Skip to main content

Improving Nitrogen Use Efficient in Crop Plants Using Biotechnology Approaches

  • Chapter
  • First Online:
Engineering Nitrogen Utilization in Crop Plants

Abstract

Plants require a source of fixed , or biologically reactive nitrogen (N) to produce molecules such as nucleotide bases and amino acids , in order to make macromolecules like DNA and proteins that are then required for the genome, cellular structures and overall growth. Low or insufficient available N limits the plant growth and yield (both biomass and grain) of crop plants. Plants obtain fixed-N from the soil as ammonia, nitrate, urea , amino acids and peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiko T, Wakayama M, Kawakami A, Obara M, Kisaka H, Miwa T, Aoki N, Ohsugi R (2010) Changes in nitrogen assimilation, metabolism, and growth in transgenic rice plants expressing a fungal NADP(H)-dependent glutamate dehydrogenase (gdhA). Planta 232:299–311

    Article  CAS  PubMed  Google Scholar 

  • Allen RS, Tilbrook K, Warden AC, Campbell PC, Rolland V, Singh SP, Wood CC (2017) Expression of 16 nitrogenase proteins within the plant mitochondrial matrix. Front Plant Sci 8

    Google Scholar 

  • Allison; Do you have a Reference for 1995? The other one I can get on Sunday but it is on the work computer. Allen

    Google Scholar 

  • Allison DB, Paultre F, Goran MI, Poehlman ET, Heymsfield SB (1995) Statistical considerations regarding the use of ratios to adjust data. Int J Obes Relat Metab Disord: J Int Assoc Study Obes 19:644–652

    CAS  Google Scholar 

  • Anbessa Y, Juskiw P, Good A, Nyachiro J, Helm J (2010) Selection efficiency across environments in improvement of barley yield for moderately low nitrogen environments. Crop Sci 50:451

    Article  CAS  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  PubMed  Google Scholar 

  • Beatty PH, Anbessa Y, Juskiw P, Carroll RT, Wang J, Good AG (2010) Nitrogen use efficiencies of spring barley grown under varying nitrogen conditions in the field and growth chamber. Ann Bot 105:1171–1182

    Article  PubMed  PubMed Central  Google Scholar 

  • Beatty PH, Carroll RT, Shrawat AK, Guevara D, Good AG (2013) Physiological analysis of nitrogen-efficient rice overexpressing alanine aminotransferase under different N regimes. Botany 91:866–883

    Article  CAS  Google Scholar 

  • Beatty PH, Fischer JJ, Muench DG, Good AG (2015) Environmental and economic impacts of biological nitrogen-fixing (BNF) cereal crops. In: Biological nitrogen fixation. Wiley, pp 1103–1116

    Google Scholar 

  • Beatty PH, Good AG (2011) Future prospects for cereals that fix nitrogen. Plant Sci (New York, NY) 333:416–417

    Article  CAS  Google Scholar 

  • Beatty PH, Klein MS, Fischer JJ, Lewis IA, Muench DG, Good AG (2016) Understanding plant nitrogen metabolism through metabolomics and computational approaches. Plants (Basel) 5

    Google Scholar 

  • Beatty PH, Shrawat AK, Carroll RT, Zhu T, Good AG (2009) Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase. Plant Biotechnol J 7:562–576

    Article  CAS  PubMed  Google Scholar 

  • Beatty PH, Wong JL (2017) Nitrogen use efficiency. In: Encyclopedia of applied plant sciences. Academic Press

    Google Scholar 

  • Bi Y-M, Kant S, Clark J, Gidda S, Ming F, Xu J, Rochon A, Shelp BJ, Hao L, Zhao R, Mullen RT, Zhu T, Rothstein SJ (2009) Increased nitrogen-use efficiency in transgenic rice plants over-expressing a nitrogen-responsive early nodulin gene identified from rice expression profiling. Plant Cell Environ 32:1749–1760

    Article  CAS  PubMed  Google Scholar 

  • Borlaug N (1972) The green revolution, peace, and humanity. In: Haberman FW (ed) Nobel lectures, peace 1951–1970. Amsterdam

    Google Scholar 

  • Brauer EK, Rochon A, Bi YM, Bozzo GG, Rothstein SJ, Shelp BJ (2011) Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1. Physiol Plant 141:361–372

    Article  CAS  PubMed  Google Scholar 

  • Buren S, Young EM, Sweeny EA, Lopez-Torrejon G, Veldhuizen M, Voigt CA, Rubio LM (2017) Formation of nitrogenase NifDK tetramers in the mitochondria of Saccharomyces cerevisiae. ACS Synth Biol

    Google Scholar 

  • Burrill, Hanson (1917) Is symbiosis possible between legume bacteria and non legume plants?. University of Illinios, Urbana, Ilinios

    Google Scholar 

  • Chen J, Fan X, Qian K, Zhang Y, Song M, Liu Y, Xu G, Fan X (2017) pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants. Plant Biotechnol J. https://doi.org/10.1111/pbi.12714

  • Chen M, Zhao Y, Zhuo C, Lu S, Guo Z (2015) Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice. Plant Biotechnol J 13:482–491

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Chen F, Chen Y, Gao Q, Yang X, Yuan L, Zhang F, Mi G (2013) Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Glob Chang Biol 19:923–936

    Article  PubMed  Google Scholar 

  • Chiasson DM, Loughlin PC, Mazurkiewicz D, Mohammadidehcheshmeh M, Fedorova EE, Okamoto M, McLean E, Glass ADM, Smith SE, Bisseling T, Tyerman SD, Day DA, Kaiser BN (2014) Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport. Proc Nat Acad Sci 111:4814–4819

    Article  CAS  PubMed  Google Scholar 

  • Christiansen MW, Matthewman C, Podzimska-Sroka D, O’Shea C, Lindemose S, Mollegaard NE, Holme IB, Hebelstrup K, Skriver K, Gregersen PL (2016) Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. J Exp Bot 67:5259–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheon BY, Kim HJ, Oh KH, Bahn SC, Ahn JH, Choi JW et al (2004) Overexpression of human erythropoietin (EPO) affects plant morphologies: retarded vegetative growth in tobacco and male sterility in tobacco and Arabidopsis. Transgenic Res 13:541–549. https://doi.org/10.1007/s11248-004-2737-3

    Article  PubMed  CAS  Google Scholar 

  • Crews TE, Peoples MB (2004) Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric Ecosyst Environ 102:279–297

    Article  Google Scholar 

  • Curatti L, Rubio LM (2014) Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer. Plant Sci 225:130–137

    Article  CAS  PubMed  Google Scholar 

  • Curran-Everett D (2013) Explorations in statistics: the analysis of ratios and normalized data. Adv Physiol Educ 37:213–219

    Article  PubMed  Google Scholar 

  • Davidson EA, Suddick EC, Rice CW, Prokopy LS (2015) More food, low pollution (mo fo lo Po): a grand challenge for the 21st century. J Environ Qual 44:305–311

    Article  CAS  PubMed  Google Scholar 

  • de Carvalho EV, Afférri FS, Peluzio JM, Rotili EA, Dotto MA, de Faria LA (2016) Genetics parameters and association of NUE methods in maize under different nitrogen levels/Parâmetros genéticos e associação de metodologias de EUN no milho sob diferentes doses de nitrogênio 3

    Google Scholar 

  • Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME, González-Melendi P, Martinez M, Diaz I (2016) Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol 39:329–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan P, Rao Y, Zeng D, Yang Y, Xu R, Zhang B, Dong G, Qian Q, Li Y (2014) SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice. The Plant J 77:547–557

    Article  CAS  PubMed  Google Scholar 

  • El-Kereamy A, Bi YM, Ranathunge K, Beatty PH, Good AG, Rothstein SJ (2012) The rice R2R3-MYB transcription factor OsMYB55 is involved in the tolerance to high temperature and modulates amino acid metabolism. PLoS ONE 7:e52030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nature Geosci 1:636–639

    Article  CAS  Google Scholar 

  • Fischer JJ, Beatty PH, Good AG, Muench DG (2013) Manipulation of microRNA expression to improve nitrogen use efficiency. Plant Sci 210:70–81

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland CC, Green PA, Holland EA, Karl DM, Michaels AF, Porter JH, Townsend AR, Vöosmarty CJ (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Galloway JN, Winiwarter W, Leip A, Leach AM, Bleeker A, Erisman JW (2014) Nitrogen footprints: past, present and future. Environ Res Lett 9:115003

    Article  Google Scholar 

  • Good AG, Beatty PH (2011a) Fertilizing nature: a tragedy of excess in the commons. PLoS Biol 9:e1001124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good AG, Beatty PH (2011b) Biotechnological approaches to improving nitrogen use efficiency in plants: alanine aminotransferase as a case study. In: The molecular and physiological basis of nutrient use efficiency in crops, pp 165–191

    Google Scholar 

  • Good AG, Johnson SJ, De Pauw M, Carroll RT, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V (2007) Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot 85:252–262

    Article  CAS  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  CAS  Google Scholar 

  • Goucher L, Bruce R, Cameron DD, Lenny Koh SC, Horton P (2017) The environmental impact of fertilizer embodied in a wheat-to-bread supply chain. Nat Plants 3:17012

    Article  CAS  PubMed  Google Scholar 

  • Haines A, Harris F, Kasuga F, Machalaba C (2017) Future earth—linking research on health and environmental sustainability. BMJ 357

    Google Scholar 

  • Han M, Okamoto M, Beatty PH, Rothstein SJ, Good AG (2015) The genetics of nitrogen use efficiency in crop plants. Ann Rev Genet 49:269–289

    Article  CAS  PubMed  Google Scholar 

  • Han M, Wong J, Su T, Beatty PH, Good AG (2016) Identification of nitrogen use efficiency genes in barley: searching for qtls controlling complex physiological traits. Front Plant Sci 7:1587

    PubMed  PubMed Central  Google Scholar 

  • Hanke GT, Endo T, Satoh F, Hase T (2008) Altered photosynthetic electron channelling into cyclic electron flow and nitrite assimilation in a mutant of ferredoxin:NADP(H) reductase. Plant, Cell Environ 31:1017–1028

    Article  CAS  Google Scholar 

  • Hawkesford MJ (2011) An overview of nutrient use efficiency and strategies for crop improvement. In: The molecular and physiological basis of nutrient use efficiency in crops. Wiley-Blackwell, pp 3–19

    Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh M-H, Lam H-M, van de Loo FJ, Coruzzi G (1998) A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc Nat Acad Sci 95:13965–13970

    Article  CAS  PubMed  Google Scholar 

  • Ivanov A, Kameka A, Pajak A, Bruneau L, Beyaert R, Hernández-Sebastià C, Marsolais F (2012) Arabidopsis mutants lacking asparaginases develop normally but exhibit enhanced root inhibition by exogenous asparagine. Amino Acids 42:2307–2318

    Article  CAS  PubMed  Google Scholar 

  • Ivleva NB, Groat J, Staub JM, Stephens M (2016) Expression of active subunit of nitrogenase via integration into plant organelle genome. PLoS ONE 11:e0160951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindred DR, Milne AE, Webster R, Marchant BP, Sylvester-Bradley R (2014) Exploring the spatial variation in the fertilizer-nitrogen requirement of wheat within fields. J Agric Sci. https://doi.org/10.1017/s0021859613000919

  • Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R (2011) Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnol J 9:826–837

    Article  CAS  Google Scholar 

  • Lam H-M, Wong P, Chan H-K, Yam K-M, Chen L, Chow C-M, Coruzzi GM (2003) Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiol 132:926–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lassaletta L, Billen G, Grizzetti B, Anglade J, Garnier J (2014) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ Res Lett 9:105011

    Article  Google Scholar 

  • Lea US, Leydecker M-T, Quilleré I, Meyer C, Lillo C (2006) Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor influence. Plant Physiol 140:1085–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Gouis J, Béghin D, Heumez E, Pluchard P (2000) Genetic differences for nitrogen uptake and nitrogen utilisation efficiencies in winter wheat. Eur J Agron 12:163–173

    Article  Google Scholar 

  • Leip A, Leach A, Musinguzi P, Tumwesigye T, Olupot G, Stephen Tenywa J, Mudiope J, Hutton O, Cordovil CMDS, Bekunda M, Galloway J (2014) Nitrogen-neutrality: a step towards sustainability. Environ Res Lett 9:115001

    Article  CAS  Google Scholar 

  • Li H, Hu B, Chu C (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J Exp Bot

    Google Scholar 

  • Li S, Zhao B, Yuan D, Duan M, Qian Q, Tang L, Wang B, Liu X, Zhang J, Wang J, Sun J, Liu Z, Feng Y-Q, Yuan L, Li C (2013) Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression. Proc Nat Acad Sci 110:3167–3172

    Article  PubMed  Google Scholar 

  • Li XX, Liu Q, Liu XM, Shi HW, Chen SF (2016) Using synthetic biology to increase nitrogenase activity. Microb Cell Fact 15:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin W, Hagen E, Fulcher A, Hren MT, Cheng Z-M (2013) Overexpressing the ZmDof1 gene in Populus does not improve growth and nitrogen assimilation under low-nitrogen conditions. Plant Cell Tissue Organ Cult (PCTOC) 113:51–61

    Article  CAS  Google Scholar 

  • Lopez-Torrejon G, Jimenez-Vicente E, Buesa JM, Hernandez JA, Verma HK, Rubio LM (2016) Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nat Commun 7:11426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masle J, Hudson GS, Badger MR (1993) Effects of ambient CO2 concentration on growth and nitrogen use in tobacco (Nicotiana tabacum) Plants transformed with an antisense gene to the small subunit of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Plant Physiol 103:1075–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka M, Kyozuka J, Shimamoto K, Kano-Murakami Y (1994) The promoters of two carboxylases in a C4 plant (maize) direct cell-specific, light-regulated expression in a C3 plant (rice). Plant J 6:311–319

    Article  CAS  PubMed  Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10:1011–1025

    Article  CAS  PubMed  Google Scholar 

  • McAllister CH, Good AG (2015) Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS ONE 10:e0121830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDougall P (2011) The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Crop Life Int

    Google Scholar 

  • Merrick M, Dixon R (1984) Why don’t plants fix nitrogen? In: Trends in biotechnology, pp 162–166

    Google Scholar 

  • Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu M-H, Oldroyd GED, Poole PS, Udvardi MK, Voigt CA, Ané J-M, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng JM-S, Han M, Beatty PH, Good A (2016) “Genes, Meet Gases”: The role of plant nutrition and genomics in addressing greenhouse gas emissions. In: Edwards D, Batley J (eds) Plant genomics and climate change. Springer, New York, NY, pp 149–172

    Chapter  Google Scholar 

  • Noguero M, Atif RM, Ochatt S, Thompson RD (2013) The role of the DNA-binding one zinc finger (DOF) transcription factor family in plants. Plant Sci 209:32–45

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED, Dixon R (2014) Biotechnological solutions to the nitrogen problem. In: Current opinion in biotechnology, pp 19–24

    Google Scholar 

  • Park S-Y, Yu J-W, Park J-S, Li J, Yoo S-C, Lee N-Y, Lee S-K, Jeong S-W, Seo HS, Koh H-J, Jeon J-S, Park Y-I, Paek N-C (2007) The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19:1649–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena PA, Quach T, Sato S, Ge Z, Nersesian N, Changa T, Dweikat I, Soundararajan M, Clemente TE (2017) Expression of the maize Dof1 transcription factor in wheat and sorghum. Front Plant Sci 8:434

    Article  PubMed  PubMed Central  Google Scholar 

  • Quraishi UM, Abrouk M, Murat F, Pont C, Foucrier S, Desmaizieres G, Confolent C, Riviere N, Charmet G, Paux E, Murigneux A, Guerreiro L, Lafarge S, Le Gouis J, Feuillet C, Salse J (2011) Cross-genome map based dissection of a nitrogen use efficiency ortho-metaQTL in bread wheat unravels concerted cereal genome evolution. Plant J 65:745–756

    Article  CAS  PubMed  Google Scholar 

  • Reddy MM, Ulaganathan K (2015) Nitrogen nutrition, its regulation and biotechnological approaches to improve crop productivity. Am J Plant Sci 06:2745–2798

    Article  CAS  Google Scholar 

  • Rogers C, Oldroyd GE (2014) Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Bot 65:1939–1946

    Article  CAS  PubMed  Google Scholar 

  • Rolletschek H, Hosein F, Miranda M, Heim U, Gotz KP, Schlereth A, Borisjuk L, Saalbach I, Wobus U, Weber H (2005) Ectopic expression of an amino acid transporter (VfAAP1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol 137:1236–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothstein SJ, Bi YM, Coneva V, Han M, Good A (2014) The challenges of commercializing second-generation transgenic crop traits necessitate the development of international public sector research infrastructure. J Exp Bot 65:5673–5682

    Article  CAS  PubMed  Google Scholar 

  • Rubio-Wilhelmi MdM, Sanchez-Rodriguez E, Rosales MA, Blasco B, Rios JJ, Romero L, Blumwald E, Ruiz JM (2011) Cytokinin-dependent improvement in transgenic PSARK:IPT tobacco under nitrogen deficiency. J Agric Food Chem 59:10491–10495

    Article  CAS  Google Scholar 

  • Sato T, Maekawa S, Yasuda S, Domeki Y, Sueyoshi K, Fujiwara M, Fukao Y, Goto DB, Yamaguchi J (2011) Identification of 14-3-3 proteins as a target of ATL31 ubiquitin ligase, a regulator of the C/N response in Arabidopsis. Plant J 68:137–146

    Article  CAS  PubMed  Google Scholar 

  • Schofield RA, Bi YM, Kant S, Rothstein SJ (2009) Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings. Plant, Cell Environ 32:271–285

    Article  CAS  Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M, Taylor GJ, Good AG (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732

    Article  CAS  PubMed  Google Scholar 

  • Smil V (2004) Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production, 1st edn. MIT, Cambridge, MA

    Google Scholar 

  • Strange A, Park J, Bennett R, Phipps R (2008) The use of life-cycle assessment to evaluate the environmental impacts of growing genetically modified, nitrogen use-efficient canola. Plant Biotechnol J 6:337–345

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Qian Q, Wu K, Luo J, Wang S, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46:652–656

    Article  CAS  PubMed  Google Scholar 

  • Sylvester-Bradley R, Kindred DR (2009) Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J Exp Bot 60:1939–1951

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Sasaki Y, Ida S, Morikawa H (2001) Nitrite reductase gene enrichment improves assimilation of NO2 in Arabidopsis. Plant Physiol 126:731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura W, Kojima S, Toyokawa A, Watanabe H, Tabuchi-Kobayashi M, Hayakawa T, Yamaya T (2011) Disruption of a novel NADH-glutamate synthase2 gene caused marked reduction in spikelet number of rice. Front Plant Sci 2

    Google Scholar 

  • Terao T, Nagata K, Morino K, Hirose T (2010) A gene controlling the number of primary rachis branches also controls the vascular bundle formation and hence is responsible to increase the harvest index and grain yield in rice. Theor Appl Genet 120:875–893

    Article  CAS  PubMed  Google Scholar 

  • Thomsen HC, Eriksson D, Møller IS, Schjoerring JK (2014) Cytosolic glutamine synthetase: a target for improvement of crop nitrogen use efficiency? Trends Plant Sci 19:656–663

    Article  CAS  PubMed  Google Scholar 

  • Tsay YF, Schroeder JI, Feldmann KA, Crawford NM (1993) The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell 72:705–713

    Article  CAS  PubMed  Google Scholar 

  • Vicente EJ, Dean DR (2017) Keeping the nitrogen-fixation dream alive. Proc Nat Acad Sci 114:3009–3011

    Article  CAS  PubMed  Google Scholar 

  • Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z (2008) Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet 40:1370–1374

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Peng F, Li M, Yang L, Li G (2012) Expression of a heterologous SnRK1 in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development. J Plant Physiol 169:1173–1182

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Ma J, Qu C, Hu Y, Hao B, Sun Y, Liu Z, Yang H, Yang C, Wang H, Li Y, Liu G (2017) Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings. Sci Rep 7:45933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 6:e1001098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Nat Acad Sci United States Am 101:7833–7838

    Article  CAS  Google Scholar 

  • Yang J, Worley E, Torres-Jerez I, Miller R, Wang M, Fu C, Wang Z-Y, Tang Y, Udvardi M (2015) PvNAC1 and PvNAC2 Are associated with leaf senescence and nitrogen use efficiency in switchgrass. BioEnerg Res 8:868–880

    Article  CAS  Google Scholar 

  • Yuan L, Loqué D, Ye F, Frommer WB, von Wirén N (2007) Nitrogen-Dependent Posttranscriptional Regulation of the Ammonium Transporter AtAMT1;1. Plant Physiol 143:732–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, Shen Y (2015) Managing nitrogen for sustainable development. Nature 528:51–59

    PubMed  CAS  Google Scholar 

  • Zhang Z, Xiong S, Wei Y, Meng X, Wang X, Ma X (2017) The role of glutamine synthetase isozymes in enhancing nitrogen use efficiency of N-efficient winter wheat. Sci Rep 7:1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Cai H, Xiao J, Li X, Zhang Q, Lian X (2009) Over-expression of aspartate aminotransferase genes in rice resulted in altered nitrogen metabolism and increased amino acid content in seeds. Theor Appl Genet 118:1381–1390

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perrin H. Beatty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beatty, P.H., Good, A.G. (2018). Improving Nitrogen Use Efficient in Crop Plants Using Biotechnology Approaches. In: Shrawat, A., Zayed, A., Lightfoot, D. (eds) Engineering Nitrogen Utilization in Crop Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-92958-3_2

Download citation

Publish with us

Policies and ethics