Skip to main content

Anatomy of Vocal Communication and Hearing in Rodents

  • Chapter
  • First Online:
Rodent Bioacoustics

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 67))

Abstract

Many animals produce sounds to communicate different types of information. More often than not, such sounds are vocal in nature and elicit a predictable behavioral response from the listener. While much of the literature on vocal communication derives from classic neuroethological studies on a number of vertebrates, rodents are fast becoming the group of choice to study vocalizations for a variety of reasons, not the least of which is the advantage they offer for genetic manipulation. Central to the study of vocal communication is the need to understand how the nervous system mediates vocal production and how the auditory system accesses the information within a communication signal that leads to an appropriate behavioral response. A key goal is to determine the essential features of communication signals, what information they transmit, how they are categorized, and in combination with information derived from other sensory modalities, how they are interpreted and linked to a context-appropriate motor response. There is a substantial body of literature on the anatomy and physiology of the neural pathways that mediate vocalizations in rodents, but exciting new research lines are investigating the role of learning in vocal communication and how the rodent nervous system processes complex vocal communication signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitkin, L., Tran, L., & Syka, J. (1994). The responses of neurons in subdivisions of the inferior colliculus of cats to tonal, noise and vocal stimuli. Experimental Brain Research, 98(1), 53–64.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, L. A., & Linden, J. F. (2011). Physiological differences between histologically defined subdivisions in the mouse auditory thalamus. Hearing Research, 274(1-2), 48–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, L. A., Wallace, M. N., & Palmer, A. R. (2007). Identification of subdivisions in the medial geniculate body of the guinea pig. Hearing Research, 228(1-2), 156–167.

    Article  PubMed  CAS  Google Scholar 

  • Arriaga, G., & Jarvis, E. D. (2013). Mouse vocal communication system: Are ultrasounds learned or innate? Brain and Language, 124(1), 96–116.

    Article  PubMed  Google Scholar 

  • Arriaga, G., Zhou, E. P., & Jarvis, E. D. (2012). Of mice, birds, and men: The mouse ultrasonic song system has some features similar to humans and song-learning birds. PLoS One, 7(10), e46610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beecher, M. D. (1996). Birdsong learning in the laboratory and field. In D. E. Kroodsma & E. H. Miller (Eds.), Ecology and evolution of acoustic communication in birds (pp. 61–78). Ithaca, New York: Comstock Publishing.

    Google Scholar 

  • Bennur, S., Tsunada, J., Cohen, Y. E., & Liu, R. C. (2013). Understanding the neurophysiological basis of auditory abilities for social communication: A perspective on the value of ethological paradigms. Hearing Research, 305, 3–9.

    Article  PubMed  Google Scholar 

  • Berryman, J. C. (1976). Guinea-pig vocalizations: Their structure, causation and function. Zeitschrift für Tierpsychologie, 41(1), 80–106.

    Article  PubMed  CAS  Google Scholar 

  • Bizley, J. K., & Cohen, Y. E. (2013). The what, where and how of auditory-object perception. Nature Reviews, Neuroscience, 14(10), 693–707.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury, J. W., Vehrencamp, S., & Bradbury, J. W. (1998). Principles of animal communication (1st ed.). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Brown, J. L. (1965). Loss of vocalization caused by lesions in the nucleus mesencephalicus lateralis of the redwinged blackbird. American Zoologist, 5, 693.

    Google Scholar 

  • Budinger, E., Heil, P., & Scheich, H. (2000). Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. European Journal of Neuroscience, 12(7), 2425–2451.

    Article  PubMed  CAS  Google Scholar 

  • Burda, H., Bruns, V., & Hickman, G. C. (1992). The ear in subterranean Insectivora and Rodentia in comparison with ground-dwelling representatives. I. Sound conducting system of the middle ear. Journal of Morphology, 214(1), 49–61.

    Article  PubMed  CAS  Google Scholar 

  • Cant, N. B., & Benson, C. G. (2006). Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): Differences in distribution of projections from the cochlear nuclei and the superior olivary complex. The Journal of Comparative Neurology, 495(5), 511–528.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carruthers, I. M., Natan, R. G., & Geffen, M. N. (2013). Encoding of ultrasonic vocalizations in the auditory cortex. Journal of Neurophysiology, 109(7), 1912–1927.

    Article  PubMed  PubMed Central  Google Scholar 

  • Doupe, A. J., & Kuhl, P. K. (1999). Birdsong and human speech: Common themes and mechanisms. Annual Review of Neuroscience, 22(1), 567–631.

    Article  PubMed  CAS  Google Scholar 

  • Dujardin, E., & Jürgens, U. (2005). Afferents of vocalization-controlling periaqueductal regions in the squirrel monkey. Brain Research, 1034(1-2), 114–131.

    Article  PubMed  CAS  Google Scholar 

  • Eggermont, J. (2001). Between sound and perception: Reviewing the search for a neural code. Hearing Research, 157, 1–42.

    Article  PubMed  CAS  Google Scholar 

  • Egnor, S. R., & Seagraves, K. M. (2016). The contribution of ultrasonic vocalizations to mouse courtship. Current Opinion in Neurobiology, 38, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Escabí, M. A., & Read, H. L. (2003). Representation of spectrotemporal sound information in the ascending auditory pathway. Biological Cybernetics, 89, 350–362.

    Article  PubMed  Google Scholar 

  • Espmark, Y., Amundsen, T., & Rosenqvist, G. (2000). Animal signals: Signalling and signal design in animal communication. Trondheim (Norway): Tapir Academic Press.

    Google Scholar 

  • Esposito, A., Demeurisse, G., Alberti, B., & Fabbro, F. (1999). Complete mutism after midbrain periaqueductal gray lesion. Neuroreport, 10(4), 681–685.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, J., & Hammerschmidt, K. (2011). Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: Insights into the evolution of vocal communication. Genes, Brain, and Behavior, 10(1), 17–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25(4), 166–177.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W. T., Huber, L., & Bugnyar, T. (2010). Social cognition and the evolution of language: Constructing cognitive phylogenies. Neuron, 65(6), 795–814.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fleischer, G. (1978). Evolutionary principles of the mammalian middle ear. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Frisina, R. D. (2001). Subcortical neural coding mechanisms for auditory temporal processing. Hearing Research, 158(1-2), 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch, B., Pan, N., Jahan, I., Duncan, J. S., et al. (2013). Evolution and development of the tetrapod auditory system: An organ of Corti-centric perspective. Evolution & Development, 15(1), 63–79.

    Article  Google Scholar 

  • Garcia-Lazaro, J. A., Shepard, K. N., Miranda, J. A., Liu, R. C., & Lesica, N. A. (2015). An overrepresentation of high frequencies in the mouse inferior colliculus supports the processing of ultrasonic vocalizations.PLoS One, 10(8), e0133251.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaub, S., Groszer, M., Fisher, S. E., & Ehret, G. (2010). The structure of innate vocalizations in Foxp2-deficient mouse pups. Genes, Brain and Behavior, 9(4), 390–401.

    Article  CAS  Google Scholar 

  • Gaucher, Q., Huetz, C., Gourévitch, B., & Edeline, J.-M. (2013a). Cortical inhibition reduces information redundancy at presentation of communication sounds in the primary auditory cortex. The Journal of Neuroscience, 33(26), 10713–10728.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaucher, Q., Huetz, C., Gourévitch, B., Laudanski, J., et al. (2013b). How do auditory cortex neurons represent communication sounds? Hearing Research, 305, 102–112.

    Article  PubMed  Google Scholar 

  • Geissler, D. B., & Ehret, G. (2004). Auditory perception vs. recognition: Representation of complex communication sounds in the mouse auditory cortical fields. European Journal of Neuroscience, 19(4), 1027–1040.

    Article  PubMed  Google Scholar 

  • Gentner, T. Q., & Margoliash, D. (2003). The neuroethology of vocal communication: Perception and cognition. In A. M. Simmons, R. R. Fay & A. N. Popper (Eds.), Acoustic communication (pp. 324–386). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Gittelman, J. X., Perkel, D. J., & Portfors, C. V. (2013). Dopamine modulates auditory responses in the inferior colliculus in a heterogeneous manner. Journal of the Association for Research in Otolaryngology, 14(5), 719–729.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Reviews, Neuroscience, 5(11), 887–892.

    Article  PubMed  CAS  Google Scholar 

  • Hackett, T. A. (2011). Information flow in the auditory cortical network. Hearing Research, 271(1-2), 133–146.

    Article  PubMed  Google Scholar 

  • Hafner, M. S., & Hafner, D. J. (1979). Vocalizations of grasshopper mice (Genus Onychomys). Journal of Mammalogy, 60(1), 85–94.

    Article  Google Scholar 

  • Hammerschmidt, K., Whelan, G., Eichele, G., & Fischer, J. (2015). Mice lacking the cerebral cortex develop normal song: Insights into the foundations of vocal learning. Scientific Reports, 5, 8808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammerschmidt, K., Reisinger, E., Westekemper, K., Ehrenreich, L., et al. (2012). Mice do not require auditory input for the normal development of their ultrasonic vocalizations. BMC Neuroscience, 13(1), 40.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, Y. K., Köver, H., Insanally, M. N., Semerdjian, J. H., & Bao, S. (2007). Early experience impairs perceptual discrimination. Nature Neuroscience, 10(9), 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  • Harris, K. D., Bartho, P., Chadderton, P., Curto, C., et al. (2011). How do neurons work together? Lessons from auditory cortex. Hearing Research, 271(1-2), 37–53.

    Article  PubMed  Google Scholar 

  • Harrison, D. F. N. (1995). The anatomy and physiology of the mammalian larynx. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Harrison, J. M., & Warr, W. B. (1962). A study of the cochlear nuclei and ascending auditory pathways of the medulla. The Journal of Comparative Neurology, 119(3), 341–379.

    Article  PubMed  CAS  Google Scholar 

  • Hashikawa, K., Hashikawa, Y., Falkner, A., & Lin, D. (2016). The neural circuits of mating and fighting in male mice. Current Opinion in Neurobiology, 38, 27–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hauser, M. D. (1999). The design of animal communication. Cambridge, MA: MIT Press.

    Google Scholar 

  • He, J. (2003). Corticofugal modulation of the auditory thalamus. Experimental Brain Research, 153(4), 579–590.

    Article  PubMed  Google Scholar 

  • Heckman, J., McGuinness, B., Celikel, T., & Englitz, B. (2016). Determinants of the mouse ultrasonic vocal structure and repertoire. Neuroscience & Biobehavioral Reviews, 65, 313–325.

    Article  Google Scholar 

  • Heffner, R. S., Koay, G., & Heffner, H. E. (2001). Audiograms of five species of rodents: Implications for the evolution of hearing and the perception of pitch. Hearing Research, 157(1–2), 138–152.

    Article  PubMed  CAS  Google Scholar 

  • Heil, P., & Peterson, A. J. (2015). Basic response properties of auditory nerve fibers: A review. Cell and Tissue Research, 361(1), 129–158.

    Article  PubMed  Google Scholar 

  • Herbst, C. T. (2016). Biophysics of vocal production in mammals. In R. A. Suthers, W. T. Fitch, R. R. Fay, & A. N. Popper (Eds.), Vertebrate sound production and acoustic communication (pp. 159–189). New York: Springer International Publishing.

    Chapter  Google Scholar 

  • Holmstrom, L. A., Eeuwes, L. B. M., Roberts, P. D., & Portfors, C. V. (2010). Efficient encoding of vocalizations in the auditory midbrain. The Journal of Neuroscience, 30(3), 802–819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holstege, G. (1989). Anatomical study of the final common pathway for vocalization in the cat. The Journal of Comparative Neurology, 284(2), 242–252.

    Article  PubMed  CAS  Google Scholar 

  • Holstege, G., & Subramanian, H. H. (2016). Two different motor systems are needed to generate human speech. The Journal of Comparative Neurology, 524(8), 1558–1577.

    Article  PubMed  Google Scholar 

  • Holstege, G., Kerstens, L., Moes, M. C., & VanderHorst, V. G. J. M. (1997). Evidence for a periaqueductal gray–nucleus retroambiguus–spinal cord pathway in the rat. Neuroscience, 80(2), 587–598.

    Article  PubMed  CAS  Google Scholar 

  • Honma, Y., Tsukano, H., Horie, M., Ohshima, S., et al. (2013). Auditory cortical areas ativated by slow frequency-modulated sounds in mice.PLoS One, 8(7), e68113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu, B. (2003). Functional organization of lemniscal and nonlemniscal auditory thalamus. Experimental Brain Research, 153(4), 543–549.

    Article  PubMed  CAS  Google Scholar 

  • Huetz, C., Philibert, B., & Edeline, J.-M. (2009). A spike-timing code for discriminating conspecific vocalizations in the thalamocortical system of anesthetized and awake guinea pigs. The Journal of Neuroscience, 29(2), 334–350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huetz, C., Gourévitch, B., & Edeline, J.-M. (2011). Neural codes in the thalamocortical auditory system: From artificial stimuli to communication sounds. Hearing Research, 271(1-2), 147–158.

    Article  PubMed  Google Scholar 

  • Iwatsubo, T., Kuzuhara, S., Kanemitsu, A., Shimada, H., & Toyokura, Y. (1990). Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology, 40(2), 309.

    Article  PubMed  CAS  Google Scholar 

  • Jacomme, A. V., Nodal, F. R., Bajo, V. M., Manunta, Y., et al. (2003). The projection from auditory cortex to cochlear nucleus in guinea pigs: An in vivo anatomical and in vitro electrophysiological study. Experimental Brain Research, 153(4), 467–476.

    Article  PubMed  Google Scholar 

  • Janik, V. M., & Slater, P. J. B. (1997). Vocal learning in mammals. In P. J.B. Slater, J. S. Rosenblatt, C. T. Snowdon, & M. Milinski (Eds.), Advances in the study of behavior (pp. 59–99). New York: Academic Press.

    Google Scholar 

  • Janik, V. M., & Slater, P. J. B. (2000). The different roles of social learning in vocal communication. Animal Behaviour, 60(1), 1–11.

    Article  PubMed  CAS  Google Scholar 

  • Joris, P. X., Schreiner, C. E., & Rees, A. (2004). Neural processing of amplitude-modulated sounds. Physiological Reviews, 84(2), 541–577.

    Article  PubMed  CAS  Google Scholar 

  • Jürgens, U. (2002). Neural pathways underlying vocal control. Neuroscience & Biobehavioral Reviews, 26(2), 235–258.

    Article  Google Scholar 

  • Jürgens, U. (2009). The neural control of vocalization in mammals: A review. Journal of Voice, 23(1), 1–10.

    Article  PubMed  Google Scholar 

  • Kershenbaum, A., Blumstein, D. T., Roch, M. A., Akçay, Ç., et al. (2016). Acoustic sequences in non-human animals: A tutorial review and prospectus. Biological Reviews of the Cambridge Philosophical Society, 91(1), 13–52.

    Article  PubMed  Google Scholar 

  • King, J., Insanally, M., Jin, M., Martins, A. R. O., et al. (2015). Rodent auditory perception: Critical band limitations and plasticity. Neuroscience, 296, 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Köver, H., Gill, K., Tseng, Y.-T. L., & Bao, S. (2013). Perceptual and neuronal boundary learned from higher-order stimulus probabilities. The Journal of Neuroscience, 33(8), 3699–3705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kraus, N., McGee, T., Littman, T., Nicol, T., & King, C. (1994). Nonprimary auditory thalamic representation of acoustic change. Journal of Neurophysiology, 72(3), 1270–1277.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, M., Sugimoto, S., Hosokawa, Y., Ojima, H., & Horikawa, J. (2017). Auditory-visual integration in fields of the auditory cortex. Hearing Research, 346, 25–33.

    Article  PubMed  Google Scholar 

  • Kuo, R. I., & Wu, G. K. (2012). The generation of direction selectivity in the auditory system. Neuron, 73(5), 1016–1027.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers, H. G. J. M. (1958). Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. The Journal of Comparative Neurology, 110(2), 221–255.

    Article  PubMed  CAS  Google Scholar 

  • Lange, S., Burda, H., Wegner, R. E., Dammann, P., et al. (2007). Living in a "stethoscope": Burrow acoustics promote auditory specializations in subterranean rodents. Die Naturwissenschaften, 94(2), 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Lavocat, R., & Parent, J.-P. (1985). Phylogenetic analysis of middle ear features in fossil and living rodents. In Evolutionary relationships among rodents (pp. 333–354). NATO Advanced Science Institutes Series A: Life Sciences. Boston: Springer.

    Google Scholar 

  • Lee, C. C. (2013). Thalamic and cortical pathways supporting auditory processing. Brain and Language, 126(1), 22–28.

    Article  PubMed  Google Scholar 

  • Lee, C. C. (2015). Exploring functions for the non-lemniscal auditory thalamus. Frontiers in Neural Circuits, 9, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  • López, D. E., Saldaña, E., Nodal, F. R., Merchán, M. A., & Warr, W. B. (1999). Projections of cochlear root neurons, sentinels of the rat auditory pathway. The Journal of Comparative Neurology, 415(2), 160–174.

    Article  PubMed  Google Scholar 

  • Lorente de No, R. (1933). Anatomy of the eighth nerve. III. General plan of stucture of the primary cochlear nuclei. Laryngoscope, 43, 327–350.

    Google Scholar 

  • Lyzwa, D., Herrmann, J. M., & Wörgötter, F. (2015). Natural vocalizations in the mammalian inferior colliculus are broadly encoded by a small number of independent multi-units. Frontiers in Neural Circuits, 9, 91.

    PubMed  Google Scholar 

  • Mahrt, E., Agarwal, A., Perkel, D., Portfors, C., & Elemans, C. P. H. (2016). Mice produce ultrasonic vocalizations by intra-laryngeal planar impinging jets. Current Biology, 26(19), R880–R881.

    Article  PubMed  CAS  Google Scholar 

  • Malmierca, M. S. (2003). The structure and physiology of the rat auditory system: An overview. International Review of Neurobiology, 56, 147–211.

    Article  PubMed  Google Scholar 

  • Manley, G. A. (2017). Comparative auditory neuroscience: Understanding the evolution and function of ears. Journal of the Association for Research in Otolaryngology, 18(1), 1–24.

    Article  PubMed  Google Scholar 

  • Marler, P. (1957). Specific distinctiveness in the communication signals of birds. Behaviour, 11(1), 13–38.

    Article  Google Scholar 

  • Mason, M. J. (2001). Middle ear structures in fossorial mammals: A comparison with non-fossorial species. Journal of Zoology, 255(4), 467–486.

    Article  Google Scholar 

  • Mason, M. J. (2013). Of mice, moles and guinea pigs: Functional morphology of the middle ear in living mammals. Hearing Research, 301, 4–18.

    Article  PubMed  Google Scholar 

  • Matsumoto, Y. K., Okanoya, K., & Seki, Y. (2012). Effects of amygdala lesions on male mouse ultrasonic vocalizations and copulatory behaviour. Neuroreport, 23(11), 676–680.

    Article  PubMed  Google Scholar 

  • Montgomery, J. C., & Bodznick, D. (1994). An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neuroscience Letters, 174(2), 145–148.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, R., Matsunaga, E., & Okanoya, K. (2012). Defects in ultrasonic vocalization of Cadherin-6 knockout mice. PLoS One, 7(11), e49233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nelken, I. (2008). Processing of complex sounds in the auditory system. Current Opinion in Neurobiology, 18(4), 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Newman, D. B., Hilleary, S. K., & Ginsberg, C. Y. (1989). Nuclear terminations of corticoreticular fiber systems in rats. Brain, Behavior and Evolution, 34(4), 253–264.

    Article  Google Scholar 

  • Nodal, F. R., & López, D. E. (2003). Direct input from cochlear root neurons to pontine reticulospinal neurons in albino rat. The Journal of Comparative Neurology, 460(1), 80–93.

    Article  PubMed  Google Scholar 

  • Nottebohm, F., Stokes, T. M., & Leonard, C. M. (1976). Central control of song in the canary, Serinus canarius. The Journal of Comparative Neurology, 165(4), 457–486.

    Article  PubMed  CAS  Google Scholar 

  • Nyby, J. G. (2010). Adult house mouse (Mus musculus) ultrasonic calls: Hormonal and pheromonal regulation. In S. M. Brudzynski (Ed.), Handbook of behavioral neuroscience (pp. 303–310). New York: Elsevier.

    Google Scholar 

  • Ohlemiller, K. K., Jones, S. M., & Johnson, K. R. (2016). Application of mouse models to research in hearing and balance. Journal of the Association for Research in Otolaryngology, 17(6), 493–523.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pannese, A., Grandjean, D., & Frühholz, S. (2015). Subcortical processing in auditory communication. Hearing Research, 328, 67–77.

    Article  PubMed  Google Scholar 

  • Philibert, B., Laudanski, J., & Edeline, J. M. (2005). Auditory thalamus responses to guinea-pig vocalizations: A comparison between rat and guinea-pig. Hearing Research, 209(1-2), 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, R. E., & Peek, F. W. (1975). Brain organization and neuromuscular control of vocalization in birds. In P. Wright, P. Caryl, & D. Vowles (Eds.), Hormones and behavior in vertebrates (pp. 243–274). Amsterdam: Elsevier.

    Google Scholar 

  • Pollak, G. D. (2013). The dominant role of inhibition in creating response selectivities for communication calls in the brainstem auditory system. Hearing Research, 305, 86–101.

    Article  PubMed  Google Scholar 

  • Pollak, G. D., Burger, R. M., & Klug, A. (2003). Dissecting the circuitry of the auditory system. Trends in Neurosciences, 26(1), 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Popelář, J., Å uta, D., Lindovský, J., BureÅ¡, Z., et al. (2016). Cooling of the auditory cortex modifies neuronal activity in the inferior colliculus in rats. Hearing Research, 332, 7–16.

    Article  PubMed  Google Scholar 

  • Poremba, A., Bigelow, J., & Rossi, B. (2013). Processing of communication sounds: Contributions of learning, memory, and experience. Hearing Research, 305, 31–44.

    Article  PubMed  PubMed Central  Google Scholar 

  • Portfors, C. V. (2007). Types and functions of ultrasonic vocalizations in laboratory rats and mice. Journal of the American Association for Laboratory Animal Science, 46(1), 28–34.

    PubMed  CAS  Google Scholar 

  • Portfors, C. V., & Felix, R. A. (2005). Spectral integration in the inferior colliculus of the CBA/CaJ mouse. Neuroscience, 136(4), 1159–1170.

    Article  PubMed  CAS  Google Scholar 

  • Portfors, C. V., Roberts, P. D., & Jonson, K. (2009). Over-representation of species-specific vocalizations in the awake mouse inferior colliculus. Neuroscience, 162(2), 486–500.

    Article  PubMed  CAS  Google Scholar 

  • Portfors, C. V., Mayko, Z. M., Jonson, K., Cha, G. F., & Roberts, P. D. (2011). Spatial organization of receptive fields in the auditory midbrain of awake mouse. Neuroscience, 193, 429–439.

    Article  PubMed  CAS  Google Scholar 

  • Ramón y Cajal, S. (1904). Textura del sistema nervioso del hombre y de los vertebrados (Edicion Facsimil 1992, Volume II). Alicante, Spain: Graficas Vidal Leuka.

    Google Scholar 

  • Riede, T. (2013). Stereotypic laryngeal and respiratory motor patterns generate different call types in rat ultrasound vocalization. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 319(4), 213–224.

    Article  Google Scholar 

  • Roberts, L. H. (1975). The functional anatomy of the rodent larynx in relation to audible and ultrasonic cry production. Zoological Journal of the Linnean Society, 56(3), 255–264.

    Article  Google Scholar 

  • Rosowski, J. J. (1994). Outer and middle ears. In R. R. Fay & A. N. Popper (Eds.), Comparative hearing: Mammals (pp. 172–247). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Saldeitis, K., Happel, M. F. K., Ohl, F. W., Scheich, H., & Budinger, E. (2014). Anatomy of the auditory thalamocortical system in the mongolian gerbil: Nuclear origins and cortical field-, layer-, and frequency-specificities. The Journal of Comparative Neurology, 522(10), 2397–2430.

    Article  PubMed  Google Scholar 

  • Sales, G., & Pye, D. (1974). Ultrasonic communication by animals. New York: Springer-Verlag.

    Book  Google Scholar 

  • Sanes, D. H., & Woolley, S. M. N. (2011). A behavioral framework to guide research on central auditory development and plasticity. Neuron, 72(6), 912–929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sayegh, R., Aubie, B., & Faure, P. A. (2011). Duration tuning in the auditory midbrain of echolocating and non-echolocating vertebrates. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197(5), 571–583.

    Article  PubMed  Google Scholar 

  • Scharff, C., & Haesler, S. (2005). An evolutionary perspective on FoxP2: Strictly for the birds? Current Opinion in Neurobiology, 15(6), 694–703.

    Article  PubMed  CAS  Google Scholar 

  • Schneidman, E. (2016). Towards the design principles of neural population codes. Current Opinion in Neurobiology, 37, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, B. R., & Coomes, D. L. (2006). Pathways from auditory cortex to the cochlear nucleus in guinea pigs. Hearing Research, 216, 81–89.

    Article  PubMed  Google Scholar 

  • Shamma, S. A., & Fritz, J. B. (2009). Auditory cortex: Models. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 709–714). Oxford, UK: Academic Press.

    Chapter  Google Scholar 

  • Shepard, K. N., Lin, F. G., Zhao, C. L., Chong, K. K., & Liu, R. C. (2015). Behavioral relevance helps untangle natural vocal categories in a specific subset of core auditory cortical pyramidal neurons. The Journal of Neuroscience, 35(6), 2636–2645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherman, S. M. (2001). Tonic and burst firing: Dual modes of thalamocortical relay. Trends in Neurosciences, 24(2), 122–126.

    Article  PubMed  CAS  Google Scholar 

  • Simonyan, K. (2014). The laryngeal motor cortex: Its organization and connectivity. Current Opinion in Neurobiology, 28, 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Simonyan, K., & Jürgens, U. (2003). Efferent subcortical projections of the laryngeal motorcortex in the rhesus monkey. Brain Research, 974(1-2), 43–59.

    Article  PubMed  CAS  Google Scholar 

  • Simonyan, K., & Horwitz, B. (2011). Laryngeal motor cortex and control of speech in humans. The Neuroscientist, 17(2), 197–208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singla, S., Dempsey, C., Warren, R., Enikolopov, A. G., & Sawtell, N. B. (2017). A cerebellum-like circuit in the auditory system cancels responses to self-generated sounds. Nature Neuroscience, 20(7), 943–950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stiebler, I., Neulist, R., Fichtel, I., & Ehret, G. (1997). The auditory cortex of the house mouse: Left-right differences, tonotopic organization and quantitative analysis of frequency representation. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology, 181(6), 559–571.

    Article  PubMed  CAS  Google Scholar 

  • Suta, D., Kvasnák, E., Popelár, J., & Syka, J. (2003). Representation of species-specific vocalizations in the inferior colliculus of the guinea pig. Journal of Neurophysiology, 90(6), 3794–3808.

    Article  PubMed  Google Scholar 

  • Suta, D., Popelár, J., & Syka, J. (2008). Coding of communication calls in the subcortical and cortical structures of the auditory system. Physiological Research/Academia Scientiarum Bohemoslovaca, 57(Suppl 3), 149–159.

    Google Scholar 

  • Suthers, R. A., Fitch, W. T., Fay, R. R., & Popper, A. N. (Eds.). (2016). Vertebrate sound production and acoustic communication (Vol. 53). New York: Springer International Publishing.

    Google Scholar 

  • Syka, J. (2010). Subcortical responses to species-specific vocalizations. In S. M. Brudzynski (Ed.), Handbook of behavioral neuroscience (pp. 99–112). Oxford, UK: Elsevier.

    Google Scholar 

  • Tabler, J. M., Rigney, M. M., Berman, G. J., Gopalakrishnan, S., et al. (2017). Cilia-mediated hedgehog signaling controls form and function in the mammalian larynx. eLife, 6.

    Google Scholar 

  • Tanaka, H., & Taniguchi, I. (1991). Responses of medial geniculate neurons to species-specific vocalized sounds in the guinea pig. Japanese Journal of Physiology, 41(6), 817–829.

    Article  PubMed  CAS  Google Scholar 

  • Ter-Mikaelian, M., Sanes, D. H., & Semple, M. N. (2007). Transformation of temporal properties between auditory midbrain and cortex in the awake Mongolian gerbil. The Journal of Neuroscience, 27(23), 6091–6102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ter-Mikaelian, M., Semple, M. N., & Sanes, D. H. (2013). Effects of spectral and temporal disruption on cortical encoding of gerbil vocalizations. Journal of Neurophysiology, 110(5), 1190–1204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Theunissen, F. E., & Elie, J. E. (2014). Neural processing of natural sounds. Nature Reviews, Neuroscience, 15(6), 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Tinbergen, N. (1963). On aims and methods of Ethology. Zeitschrift für Tierpsychologie, 20(4), 410–433.

    Article  Google Scholar 

  • Tsukano, H., Horie, M., Ohga, S., Takahashi, K., et al. (2017). Reconsidering tonotopic maps in the auditory cortex and lemniscal auditory thalamus in mice. Frontiers in Neural Circuits, 11, 1–8.

    Google Scholar 

  • de Villers-Sidani, E., Chang, E. F., Bao, S., & Merzenich, M. M. (2007). Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. The Journal of Neuroscience, 27(1), 180–189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, X. (2007). Neural coding strategies in auditory cortex. Hearing Research, 229(1-2), 81–93.

    Article  PubMed  Google Scholar 

  • Wang, X., Merzenich, M. M., Beitel, R., & Schreiner, C. E. (1995). Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: Temporal and spectral characteristics. Journal of Neurophysiology, 74(6), 2685–2706.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Qi, Q., Huang, C., Chomiak, T., & Luo, F. (2016). Duration sensitivity of neurons in the primary auditory cortex of albino mouse. Hearing Research, 332, 160–169.

    Article  PubMed  CAS  Google Scholar 

  • West, C. D. (1985). The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. The Journal of the Acoustical Society of America, 77(3), 1091–1101.

    Article  PubMed  CAS  Google Scholar 

  • Wigderson, E., Nelken, I., & Yarom, Y. (2016). Early multisensory integration of self and source motion in the auditory system. Proceedings of the National Academy of Sciences of the Unites States of America, 113(29), 8308–8313.

    Article  CAS  Google Scholar 

  • Wilczynski, W., & Ryan, M. J. (2010). The behavioral neuroscience of anuran social signal processing. Current Opinion in Neurobiology, 20(6), 754–763.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wild, J. M., Li, D., & Eagleton, C. (1997). Projections of the dorsomedial nucleus of the intercollicular complex (DM) in relation to respiratory-vocal nuclei in the brainstem of pigeon (Columba livia) and zebra finch (Taeniopygia guttata). The Journal of Comparative Neurology, 377, 392–413.

    Article  PubMed  CAS  Google Scholar 

  • Willard, F. H., & Ryugo, D. K. (1983). Anatomy of the central auditory system. In J. F. Willott (Ed.), The auditory psychobiology of the mouse (pp. 201–304). Springfield, MA: Charles C. Thomas.

    Google Scholar 

  • Winer, J. A. (1992). The functional architecture of the medial geniculate body and the primary auditory cortex. In D. B. Webster, A. N. Popper, & R. R. Fay (Eds.), The mammalian auditory pathway: Neuroanatomy (pp. 222–409). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Winer, J. A. (2006). Decoding the auditory corticofugal systems. Hearing Research, 212(1-2), 1–8.

    Article  PubMed  Google Scholar 

  • Winer, J. A., & Schreiner, C. E. (2005). The central auditory system: A functional analysis. In J. A. Winer & C. E. Schreiner (Eds.), The inferior colliculus (pp. 1–68). New York: Springer Science+Media Publishing.

    Chapter  Google Scholar 

  • Wöhr, M., & Schwarting, R. K. W. (2010). Activation of limbic system structures by replay of ultrasonic vocalization in rats. In S. M. Brudzynski (Ed.), Handbook of behavioral neuroscience (pp. 113–124). New York: Elsevier.

    Google Scholar 

  • Wöhr, M., Oddi, D., & D'Amato, F. R. (2010). Effect of altricial pup ultrasonic vocalization on maternal behavior. In S. M. Brudzynski (Ed.), Handbook of behavioral neuroscience (pp. 159–166). New York: Elsevier.

    Google Scholar 

  • Woolley, S. M. N. (2012). Early experience shapes vocal neural coding and perception in songbirds. Developmental Psychobiology, 54, 612–631.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolley, S. M. N., & Portfors, C. V. (2013). Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain. Hearing Research, 305, 45–56.

    Article  PubMed  Google Scholar 

  • Xia, Y. F., Qi, Z. H., & Shen, J. X. (2000). Neural representation of sound duration in the inferior colliculus of the mouse. Acta Oto-Laryngologica, 120(5), 638–643.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, S. P., Davis, P. J., Bandler, R., & Carrive, P. (1994). Brain stem integration of vocalization: Role of the midbrain periaqueductal gray. Journal of Neurophysiology, 72(3), 1337–1356.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Micheal Dent, Art Popper, and Peggy Walton for useful improvements to the chapter and to Srdjan Vlajkovic for help with the interpretation of inner ear histological material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fabiana Kubke .

Editor information

Editors and Affiliations

Ethics declarations

M. Fabiana Kubke declares that she has no conflicts of interest.

J. Martin Wild declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kubke, M.F., Wild, J.M. (2018). Anatomy of Vocal Communication and Hearing in Rodents. In: Dent, M., Fay, R., Popper, A. (eds) Rodent Bioacoustics. Springer Handbook of Auditory Research, vol 67. Springer, Cham. https://doi.org/10.1007/978-3-319-92495-3_6

Download citation

Publish with us

Policies and ethics