Skip to main content

Helicases and Their Importance in Abiotic Stresses

  • Chapter
  • First Online:
Salinity Responses and Tolerance in Plants, Volume 2

Abstract

Helicases are a ubiquitous class of ATP-dependent nucleic acid unwinding enzymes crucial for life processes in all living organisms. There are six classes of helicases based on their conserved amino acid sequences. All eukaryotic RNA helicases belong to the SF1 and SF2 groups. Groups SF3–SF5 are mainly viral and bacterial DNA helicases, while SF6 includes the ubiquitous mini-chromosome maintenance or MCM group of helicases. SF3–SF6 are also characterized as hexameric ring-forming, whereas SF1 and SF2 groups are usually monomeric. The SF2 class is the largest group of helicases, including both DNA and RNA helicases with the widest range of function in replication, transcription, translation, repair, as well as chromatin remodeling. There is no clear sequence-based separation between DNA and RNA helicases. SF2 also includes both RNA and DNA helicases that are involved in biotic and abiotic stresses. While both DNA and RNA helicases play important roles in normal cellular function, the latter are more markedly involved in stress alleviation. This functional divergence was also evident in promoter sequence comparisons of the 113 A. thaliana helicases. Some DNA helicases like those from SF6 (MCM) and SF2 (CHR) are also active under stressed conditions. However, the most prominent stress-activated helicases are those with the conserved amino acid motifs, DEAD/H. Overexpression of DEAD/H helicases in many crops confers a growth advantage in the transgenic plants and has resulted in their protection against major abiotic stresses, such as salinity, drought, and oxidative stresses with minimal loss in yield potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAT 1:

HLA-B-associated transcript 1

BRM:

BRAHMA

BZR1:

Brassinazole-resistant 1

CBL:

Calcineurin B-like

CHR31:

Chromatin remodeling31

CHX:

Cation/H+ antiporter

CIPK:

CBL-interacting protein kinase

DEAD:

D-E-A-D (Asp-Glu-Ala-Asp)

DRH:

Dicer-related RNA helicase

EDA:

Embryo sac development arrest

eIF:

Eukaryotic initiation factor

EMBL:

European Molecular Biology Laboratory

KEA:

K+/H+ antiporter

KEGG:

Kyoto encyclopedia of genes and genomes

LOS4:

Low osmotic response gene 4

MCM:

Mini-chromosome

MEE29:

Mutant effect embryo 29

MEGA7:

Molecular evolutionary genetics analysis version 7

MER:

Oligonucleotide-mer replacement

MINU:

Minuscule

NDPK:

Nucleoside diphosphate kinase

PIF:

Petite integration fequency

PTGS:

Posttranscriptional gene silencing

RdDM:

RNA-directed DNA methylase

REQ:

Recombinant specific

RH:

RNA helicase

ROS:

Reactive oxygen species

SDE:

Silencing defective

SF1-SF6:

Superfamily1-superfamily6

SOS:

Salt overly sensitive

Swi/snf:

Switch/sucrose non-fermented DNA helicase

SYD:

SPAYED (stem cell maintainence in SAM and enhances expression of the pluripotency gene WUSCHEL)

ToGR1:

Thermotolerant growth required 1

Upf1-like:

Up-frameshift-1, triggers nonsense-mediated decay

References

  • Abdelhaleem M (2004) Do human RNA helicases have a role in cancer? Biochim Biophys Acta (BBA)-Rev Cancer 1704(1):37–46

    Article  CAS  Google Scholar 

  • Amin M, Elias SM, Hossain A, Ferdousi A, Rahman MS, Tuteja N, Seraj ZI (2012) Over-expression of a DEAD-box helicase, PDH45, confers both seedling and reproductive stage salinity tolerance to rice (Oryza sativa L.). Mol Breed 30:345–354

    Article  CAS  Google Scholar 

  • Asensi-Fabado M-A, Amtmann A, Perrella G (2017) Plant responses to abiotic stress: the chromatin context of transcriptional regulation. Biochim Biophys Acta (BBA)-Gene Regul Mech 1860(1):106–122

    Article  CAS  Google Scholar 

  • Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015a) Introduction of Pea DNA Helicase 45 into Sugarcane (Saccharum spp. Hybrid) enhances cell membrane thermostability and upregulation of stress-responsive genes leads to abiotic stress tolerance. Mol Biotechnol 57(5):475–488

    Article  CAS  PubMed  Google Scholar 

  • Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015b) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34(2):247–263

    Article  CAS  PubMed  Google Scholar 

  • Barak S, Singh Yadav N, Khan A (2014) DEAD-box RNA helicases and epigenetic control of abiotic stress-responsive gene expression. Plant Signal Behav 9(12):e977729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulé J-B, Zakian VA (2006) Roles of Pif1-like helicases in the maintenance of genomic stability. Nucleic Acids Res 34(15):4147–4153

    Article  PubMed  PubMed Central  Google Scholar 

  • Brasil JN, Costa CNM, Cabral LM, Ferreira PC, Hemerly AS (2017) The plant cell cycle: pre-replication complex formation and controls. Genet Mol Biol 40(1):276–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cellier F, Conéjéro G, Ricaud L, Luu DT, Lepetit M, Gosti F, Casse F (2004) Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. Plant J 39(6):834–846

    Article  CAS  PubMed  Google Scholar 

  • Chen C-Y, Liu X, Boris-Lawrie K, Sharma A, Jeang K-T (2013) Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies. Virus Res 171(2):357–365

    Article  CAS  PubMed  Google Scholar 

  • Dang HQ, Tran NQ, Gill SS, Tuteja R, Tuteja N (2011) A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol Biol 76(1–2):19–34

    Article  CAS  PubMed  Google Scholar 

  • de la Paz SM, Costas C, Sequeira-Mendes J, Gutierrez C (2012) Regulating DNA replication in plants. Cold Spring Harb Perspect Biol 4(12):a010140

    Google Scholar 

  • Deckert J, Pawlak S, Rybaczek D (2009) The nucleus as a ‘headquarters’ and target in plant cell stress reactions. In: Maksymiec W (ed) Compartmentation of responses to stresses in higher plants, true or false, Research Signpost. Transworld Research Network, Trivandrum, pp 61–90

    Google Scholar 

  • Fairman-Williams ME, Guenther U-P, Jankowsky E (2010) SF1 and SF2 helicases: family matters. Curr Opin Struct Biol 20(3):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg B, Gill SS, Biswas DK, Sahoo RK, Kunchge NS, Tuteja R, Tuteja N (2017) Simultaneous Expression of PDH45 with EPSPS Gene Improves Salinity and Herbicide Tolerance in Transgenic Tobacco Plants. Front Plant Sci 8:364

    PubMed  PubMed Central  Google Scholar 

  • Georgescu R, Yuan Z, Bai L, Santos RLA, Sun J, Zhang D, Yurieva O, Li H, O’Donnell ME (2017) Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation. Proc Natl Acad Sci 114(5):E697–E706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82(1–2):1–22

    Article  CAS  PubMed  Google Scholar 

  • Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J (2013) A DEAD Box RNA Helicase Is Critical for PremRNA Splicing, Cold-Responsive Gene Regulation, and Cold Tolerance in Arabidopsis. Plant Cell 25:342–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Zhang R, Wang J, Ding S-W, Lu R (2013) Homologous RIG-I–like helicase proteins direct RNAi-mediated antiviral immunity in C. elegans by distinct mechanisms. Proc Natl Acad Sci 110(40):16085–16090

    Article  PubMed  PubMed Central  Google Scholar 

  • Han SK, Wu MF, Cui S, Wagner D (2015) Roles and activities of chromatin remodeling ATPases in plants. Plant J 83(1):62–77

    Article  CAS  PubMed  Google Scholar 

  • Jankowsky E (2011) RNA helicases at work: binding and rearranging. Trends Biochem Sci 36(1):19–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong H-J, Kim YJ, Kim SH, Kim Y-H, Lee I-J, Kim YK, Shin JS (2011) Nonsense-mediated mRNA decay factors, UPF1 and UPF3, contribute to plant defense. Plant Cell Physiol 52(12):2147–2156

    Article  CAS  PubMed  Google Scholar 

  • Johnson SJ, Jackson RN (2013) Ski2-like RNA helicase structures: common themes and complex assemblies. RNA Biol 10(1):33–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kant P, Kant S, Gordon M, Shaked R, Barak S (2007) STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol 145(3):814–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008) Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49(10):1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-H, Lim S, Yang K-S, Kim CY, Kwon S-Y, Lee H-S, Wang X, Zhou Z, Ma D, Yun D-J (2009) Expression of ArabidopsisNDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweet potato plants. Mol Breed 24(3):233–244

    Article  CAS  Google Scholar 

  • Kwon Y-I, Abe K, Endo M, Osakabe K, Ohtsuki N, Nishizawa-Yokoi A, Tagiri A, Saika H, Toki S (2013) DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC Plant Biol 13(1):62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Park J, Williams DS, Xiong Y, Hwang I, Kang BH (2013) Defective chloroplast development inhibits maintenance of normal levels of abscisic acid in a mutant of the Arabidopsis RH3 DEAD-box protein during early post-germination growth. Plant J 73(5):720–732

    Article  CAS  PubMed  Google Scholar 

  • Li D, Liu H, Zhang H, Wang X, Song F (2008) OsBIRH1, a DEAD-box RNA helicase with functions in modulating defence responses against pathogen infection and oxidative stress. J Exp Bot 59(8):2133–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang W, Deutscher MP (2016) REP sequences: mediators of the environmental stress response? RNA Biol 13(2):152–156

    Article  PubMed  Google Scholar 

  • Liu HH, Liu J, Fan SL, Song MZ, Han XL, Liu F, Shen FF (2008) Molecular cloning and characterization of a salinity stress-induced gene encoding DEAD-box helicase from the halophyte Apocynum venetum. J Exp Bot 59:633–644

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Liu YB, Dong YX, Gao XQ, Zhang XS (2009) Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. J Plant Physiol 166:385–394

    Article  CAS  PubMed  Google Scholar 

  • Macovei A, Vaid N, Tula S, Tuteja N (2012) A new DEAD-box helicase ATP-binding protein (OsABP) from rice is responsive to abiotic stress. Plant Signal Behav 7(9):1138–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macovei A, Tuteja N (2012) MicroRNAs targeting DEAD-box helicases are involved in salinity stress response in rice (Oryza sativa L.). BMC Plant Biol 12:183. https://doi.org/10.1186/1471-2229-12-183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macovei A, Sahoo RK, Fae M, Balestrazzi A, Carbonera D, Tuteja N (2017) Overexpression of PDH45 or SUV3 helicases in rice leads to delayed leaf senescence-associated events. Protoplasma 254:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Maldonado-Bonilla LD (2014) Composition and function of P bodies in Arabidopsis thaliana. Front Plant Sci 5:201

    Article  PubMed  PubMed Central  Google Scholar 

  • Manjulatha M, Sreevathsa R, Kumar AM, Sudhakar C, Prasad TG, Tuteja N, Udayakumar M (2014) Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress. Mol Biotechnol 56:111–125

    Article  CAS  PubMed  Google Scholar 

  • Manova V, Gruszka D (2015) DNA damage and repair in plants–from models to crops. Front Plant Sci 6:885

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer K, Koester T, Staiger D (2015) Pre-mRNA splicing in plants: in vivo functions of RNA-binding proteins implicated in the splicing process. Biomol Ther 5(3):1717–1740

    CAS  Google Scholar 

  • Nath M, Yadav S, Sahoo RK, Passricha N, Tuteja R, Tuteja N (2016) PDH45 transgenic rice maintain cell viability through lower accumulation of Na+, ROS and calcium homeostasis in roots under salinity stress. J Plant Physiol 191:1–11

    Article  CAS  PubMed  Google Scholar 

  • Nawaz G, Kang H (2017) Chloroplast-or mitochondria-targeted DEAD-Box RNA helicases play essential roles in organellar RNA metabolism and abiotic stress responses. Front Plant Sci 8:871

    Article  PubMed  PubMed Central  Google Scholar 

  • Ni DA, Sozzani R, Blanchet S, Domenichini S, Reuzeau C, Cella R, Bergounioux C, Raynaud C (2009) The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function. New Phytol 184(2):311–322

    Article  CAS  PubMed  Google Scholar 

  • Ohtani M, Demura T, Sugiyama M (2013) Arabidopsis root initiation defective1, a DEAH-box RNA helicase involved in pre-mRNA splicing, is essential for plant development. Plant Cell 25(6):2056–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palusa SG, Reddy AS (2010) Extensive coupling of alternative splicing of pre-mRNAs of serine/arginine (SR) genes with nonsense-mediated decay. New Phytol 185(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Pascuan C, Frare R, Alleva K, Ayub ND, Soto G (2016) mRNA biogenesis-related helicase eIF4AIII from Arabidopsis thaliana is an important factor for abiotic stress adaptation. Plant Cell Rep 35(5):1205–1208

    Article  CAS  PubMed  Google Scholar 

  • Pham XH, Reddy MK, Ehtesham NZ, Matta B, Tuteja N (2000) A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase I activity. Plant J 24(2):219–229

    Article  CAS  PubMed  Google Scholar 

  • Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Bläsi U, Schroeder R (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4(3):118–130

    Article  CAS  PubMed  Google Scholar 

  • Rao TSRB, Naresh JV, Reddy PS, Reddy MK, Mallikarjuna G (2017) Expression of Pennisetum glaucum Eukaryotic Translational Initiation Factor 4A (PgeIF4A) confers improved drought, salinity, and oxidative stress tolerance in groundnut. Front Plant Sci 8:453

    Article  Google Scholar 

  • Riehs-Kearnan N, Gloggnitzer J, Dekrout B, Jonak C, Riha K (2012) Aberrant growth and lethality of Arabidopsis deficient in nonsense-mediated RNA decay factors is caused by autoimmune-like response. Nucleic Acids Res 40(12):5615–5624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizvi I, Choudhury NR, Tuteja N (2016) Arabidopsis thaliana MCM3 single subunit of MCM2–7 complex functions as 3′ to 5′ DNA helicase. Protoplasma 253(2):467–475

    Article  CAS  PubMed  Google Scholar 

  • Sahoo RK, Tuteja N (2013) Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils. Plant Signal Behav 8:e24950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo RK, Ansari MW, Tuteja R, Tuteja N (2014) OsSUV3 transgenic rice maintains higher endogenous levels of plant hormones that mitigates adverse effects of salinity and sustains crop productivity. Rice 7(1):17

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A 102:509–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaul O (2015) Unique aspects of plant nonsense-mediated mRNA decay. Trends Plant Sci 20(11):767–779

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Kuppu S, Venkataramani S, Wang J, Yan J, Qiu X, Zhang H (2010) ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in Arabidopsis. Plant Cell 22(3):811–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc Natl Acad Sci U S A 101(23):8827–8832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 76:23–50

    Article  CAS  PubMed  Google Scholar 

  • Shivakumara TN, Sreevathsa R, Dash PK, Sheshshayee MS, Papolu PK, Rao U, Tuteja N, Udayakumar M (2017) Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.). Sci Rep 7:2760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Fernandez-Cid A, Riera A, Tognetti S, Yuan Z, Stillman B, Speck C, Li H (2014) Structural and mechanistic insights into Mcm2–7 double-hexamer assembly and function. Genes Dev 28(20):2291–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Nogales E, Ciferri C (2010) Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol 102(2):122–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsugeki R, Tanaka-Sato N, Maruyama N, Terada S, Kojima M, Sakakibara H, Okada K (2015) CLUMSY VEIN, the Arabidopsis DEAH-box Prp16 ortholog, is required for auxin-mediated development. Plant J 81(2):183–197

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2003) Plant DNA helicases: the long unwinding road. J Exp Bot 54(391):2201–2214

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Tran NQ, Dang HQ, Tuteja R (2011) Plant MCM proteins: role in DNA replication and beyond. Plant Mol Biol 77(6):537–545

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Singh S, Tuteja R (2012) Helicases in improving abiotic stress tolerance in crop plants. Improv Crop Resist Abiotic Stress 1 & 2:435–449

    Article  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76(1):115–127

    PubMed  CAS  Google Scholar 

  • Tuteja N, Banu MSA, Huda KMK, Gill SS, Jain P, Pham XH, Tuteja R (2014) Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS One 9(5):e98287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuteja N, Tarique M, Trivedi DK, Sahoo RK, Tuteja R (2015) Stress-induced Oryza sativa BAT1 dual helicase exhibits unique bipolar translocation. Protoplasma 252:1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Umate P, Tuteja R (2010) Architectures of the unique domains associated with the DEAD-box helicase motif. Cell Cycle 9(20):4228–4235

    Article  CAS  PubMed  Google Scholar 

  • Umate P, Tuteja R, Tuteja N (2010) Genome-wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Mol Biol 73(4):449–465

    Article  CAS  PubMed  Google Scholar 

  • Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38(suppl_2):W214–W220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu RR, Qi SD, Lu LT, Chen CT, Wu CA, Zheng CC (2011) A DExD/H box RNA helicase is important for K+ deprivation responses and tolerance in Arabidopsis thaliana. FEBS J 278(13):2296–2306

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+-and pH-dependent manner. Proc Natl Acad Sci U S A 102(44):16107–16112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You J, Chan Z (2015) ROS regulation during abiotic stress responses in crop plants. Front Plant Sci 6:1092

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Chen G, Dong T, Wang L, Zhang J, Zhao Z, Hu Z (2015) SlDEAD31, a putative DEAD-Box RNA helicase gene, regulates salt and drought tolerance and stress-related genes in tomato. PLoS One 10(8):e0133849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeba I. Seraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seraj, Z.I., Elias, S.M., Biswas, S., Tuteja, N. (2018). Helicases and Their Importance in Abiotic Stresses. In: Kumar, V., Wani, S., Suprasanna, P., Tran, LS. (eds) Salinity Responses and Tolerance in Plants, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90318-7_6

Download citation

Publish with us

Policies and ethics