurster DE (1966) Particle coating process. US Patent 3253944

    Google Scholar 

  • Wurster DE, Lindlof JA (1966) Particle coating apparatus. US Patent 3241520

    Google Scholar 

  • Xie W, Pan WP (2001) Thermal characterization of materials using evolved gas analysis. J Therm Anal Calorim 65(3):669–685

    Article  CAS  Google Scholar 

  • Xue F, Li C, Liu Y, Zhu X, Pan S, Wang L (2013) Encapsulation of tomato oleoresin with zein prepared from corn gluten meal. J Food Eng 119(3):439–445

    Article  CAS  Google Scholar 

  • Yang RK (1988) Encapsulation composition for use with chewing gum and edible products. US Patent 4740376

    Google Scholar 

  • Yang Z, Peng Z, Li J, Li S, Kong L, Li P, Wang Q (2014) Development and evaluation of novel flavour microcapsules containing vanilla oil using complex coacervation approach. Food Chem 145:272–277

    Article  PubMed  CAS  Google Scholar 

  • Yatka RJ, Broderick KB, Song JH, Zibell SE, Meyers MA, Campbell AA (1992a) Polyvinyl acetate encapsulation of codried sucralose for use in chewing gum. US Patent 5139798

    Google Scholar 

  • Yatka RJ, Broderick KB, Song JH, Zibell SE, Record DW (1992b) Polyvinyl acetate encapsulation of crystalline sucralose for use in chewing gum. US Patent 5169658

    Google Scholar 

  • Yi J, Lam TI, Yokoyama W, Cheng LW, Zhong F (2015) Beta-carotene encapsulated in food protein nanoparticles reduces peroxyl radical oxidation in Caco-2 cells. Food Hydrocoll 43:31–40

    Article  CAS  Google Scholar 

  • Yin Y, Li J (2012) Formation of chitosan-based hydrogels network. In: Yao K, Li J, Yao F, Yin Y (eds) Chitosan-based hydrogels. Functions and applications. CRC Press, Taylor & Francis Group, Boca Raton, London, pp 183–197

    Google Scholar 

  • Zafar N, Agusti G, Fessi H, Elaissari A (2017) Elaboration of sponge-like biodegradable cationic particles via double-emulsion solvent evaporation. J Dispers Sci Technol 38(4):577–583

    Article  CAS  Google Scholar 

  • Zhang H, Jung J, Zhao Y (2017) Preparation and characterization of cellulose nanocrystals films incorporated with essential oil loaded β-chitosan beads. Food Hydrocoll 69:164–172

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Anandharamakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vimala Bharathi, S.K., Moses, J.A., Anandharamakrishnan, C. (2018). Nano and Microencapsulation Using Food Grade Polymers. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_14

Download citation

Publish with us

Policies and ethics