Skip to main content

“Genes, Meet Gases”: The Role of Plant Nutrition and Genomics in Addressing Greenhouse Gas Emissions

  • Chapter
  • First Online:
Plant Genomics and Climate Change

Abstract

Globally, we continue to increase the amount of nitrogen (N) fertilizers we use on agricultural crops, which although increases yield, also causes significant nitrogen pollution to our ecosphere. Climate change will likely have a major impact on human society and in particular, on our ability to produce sufficient food for the growing population. Improvements in agricultural practices, crop varieties and the increased use of fertilizers and pesticides have increased food production over the last few decades; however, further such improvements are likely to be limited. The science of genomics offers significant potential for crop improvement, however the use of these technologies must be targeted. This chapter will review the potential for genetics and genomics to address issues related to plant nutrition and agriculture in the face of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agr Ecosyst Environ 99(1-3):15–27

    Article  CAS  Google Scholar 

  • Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180

    Article  CAS  PubMed  Google Scholar 

  • Beatty PH, Good AG, Gates M (2011) Future prospects for cereals. Science 333(July):416–417

    Article  CAS  PubMed  Google Scholar 

  • Borak B, Ort DR, Burbaum JJ (2013) Energy and carbon accounting to compare bioenergy crops. Curr Opin Biotechnol 24:1–7

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2001) Modeling global annual N2O and NO emissions from fertilized fields. Glob Biogeochem Cy 16:1080

    Google Scholar 

  • Buttel FH (2003) Editor’s Choice Series on Agricultural Ethics Internalizing the Societal Costs of Agricultural Production. Plant Physiol 133(December):1656–1665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannell MGR (2003) Carbon sequestration and biomass energy offset : theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 24:97–116

    Article  Google Scholar 

  • Cannell MGR, Thornley JHM (1998) N-poor ecosystems may respond more to elevated [CO2] than N-rich ones in the long term. A model analysis of grassland. Glob Chang Biol 4:431–442

    Article  Google Scholar 

  • Charpentier M, Oldroyd G (2010) How close are we to nitrogen-fixing cereals? Curr Opin Plant Biol 13(5):556–564

    Article  CAS  PubMed  Google Scholar 

  • Chen X-P, Cui Z-L, Vitousek PM et al (2011) Integrated soil-crop system management for food security. Proc Natl Acad Sci U S A 108(16):6399–6404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciampitti IA, Vyn TJ (2011) A comprehensive study of plant density consequences on nitrogen uptake dynamics of maize plants from vegetative to reproductive stages. Field Crop Res 121(1):2–18

    Article  Google Scholar 

  • Clemens J, Ahlgrimm H (2001) Greenhouse gases from animal husbandry: mitigation options. Nutr Cycl Agroecosyst 68:287–300

    Article  Google Scholar 

  • Crews TE, Peoples MB (2005) Can the synchrony of nitrogen supply and crop demand be improved in legume and fertilizer-based agroecosystems? A review. Nutr Cycl Agroecosyst 72(2):101–120

    Article  CAS  Google Scholar 

  • Cui Z, Zhang F, Chen X et al (2008) On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crop Res 105(1-2):48–55

    Article  Google Scholar 

  • Cui Z, Chen X, Zhang F (2010) Current nitrogen management status and measures to improve the intensive wheat–maize system in China. Ambio 39(5-6):376–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2(9):659–662

    Article  CAS  Google Scholar 

  • Davidson EA (2012) Representative concentration pathways and mitigation scenarios for nitrous oxide. Environ Res Lett 7(2):1–7

    Article  Google Scholar 

  • Den Herder G, Van Isterdael G, Beeckman T, De Smet I (2010) The roots of a new green revolution. Trends Plant Sci 15(11):600–607

    Article  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265

    Article  CAS  Google Scholar 

  • Duce RA, LaRoche J, Altieri K et al (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320(5878):893–897

    Article  CAS  PubMed  Google Scholar 

  • Duvick DN (2005a) Genetic progress in yield of United States Maize (Zea mays L.). Maydica 50:193–202

    Google Scholar 

  • Duvick DN (2005b) The contribution of breeding (Zea Maysl.). Adv Agron 86:83–145

    Article  Google Scholar 

  • D Ehhalt, Prather M (2001) Atmospheric chemistry and greenhouse gases. In: Joos F, McFarland M (eds) Climate change 2001: the scientific basis, pp. 240–287

    Google Scholar 

  • ENA (2011) The European Nitrogen assessment sources, effects and policy perspectives. Cambridge University Press, New York, NY

    Google Scholar 

  • Fischer RA, Byerlee D, Edmeades GO (2009) Can technology deliver on the yield challenge to 2050 ? FAO expert meeting on how to feed the world in 2050 2009;(June):24–26

    Google Scholar 

  • Franche C, Lindström K, Elmerich C (2008) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil 321(1-2):35–59

    Article  Google Scholar 

  • Frederiksen P, Maenpaa M (2007) Analysing and synthesising European legislation in relation to water: A Watersketch report under WP1. NERI, Watersketch

    Google Scholar 

  • Geider RJ, Delucia EH, Falkowski PG et al (2001) Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob Chang Biol 7:849–882

    Article  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S et al (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci U S A 105(12):4928–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giller KE, Witter E, Corbeels M, Tittonell P (2009) Conservation agriculture and smallholder farming in Africa: the heretics’ view. Field Crop Res 114(1):23–34

    Article  Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science (New York, NY) 327(5967):812–818

    Article  CAS  Google Scholar 

  • Good AG, Beatty PH (2011) Fertilizing nature: a tragedy of excess in the commons. PLoS Biol 9(8), e1001124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9(12):597–605

    Article  CAS  PubMed  Google Scholar 

  • Goulding K (2004) Pathways and losses of fertilizer nitrogen at different scales. In: Mosier AR, Syers KJ, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment. Island Press, Washington, DC, pp 209–219

    Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451(7176):293–296

    Article  CAS  PubMed  Google Scholar 

  • Hawkesford MJ (2012) Improving nutrient use efficiency in crops. John Wiley, Chichester

    Book  Google Scholar 

  • Ho S-H, Chen C-Y, Lee D-J, Chang J-S (2011) Perspectives on microalgal CO2-emission mitigation systems – a review. Biotechnol Adv 29(2):189–198

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2001) Summary for policymakers: emissions scenarios, a special report of IPCC working group III. http://www.ipcc.ch/pdf/special-reports/spm/sres-en.pdf

  • IPCC (2005) IPCC special report on carbon dioxide capture and storage. Prepared by working group III of the Intergovernmental Panel on Climate Change. In: Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) Carbon dioxide capture and storage. Cambridge University Press, Cambridge, p 442

    Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change [Internet]. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Kant S, Bi Y-M, Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J Exp Bot 62(4):1499–1509

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Ergas S, Yuan X et al (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380

    Article  CAS  PubMed  Google Scholar 

  • Ladha JK, Reddy PM (2000) The quest for nitrogen fixation in rice. In: Ladha JK, Reddy PM (eds) Proceedings of the third working group meeting of the frontier project on assessing opportunities for nitrogen fixation in rice, 9–12 Aug 1999. International Rice Research Institute, Makati City, p 354

    Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science (New York, NY) 304(5677):1623–1627

    Article  CAS  Google Scholar 

  • Lal R, Follett RF, Kimble J, Cole CV (1999) Managing U.S. cropland to sequester carbon in soil. J Soil Water Conserv 54:374–381

    Google Scholar 

  • Langridge P (2013) Investigate establishing an EWG on phenotyping – approach possible proposer. Interim Scientific Board lunch, San Diego, USA. http://www.wheatinitiative.org/sites/default/files/1301-scientific-board-minutes.pdf

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 44:275–294

    Article  Google Scholar 

  • Le Floch DM, Bereiter B, Blunier T et al (2013) Dome C 800,000-year record: European Project for Ice Coring in Antarctica (EPICA) members. http://cdiac.ornl.gov/trends/co2/ice_core_co2.html. Accessed 10 Apr 2013

  • Lee J-S, Lee J-P (2003) Review of advances in biological CO2 mitigation technology. BIotechnol Bioproc Eng 8:354–359

    Article  CAS  Google Scholar 

  • Liepman AH, Olsen LJ (2003) Alanine aminotransferase homologs catalyze the glutamate: glyoxylate aminotransferase reaction in peroxisomes of Arabidopsis 1. Plant Physiol 131(January):215–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long SP, Ort DR (2010) More than taking the heat: crops and global change. Curr Opin Plant Biol 13(3):241–248

    Article  PubMed  Google Scholar 

  • Lucas PL, Van Vuuren DP, Olivier JGJ, Den Elzen MGJ (2007) Long-term reduction potential of non-CO2 greenhouse gases. Environ Sci Policy 10(2):85–103

    Article  Google Scholar 

  • MacFarling Meure C, Etheridge D, Trudinger C et al (2006) Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33(14), L14810

    Article  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA (2010) Zehra6 B. Bio-fertilizers in organic agriculture. J Phytol 2(10):42–54

    Google Scholar 

  • Maillet F, Poinsot V, André O et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469(7328):58–63

    Article  CAS  PubMed  Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105(7):1141–1157

    Article  PubMed  PubMed Central  Google Scholar 

  • McAllister CH, Beatty PH, Good AG (2012) Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol J 10(9):1011–1025

    Article  CAS  PubMed  Google Scholar 

  • Merrick M, Dixon R (1984) Why don’t plants fix nitrogen? Trends Biotechnol 2(6):162–166

    Article  CAS  Google Scholar 

  • Miller AJ, Fan X, Shen Q, Smith SJ (2007) Amino acids and nitrate as signals for the regulation of nitrogen acquisition. J Exp Bot 59(1):111–119

    Article  PubMed  Google Scholar 

  • Miranowski J, Rosburg A (2011) US maize yield growth implications for ethanol and greenhouse gas emissions. AgBioForum 14(3):120–132

    Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2013) Non-CO2 greenhouse gases and climate change. Nature 476(7358):43–50

    Article  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182(1):31–48

    Article  PubMed  Google Scholar 

  • Njenga M, Gurung J (2011) Enhancing gender responsiveness in putting nitrogen to work for smallholder farmers in Africa (N2Africa). Women Organising for Change in Agriculture and NRM. pp 1–33. http://www.n2africa.org/sites/n2africa.org/files/images/images/WOCANGenderreport.pdf

  • Okumoto S, Pilot G (2011) Amino acid export in plants: a missing link in nitrogen cycling. Mol Plant 4(3):453–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science (New York, NY) 324(5928):753–754

    Article  CAS  Google Scholar 

  • Parikh MR, Greene DN, Woods KK, Matsumura I (2006) Directed evolution of RuBisCO hypermorphs through genetic selection in engineered E. coli. Protein Eng Des Sel 19(3):113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Croteau P, Boering KA et al (2012) Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940. Nat Geosci 5(4):261–265

    Article  CAS  Google Scholar 

  • Parkin IAP, Clarke WE, Sidebottom C et al (2010) Towards unambiguous transcript mapping in the allotetraploid Brassica napus. Genome 53(11):929–938

    Article  CAS  PubMed  Google Scholar 

  • Paustian K, Cole V (1998) CO2 mitigation by agriculture: an overview. Clim Change 40:135–162

    Article  CAS  Google Scholar 

  • Peoples MB, Boyer EW, Goulding KWT et al (2004) Pathways of nitrogen loss and their impacts on human health and the environment. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle. The Scientific Committee on problems of the environment. Island Press, Covelo, CA, pp 53–69

    Google Scholar 

  • Peoples MB, Brockwell J, Herridge DF et al (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48(1-3):1–17

    Article  CAS  Google Scholar 

  • Perez I, Wire C (2013) Climate change and rising food prices heightened Arab Spring. Scientific American. http://www.scientificamerican.com/article.cfm?id=climate-change-and-rising-food-prices-heightened-arab-spring

  • Piao S, Ciais P, Huang Y et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51

    Article  CAS  PubMed  Google Scholar 

  • Reddy ASN, Day IS, Narasimhulu SB et al (2002) Isolation and characterization of a novel calmodulin-binding protein from potato. J Biol Chem 277(6):4206–4214

    Article  CAS  PubMed  Google Scholar 

  • Rentsch D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581(12):2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Saikia SP, Jain V (2007) Biological nitrogen fixation with non-legumes: an achievable target or a dogma? Curr Sci 92(3):317–322

    CAS  Google Scholar 

  • Schneider UA, McCarl BA (2003) Economic potential of biomass based fuels for greenhouse gas emission mitigation. Environ Resour Econ 24:291–312

    Article  Google Scholar 

  • Shanahan JF, Kitchen NR, Raun WR, Schepers JS (2008) Responsive in-season nitrogen management for cereals. Comput Electron Agr 61(1):51–62

    Article  Google Scholar 

  • Sitch S, Brovkin V, Von Bloh W, Van Vuuren D, Eickhout B, Ganopolski A (2005) Impacts of future land cover changes on atmospheric CO2 and climate. Global Biogeochem Cycles 19(2):1–15

    Article  Google Scholar 

  • Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage 20(2):255–263

    Article  Google Scholar 

  • Stewart C, Hessami M-A (2005) A study of methods of carbon dioxide capture and sequestration – the sustainability of a photosynthetic bioreactor approach. Energ Convers Manage 46(3):403–420

    Article  CAS  Google Scholar 

  • Stoltzfus JR, So R, Malarvithi PP, Ladha JK, Bruijn FJ (1997) Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant and Soil 194:25–36

    Article  CAS  Google Scholar 

  • Tegeder M, Rentsch D (2010) Uptake and partitioning of amino acids and peptides. Mol Plant 3(6):997–1011

    Article  CAS  PubMed  Google Scholar 

  • The EU Nitrates Directive. European Commission (2010) http://ec.europa.eu/environment/water/water-nitra

  • Thomas QR, Canham CD, Weathers KC, Goodale CL (2009) Increased tree carbon storage in response to nitrogen deposition in the US. Nat Geosci 3(1):13–17

    Article  Google Scholar 

  • UNFCCC (2003) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2001. http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/618.php

  • UNFCCC (2013) Annual European Union greenhouse gas inventory 1990–2011 and inventory report 2013; submission to the UNFCCC Secretariat. http://unfccc.int/national_reports/annex_i_ghg_inventories/national_inventories_submissions/items/7383.php. Accessed 23 Apr 2013

  • UNFCCC (2013) Second national communication on climate change of The People’s Republic of China. http://unfccc.int/essential_background/library/items/3599.php?rec=j&priref=7666#beg

  • US-EPA (2013) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2011. http://www.epa.gov/climatechange/emissions/usinventoryreport.html

  • US-EPA. United States, Environmental Protection Agency (2013) http://www.epa.gov/glimaechange/ghgemissions/. Accessed 16 Apr 2013

  • USGRP (2009) Global climate change impacts in the United States [Internet]. Cambridge University Press, New York, NY

    Google Scholar 

  • Van Groenigen K-J, Six J, Hungate BA, De Graaff M-A, Van Breemen N, Van Kessel C (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci U S A 103(17):6571–6574

    Article  PubMed  PubMed Central  Google Scholar 

  • WRI CAIT (2012) World Resources Institute, Climate Analysis Indicators Tool (WRI, CAIT). WRI CAIT, Washington, DC

    Google Scholar 

  • Yanni YG, Dazzo FB (2010) Enhancement of rice production using endophytic strains of Rhizobium leguminosarum bv. trifolii in extensive field inoculation trials within the Egypt Nile delta. Plant and Soil 336(1-2):129–142

    Article  CAS  Google Scholar 

  • Yu C-H, Huang C-H, Tan C-S (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded in part by the Alberta Crop Industry Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Good B.Sc., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Glossary

BMNP

 Best management nutrient practices, or BMP, best management practices.

BNF

 Biological nitrogen fixation (BNF) is the process where inert, atmospheric N2 gas is converted (fixed) to biologically reactive, or useful, ammonia. This reaction is only performed biologically in nature by diazotrophic bacteria.

Carbon dioxide (CO2)

 The primary greenhouse gas emitted through human activities. In 2011, CO2 accounted for 84 % of all anthropogenic U.S. greenhouse gas emissions.

CO2 equivalent

 A metric measure used to compare the emissions from various greenhouse gases based upon their global warming potential (GWP). Carbon dioxide equivalents are commonly expressed as “million metric tons of carbon dioxide equivalents (MMTCO2Eq).” The carbon dioxide equivalent for a gas is derived by multiplying the tons of the gas by the associated GWP. MMTCO2Eq = (million metric tons of a gas) × (GWP of the gas) (www.ega.gov)

Nitrous oxide (N2O)

 Nitrous oxide (N2O) accounted for about 5 % of all U.S. anthropogenic greenhouse gas emissions and is naturally present in the atmosphere as part of the Earth's nitrogen cycle (www.ega.gov)

Fluorinated hydrocarbons (FC)

 FC’s include hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride and are synthetic, powerful greenhouse gases that are emitted from a variety of industrial processes. Fluorinated gases are sometimes used as substitutes for stratospheric ozone-depleting substances (www.ega.gov)

Methane (CH4)

 Methane is a greenhouse gas with a GWP of 21 and is emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and other agricultural practices and by the decay of organic waste in municipal solid waste landfills.

NO x

 A generic term for mono-nitrogen oxides NO and NO2 (nitric oxide and nitrogen dioxide). NO x should not be confused with nitrous oxide (N2O), which is a greenhouse gas and has many uses as an oxidizer, an anesthetic, and a food additive.

NO y

 Reactive (odd nitrogen) is defined as the sum of NO x plus the compounds produced from the oxidation of NO x which include nitric acid.

PGPB

 Plant growth-promoting bacteria, these may or may not be diazotrophic.

LUCF

 The term LUCF refers to (Land Use Change Forestry) provides an assessment of the net greenhouse gas fluxes (emissions of greenhouse gases, and removal of C from the atmosphere) resulting from the uses of land types and forests as well as those associated with land-use change.

IPCC

 The Intergovernmental Panel on Climate Change (IPCC) is a scientific intergovernmental body, first established in 1988 the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP), and later endorsed by the United Nations General Assembly through Resolution 43/53. Its mission is to provide comprehensive scientific assessments of current scientific, technical and socio-economic information worldwide about the risk of climate change caused by human activity, its potential environmental and socio-economic consequences, and possible options for adapting to these consequences or mitigating the effects.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ng, J.MS., Han, M., Beatty, P.H., Good, A. (2016). “Genes, Meet Gases”: The Role of Plant Nutrition and Genomics in Addressing Greenhouse Gas Emissions. In: Edwards, D., Batley, J. (eds) Plant Genomics and Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3536-9_7

Download citation

Publish with us

Policies and ethics