Skip to main content
Log in

Corticofugal modulation of the auditory thalamus

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

In the present article, we summarize the recent progress on investigating the mechanism of corticofugal modulation on the auditory thalamus of mammals excluding the bat as it has a specialized auditory system. The article comprises: (1) a review of the anatomy and physiology of the auditory thalamus, and a discussion of (2) the corticofugal modulation of the lemniscal nucleus of the medial geniculate body (MGB), (3) modulation of the non-lemniscal MGB, (4) modulation of the specific responses to acoustic signals with various parameters, such as the sound intensity and the onset and offset of the stimulus, and, finally, (5) the possible function of the corticofugal system in the auditory attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2A–C
Fig. 3
Fig. 4
Fig. 5A, B
Fig. 6A, B
Fig. 7A–C
Fig. 8A, B

Similar content being viewed by others

References

  • Aitkin LM, Dunlop CW (1969) Inhibition in the medial geniculate body of the cat. Exp Brain Res 7:68–83

    CAS  PubMed  Google Scholar 

  • Aitkin LM, Webster WR (1972) Medial geniculate body of the cat: Organization and responses to tonal stimuli of neurons in ventral division. J Neurophysiol 35:365–380

    CAS  PubMed  Google Scholar 

  • Amato G, La Grutta V, Enia F (1969) The control exerted by the auditory cortex on the activity of the medial geniculate body and inferior colliculus. Arch Sci Biol 53:291–313

    CAS  Google Scholar 

  • Andersen RA, Knight PL, Merzenich MM (1980) The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: Evidence for two largely segregated systems of connections. J Comp Neurol 194:663–701

    CAS  PubMed  Google Scholar 

  • Arcelli P, Frassoni C, Regondi MC, De Biasi S, Spreafico R (1997) GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull 42:27–37

    Article  CAS  PubMed  Google Scholar 

  • Bajo VM, Rouiller EM, Welker E, Clarke S, Villa AEP, de Ribaupierre Y, de Ribaupierre F (1995) Morphology and spatial distribution of cortithalamic terminals originating from the cat auditory cortex. Hear Res 83:161–174

    Article  CAS  PubMed  Google Scholar 

  • Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81:1999–2016

    CAS  PubMed  Google Scholar 

  • Bartlett EL, Stark JM, Guillery RW, Smith PH (2000) Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body. Neuroscience 100:811–828

    Article  CAS  PubMed  Google Scholar 

  • Battaglia G, Lizier C, Colacitti C, Princivalle A, Spreafico R (1994) A reticuloreticular commissural pathway in the rat thalamus. J Comp Neurol 247:127–138

    Google Scholar 

  • Bourassa J, Pinault D, Deschênes M (1995) Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer. Eur J Neurosci 7:19–30

    CAS  PubMed  Google Scholar 

  • Brosch M, Budinger E, Scheich H (2001) Stimulus-related Gamma oscillations in promate auditory cortex. J Neurophysiol 87:2715–2725

    Google Scholar 

  • Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J Neurosci 3:2350–2364

    Google Scholar 

  • Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: Evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3:2365–2380

    Google Scholar 

  • Calford MB, Webster WR (1981) Auditory representation within principal division of cat medial geniculate body: an electrophysiological study. J Neurophysiol 45:1013–1028

    CAS  PubMed  Google Scholar 

  • Clarey JC, Barone P, Imig TJ (1992) Physiology of thalamus and cortex. In: Popper AN, Fay RR (eds) The mammalian auditory pathway: neurophysiology. Springer, New York, pp 232–334

  • Cotillon N, Edeline J-M (2000) Tone-evoked oscillations in the rat auditory cortex result from interactions between the thalamus and reticular nucleus. Eur J Neurosci 12:3637–3650

    Article  CAS  PubMed  Google Scholar 

  • Cox CL, Huguenard JR, Price DA (1997) Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus. Proc Natl Acad Sci U S A 94:8854–8859

    Article  CAS  PubMed  Google Scholar 

  • Crabtree JW (1998) Organization in the auditory sector of the cat’s thalamic reticular nucleus. J Comp Neurol 390:167–182

    Google Scholar 

  • Crabtree JW (1999) Intrathalamic sensory connections mediated by the thalamic reticular nucleus. Cell Mol Life Sci 56:683–700

    Article  CAS  Google Scholar 

  • Crabtree JW, Isaac JTR (2002) New intrathalamic pathways allowing modality-related and cross-modality switching in the dorsal thalamus. J Neurosci 22:8754–8761

    CAS  PubMed  Google Scholar 

  • Crabtree JW, Collingridge GL, Isaac JTR (1998) A new intrathalamic pathway linking modality-related nuclei in the dorsal thalamus. Nat Neurosci 1:389–394

    CAS  PubMed  Google Scholar 

  • Cruikshank SJ, Edeline JM, Weinberger NM (1992) Stimulation at a site of auditory-somatosensory convergence in the medial geniculate nucleus is an effective unconditioned stimulus for fear conditioning. Behav Neurosci 106:471–483

    Article  CAS  PubMed  Google Scholar 

  • de Ribaupierre F, Toros A (1976) Single unit properties related to the laminar structure of the MGN. Exp Brain Res Suppl 1:503–305

    Google Scholar 

  • de Venecia RK, McMullen NT (1994) Single thalamocortical axons diverge to multiple patches in neonatal auditory cortex. Dev Brain Res 81:135–142

    Article  Google Scholar 

  • Deschênes M, Hu B (1990) Electrophysiology and pharmacology of corticothalamic input to lateral thalamus nuclei: an intracellular study in the cat. Eur J Neurosci 2:140–152

    PubMed  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1999) Cortically-induced coherence of a thalamic-generated oscillation. Neuroscience 92:427–443

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM (1990) Frequency specific plasticity of single unit discharge in the rat medial geniculate body. Brain Res 529:109–119

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM, Weinberger NM (1992) Associative returning in the thalamic source of input to the amygdala and auditory cortex: Receptive field plasticity in the medial division of the medial geniculate body. Behav Neurosci 106:81–105

    CAS  PubMed  Google Scholar 

  • Fujimoto K, Yu YQ, Chan YS, He JF (2002) Corticofugal inhibition on the auditory thalamic neurons: an in-vivo intracellular electrophysiological study. Program No. 354.3. 2002 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC, 2002. Online

    Google Scholar 

  • Gao E, Suga N (1998) Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc Natl Acad Sci U S A 95:12663–12670

    CAS  PubMed  Google Scholar 

  • Gao E, Suga N (2000) Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: Role of the corticofugal system. Proc Natl Acad Sci U S A 97:8081–8086

    CAS  PubMed  Google Scholar 

  • Golshani P, Liu XB, Jones EG (2001) Differences in quantal amplitude reflect GluR4-subunit number at corticothalamic synapses on two populations of thalamic neurons. Proc Natl Acad Sci U S A 98:4172–4177

    Article  CAS  PubMed  Google Scholar 

  • Hashikawa T, Molinari M, Rausell E, Jones EG (1995) Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex. J Comp Neurol 362:195–208

    Google Scholar 

  • He J (1997) Modulatory effects of regional cortical activation on the onset responses of the cat medial geniculate neurons. J Neurophysiol 77:896–908

    Google Scholar 

  • He J (1998) Long-latency neurons in auditory cortex involved in temporal integration: theoretical analysis of experimental data. Hear Res 121:147–160

    Article  CAS  PubMed  Google Scholar 

  • He J (2001) ON and OFF pathways segregated at the auditory thalamus of the guinea pig. J Neurosci 21:8672–8679

    CAS  PubMed  Google Scholar 

  • He J (2002) OFF responses in the auditory thalamus of the guinea pig. J Neurophysiol 88:2377–2386

    PubMed  Google Scholar 

  • He J (2003) Corticofugal modulation on both ON and OFF responses in the non-lemniscal auditory thalamus of the guinea pig. J Neurophysiol 89:367–381

    PubMed  Google Scholar 

  • He J, Hashikawa T (1998) Connections of the dorsal zone of cat auditory cortex. J Comp Neurol 400:334–348

    Article  CAS  PubMed  Google Scholar 

  • He J, Hu B (2002) Differential distribution of burst and single-spike responses in auditory thalamus. J Neurophysiol 88:2152–2156

    PubMed  Google Scholar 

  • He J, Hashikawa T, Ojima H, Kinouchi Y (1997) Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J Neurosci 17:2615–2525

    CAS  PubMed  Google Scholar 

  • He J, Yu YQ, Xiong Y, Hashikawa T, Chan YS (2002) Modulatory effect of cortical activation on the lemniscal auditory thalamus of the guinea pig. J Neurophysiol 88:1040–1050

    PubMed  Google Scholar 

  • Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304:103–122

    CAS  PubMed  Google Scholar 

  • Hu B (1995) Cellular basis of temporal synaptic signalling: an in vitro electrophysiological study in rat auditory thalamus. J Physiol (Lond) 483:167–182

  • Imig TJ, Morel A (1983) Organization of the thalamocortical auditory system in the cat. Annu Rev Neurosci 6:95–120

    Article  CAS  PubMed  Google Scholar 

  • Imig TJ, Morel A (1984) Topographic and cytoarchitectonic organization of thalamic neurons related to their target in low-, middle-, and high-frequency representations in cat auditory cortex. J Comp Neurol 227:511–539

    Google Scholar 

  • Imig TJ, Morel A (1985) Topographic organization in the ventral nucleus of the medial geniculate body in the cat. J Neurophysiol 53:309–340

    CAS  PubMed  Google Scholar 

  • Imig TJ, Morel A (1988) Organization of the cat’s auditory thalamus. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function: Neurobiological bases of hearing. Wiley, New York, pp 457–485

  • Jones EG (1975) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162:285–308

    Google Scholar 

  • Jones EG (1985) The thalamus. Plenum, New York

  • Jones EG, Burton H (1976) Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates. J Comp Neurol 168:197–247

    CAS  PubMed  Google Scholar 

  • Kosaki H, Hashikawa T, He J, Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386:304–316

    Article  CAS  PubMed  Google Scholar 

  • Landry P, Deschênes M (1981) Intracortical arborizations and receptive fields of identified ventrobasal thalamocortical afferents to the primary somatic sensory cortex in the cat. J Comp Neurol 199:345–371

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Farb C, Ruggiero DA (1990) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10:1043–1054

    CAS  PubMed  Google Scholar 

  • Liu X, Jones EG (1999) Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat. J Comp Neurol 414:67–79

    Google Scholar 

  • Liu X, Honda CN, Jones EG (1995a) Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat. J Comp Neurol 352:69–91

    Google Scholar 

  • Liu X, Warren RA, Jones EG (1995b) Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus. J Comp Neurol 352:187–202

    Google Scholar 

  • Malperi JG, Baker FH (1975) The representation of the lateral geniculate nucleus of Macaca mulatta. J Comp Neurol 161:569–594

    CAS  PubMed  Google Scholar 

  • McCormick DA, von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. Proc Natl Acad Sci U S A 89:2774–2778

    CAS  PubMed  Google Scholar 

  • McMullen NT, de Venecia RK (1993) Thalamocortical patches in auditory neocortex. Brain Res 620:317–322

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, Colwell SA, Anderson RA (1982) Auditory forebrain organization: Thalamocortical and corticothalamic connections in the cat. In: Woolsey CN (ed) Cortical sensory organization: multiple auditory areas. Humana, Clifton, New Jersey, pp 43–57

  • Middlebrooks JC, Clock AE, Xu L, Green DM (1994) A panoramic code for sound location by cortical neurons. Science 264:862–844

    Google Scholar 

  • Mitani A, Itoh K, Nomura S, Kudo M, Kaneko T, Mizuno N (1984) Thalamocortical projections to layer I of the primary auditory cortex in the cat: a horseradish peroxidase study. Brain Res 310:347–350

    Article  CAS  PubMed  Google Scholar 

  • Montero VM (1991) A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus. Exp Brain Res 86:257–270

    CAS  PubMed  Google Scholar 

  • Montero (1999) Amblyopia decreases activation of the corticogeniculate pathway and visual thalamic reticularis in attentive tats: A ‘focal attention’ hypothesis. Neuroscience 91:805–817

    Article  CAS  PubMed  Google Scholar 

  • Mooney DM, Hu B, Senatorov VV (1995) Muscarine induces an anomalous inhibition of synaptic transmission in rat auditory thalamus. J Pharmacol Exp Ther 275:838–844

    CAS  PubMed  Google Scholar 

  • Morest DK (1965) The laminar structure of the medial geniculate body of the cat. J Anat (Lond) 99:143–160

  • Murphy PC, Sillito AM (1996) Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J Neurosci 16:1180–1192

    CAS  PubMed  Google Scholar 

  • Niimi K, Obo K, Kusunose M (1984) Projections of the medial geniculate nucleus to layer 1 of the auditory cortex in the cat traced with horseradish peroxidase. Neurosci Lett 45:223–228

    Article  CAS  PubMed  Google Scholar 

  • Ohara PT, Sefton AJ, Lieberman AR (1980) Mode of termination of afferents from the thalamic reticular nucleus in the dorsal lateral geniculate nucleus of the rat. Brain Res 197:503–506

    Article  CAS  PubMed  Google Scholar 

  • Ojima H (1994) Terminal morphology and distribution of corticothalamic fibers originating from layer 5 and 6 of cat primary auditory cortex. Cereb Cortex 4:646–663

    CAS  PubMed  Google Scholar 

  • Oliver DL, Winer JA, Beckius GE, Saint Marie RL (1994) Morphology of GABAergic neurons in the inferior colliculus of the cat. J Comp Neurol 340:27–42

    CAS  PubMed  Google Scholar 

  • Orman SS, Humphrey GL (1981) Effects of changes in cortical arousal and of auditory cortex cooling on neuronal activity in the medial geniculate body. Exp Brain Res 42:475–482

    CAS  PubMed  Google Scholar 

  • Peruzzi D, Bartlett E, Smith PH, Oliver D (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17:3766–3777

    CAS  PubMed  Google Scholar 

  • Phillips DP (1987) Stimulus intensity and loudness recruitment: Neural correlates. J Acoust Soc Am 82:1–12

    CAS  PubMed  Google Scholar 

  • Pinault D, Deschênes M (1988) Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. Eur J Neurosci 10:3462–3469

    Article  Google Scholar 

  • Ralston HJ III, Ohara PT, Raston DD, Chazal G (1988) The neuronal and synaptic organization of the cat and primate somatosensory thalamus. In: Bentivoglio M, Spreafico R (eds) Cellular thalamic mechanisms. Elsevier, Amsterdam, pp 127–141

  • Ramón y Cajal S (1911) Histologie du Système Nerveux de l’homme et des vertebras (trans Azoulay L). Maloine, Paris (reprinted in 1972 by Consejo Superior de Investigaciones Çientificas)

  • Rapisarda C, Bacchelli B (1977) The brain of the guinea pig in stereotaxic coordinates. Arch Sci Biol 61:1–37

    CAS  Google Scholar 

  • Rauschecker JP, Tian B, Pons T, Mishikin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol 382:89–103

    CAS  PubMed  Google Scholar 

  • Redies H, Brandner S (1991) Functional organization of the auditory thalamus in the guinea pig. Exp Brain Res 86:384–392

    CAS  PubMed  Google Scholar 

  • Redies H, Brandner S, Creutzfeldt OD (1989) Anatomy of the auditory thalamocortical system of the guinea pig. J Comp Neurol 282:489–511

    CAS  PubMed  Google Scholar 

  • Rinvik E, Ottersen OP, Storm-Mathisen J (1987) γ-Aminobutyrate-like immunoreactivity in the thalamus of the cat. Neuroscience 21:787–805

    Article  Google Scholar 

  • Rouiller EM, Welker E (1991) Morphology of corticothalamic arising from the auditory cortex of the rat: a Phaseolus vulgaris-leucoagglutinin (PHA-L) tracing study. Hear Res 56:179–190

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Welker E (2000) A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull 53:727–741

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Colomb E, Capt M, de Ribaupierre F (1985) Projections of the reticular complex of the thalamus onto physiologically characterized regions of the medial geniculate body. Neurosci Lett 53:227–232

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Rodrigues-Dagaeff C, Simm G, de Ribaupierre Y, Villa A, de Ribaupierre F (1989) The functional organization of the medial division of the medial geniculate body of cat: tonotopic organization, spatial distribution of response properties and cortical connection. Hear Res 39:127–142

    Article  CAS  PubMed  Google Scholar 

  • Ryugo DA, Weinberger NM (1976) Corticofugal modulation of the medial geniculate body. Exp Neurol 51:377–391

    CAS  PubMed  Google Scholar 

  • Semple MN, Kitzes LM (1987) Binaural processing of sound pressure level in the inferior colliculus. J Neurophysiol 57:1–18

    CAS  PubMed  Google Scholar 

  • Shackleton TM, Skottun BC, Arnott RH, Palmer AR (2003) Interaural time difference discrimination thresholds for single neurons in the inferior colliculus of guinea pigs. J Neurosci 23:716–724

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Kasai S (1989) Distribution of terminals of thalamocortical fibers originating from the ventrolateral nucleus of the cat thalamus. Neurosci Lett 96:163–167

    Article  CAS  PubMed  Google Scholar 

  • Shinonaga Y, Tanaka M, Mizuno N (1994) Direct projections from the non-laminated divisions of the medial geniculate nucleus to the temporal polar cortex and amygdala in the cat. J Comp Neurol 340:405–426

    CAS  PubMed  Google Scholar 

  • Shosaku A, Sumitomo I (1983) Auditory neurons in the rat thalamic reticular nucleus. Exp Brain Res 49:432–442

    CAS  PubMed  Google Scholar 

  • Spreafico R, Schmechel DE, Ellis LC, Rustioni A (1983) Cortical relay neurons and interneurons in the nucleus ventralis posterolateralis of cats. Neuroscience 9:491–509

    Article  CAS  PubMed  Google Scholar 

  • Spreafico R, Frassoni C, Arcelli P, De Biasi S (1994) GABAergic interneurons in the somatosensory thalamus of the guinea pig: A light and ultrastructural immunohistochemical investigation. Neurosciences 59:961–973

    Article  CAS  Google Scholar 

  • Villa AEP, Rouiller EM, Zurita SP, de Ribaupierre Y, de Ribaupierre F (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res 86:506–517

    CAS  PubMed  Google Scholar 

  • Watanabe T, Yanagisawa K, Kanzaki J, Katsuki Y (1966) Cortical efferent flow influencing unit responses of medial geniculate body to sound stimulation. Exp Brain Res 2:302–317

    CAS  PubMed  Google Scholar 

  • Wepsic JG (1966) Multimodel sensory activation of cells in the magnocellular medial geniculate nucleus. Exp Neurol 15:299–318

    CAS  PubMed  Google Scholar 

  • Wepsic JG, Sutin J (1964) Posterior thalamic and septal influence upon pallidal and amygdaloid slow wave and unitary activity. Exp Neurol 10:67–80

    CAS  PubMed  Google Scholar 

  • Winer JA (1992) The functional architecture of the medial geniculate body and the primary auditory cortex. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: Neuroanatomy. Springer, New York, pp 222–409

  • Winer JA, Larue DT (1987) Patterns of reciprocity in auditory thalamocortical and corticothalamic connections: Study with horseradish peroxidase and autoradiographic methods in the rat medial geniculate body. J Comp Neurol 257:282–315

    Google Scholar 

  • Winer JA, Larue DT (1996) Evaluation of GABAergic circuitry in the mammalian medial geniculate body. Proc Natl Acad Sci U S A 93:3083–3087

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Morest DK (1983) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3:2629–2651

    CAS  PubMed  Google Scholar 

  • Winer JA, Diamond IT, Raczkowski D (1977) Subdivisions of the auditory cortex of the cat: the retrograde transport of horseradish peroxidase to the medial geniculate and posterior thalamic nuclei. J Comp Neurol 176:387–417

    Google Scholar 

  • Winer JA, Wenstrup JJ, Larue DT (1992) Patterns of GABAergic immunoreactivity define subdivisions of mustached bat’s medial geniculate body. J Comp Neurol 319:172–190

    Google Scholar 

  • Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci U S A 93:8005–8010

    Article  CAS  PubMed  Google Scholar 

  • Winer JA, Larue DT, Diehl JJ, Hefti BJ (1998) Auditory cortical projections to the cat inferior colliculus. J Comp Neurol 400:147–174

    Google Scholar 

  • Winer JA, Larue DT, Huang CL (1999) Two systems of giant axon terminals in the cat medial geniculate body: convergence of cortical and GABAergic inputs. J Comp Neurol 413:181–197

    Google Scholar 

  • Winer JA, Diehl JJ, Larue DT (2001) Projection from auditory cortex to the medial geniculate body of the cat. J Comp Neurol 430:27–55

    Google Scholar 

  • Yin TCT, Kuwada S (1983) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. J Neurophysiol 50:1000–1019

    CAS  PubMed  Google Scholar 

  • Yu YQ, Chan YS, He J (2002) Discharge pattern and corticofugal control of OFF/ON-OFF neurons in the guinea pig auditory thalamus: an in-vivo intracellular study. Program No. 354.4. 2002 Abstract Viewer/Itinerary Planner. Society for Neuroscience, Washington, DC, 2002. Online

  • Zhou X, Jen PHS (2000) Brief and short-term corticofugal modulation of subcortical auditory responses in the big brown bat, Eptesicus fuscus. J Neurophysiol 84:3083–3087

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jufang He.

Additional information

The study was supported by university grants G-T253 and 1-51-87BK

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J. Corticofugal modulation of the auditory thalamus. Exp Brain Res 153, 579–590 (2003). https://doi.org/10.1007/s00221-003-1680-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1680-5

Keywords

Navigation