Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 697))

Abstract

This chapter describes a method for the measurement of the electrostatic potential at the electrical double layer surrounding a nanoparticle in solution. This is referred to as the zeta potential. Nanoparticles with a zeta potential between −10 and +10 mV are considered approximately neutral, while nanoparticles with zeta potentials of greater than +30 mV or less than −30 mV are considered strongly cationic and strongly anionic, respectively. Since most cellular membranes are negatively charged, zeta potential can affect a nanoparticle’s tendency to permeate membranes, with cationic particles generally displaying more toxicity associated with cell wall disruption. This technique is demonstrated for two types of nanoparticles commonly used in biological applications: colloidal gold (strongly anionic) and amine-terminated PAMAM dendrimer (strongly cationic).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Dukhovich, F.S., Darkhovskii, M.B., Gorbatova, E.N., Kurochkin, V.K. (2003) Molecular Recognition: Pharmacological Aspects. Nova Science Publishers, New York, NY.

    Google Scholar 

Download references

Acknowledgment

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under contract N01-CO-12400. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Patri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Clogston, J.D., Patri, A.K. (2011). Zeta Potential Measurement. In: McNeil, S. (eds) Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology, vol 697. Humana Press. https://doi.org/10.1007/978-1-60327-198-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-198-1_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-197-4

  • Online ISBN: 978-1-60327-198-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics