Skip to main content
Log in

Stress-induced Oryza sativa BAT1 dual helicase exhibits unique bipolar translocation

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

HLA-B associated transcript 1 (BAT1) protein, also named as spliceosome RNA helicase UAP56, is a member of the DExD/H-box family of helicases. However, regulation under stress, biochemical properties, and functions of plant homologue of BAT1 are poorly understood. Here, we report the purification and detailed biochemical characterization of the Oryza sativa homologue of BAT1 (OsBAT1/UAP56) protein (52 kDa) and regulation of its transcript under abiotic stress. OsBAT1 transcript levels are enhanced in rice seedlings in response to abiotic stress including salt stress and abscisic acid. Purified OsBAT1 protein exhibits the DNA- and RNA-dependent ATPase, RNA helicase, and DNA- and RNA-binding activities. Interestingly OsBAT1 also exhibits unique DNA helicase activity, which has not been reported so far in any BAT1 homologue. Moreover, OsBAT1 translocates in both the 3′ to 5′ and 5′ to 3′ directions, which is also a unique property. The K m value for OsBAT1 DNA helicase is 0.9753 nM and for RNA helicase is 1.7536 nM, respectively. This study demonstrates several unique characteristics of OsBAT1 especially its ability to unwind both DNA and RNA duplexes; bipolar translocation and its transcript upregulation under abiotic stresses indicate that it is a multifunctional protein. Overall, this study represents significant contribution in advancing our knowledge regarding functions of OsBAT1 in RNA and DNA metabolism and its putative role in abiotic stress signaling in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelhaleem M, Maltais L, Wainc H (2003) The human DDX and DHX gene families of putative RNA helicases. Genomics 81:618–622

    Article  CAS  PubMed  Google Scholar 

  • Anand SP, Khan SA (2004) Structure-specific DNA binding and bipolar helicase activities of PcrA. Nucleic Acids Res 32:3190–3197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Banu MSA, Huda KMK, Sahoo RK, Garg B, Tula S, Islam SMS, Tuteja R, Tuteja N (2014) Pea p68 imparts salinity stress tolerance in rice by scavenging of ROS-mediated H2O2 and interacts with argonaute. Plant Mol Biol Rep. doi:10.1007/s11105-014-0748-7

    Google Scholar 

  • Cheng Z, Coller J, Parker R, Song H (2005) Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA 11:1258–1270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Constantinesco F, Forterre P, Koonin EV, Aravind L, Elie CA (2004) Bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res 32:1439–1447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

    Article  CAS  PubMed  Google Scholar 

  • de la Cruz J, Kressler D, Linder P (1999) Unwinding RNA in Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends Biochem Sci 24:192–198

    Article  PubMed  Google Scholar 

  • Fleckner J, Zhang M, Valcarcel J, Green MR (1997) U2AF65 recruits a novel human DEAD box protein required for the U2 snRNP–branchpoint interaction. Genes Dev 11:1864–1872

    Article  CAS  PubMed  Google Scholar 

  • Garbelli A, Beermann S, Di Cicco G, Dietrich U, Maga G (2011) A motif unique to the human DEAD-box protein DDX3 is important for nucleic acid binding, ATP hydrolysis, RNA/DNA unwinding and HIV-1 replication. PLoS One 6:e19810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gu L, Xu T, Lee K, Lee KH, Kang H (2014) A chloroplast-localized DEAD-box RNA helicase AtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana. Plant Physiol Biochem 82:309–318

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman A, Puranik S, Rai NK, Vidapu S, Sahu PP, Lata C, Prasad M (2008) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol 40:241–251

    Article  CAS  PubMed  Google Scholar 

  • Kammel C, Thomaier M, Sorensen BB, Schubert T, Langst G, Grasser M, Grasser KD (2013) Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors. PLoS One 8(3):e60644. doi:10.1371/journal.pone.0060644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kikuma T, Ohtsu M, Utsugi T, Koga S, Okuhara K et al (2004) Dbp9p, a member of the DEAD box protein family, exhibits DNA helicase activity. J Biol Chem 279:20692–20698

    Article  CAS  PubMed  Google Scholar 

  • Li X, Gao X, Wei Y, Deng L, Ouyang Y, Chen G, Li X, Zhang Q, Wu C (2011) Rice apoptosis inhibitor 5 coupled with two DEAD-box adenosine-triphosphate-dependent RNA helicases regulates tapetum degeneration. Plant Cell 23:1416–1434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linder P (2006) DEAD-box proteins: a family affair-active and passive players in RNP-remodeling. Nucleic Acids Res 34:4168–4180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linder P, Stutz F (2001) MRNA export: travelling with DEAD box proteins. Curr Biol 11:R961–R963

    Article  CAS  PubMed  Google Scholar 

  • Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski P (1989) Birth of the D-E-A-D box. Nature 337:121–122

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2-DDCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Pause A, Sonenberg N (1992) Mutational analysis of a DEAD-box RNA helicase: the mammalian translation initiation factor eIF-4A. EMBO J 11:2643–2654

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peelman LJ, Chardon P, Nunes M, Renard C, Geffrotin C, Vaiman M, Zeveren AV, Coppieters W, van de Weghe A, Bouquet Y, Choy WW, Strominger JL, Spies T (1995) The BAT1 gene in the MHC encodes an evolutionarily conserved putative nuclear RNA helicase of the DEAD family. Genomics 26:210–218

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pradhan A, Tuteja R (2007) Bipolar, dual Plasmodium falciparum helicase 45 expressed in the intraerythrocytic developmental cycle is required for parasite growth. J Mol Biol 373:268–281

    Article  CAS  PubMed  Google Scholar 

  • Pradhan A, Chauhan VS, Tuteja R (2005) Plasmodium falciparum DNA helicase 60 is a schizont stage specific, bipolar and dual helicase stimulated by PKC phosphorylation. Mol Biochem Parasitol 144:133–141

    Article  CAS  PubMed  Google Scholar 

  • Rocak S, Linder P (2004) DEAD-box proteins: the driving forces behind RNA metabolism. Nature Rev Mol Cell Biol 5:232–241

    Article  CAS  Google Scholar 

  • Sahni A, Wang N, Alexis JD (2010) UAP56 is an important regulator of protein synthesis and growth in cardiomyocytes. Biochem Biophys Res Commun 393:106–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis TI (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci U S A 102:509–514

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shankar J, Pradhan A, Tuteja R (2008) Isolation and characterization of Plasmodium falciparum UAP56 homologue: evidence for the coupling of RNA binding and splicing activity by site directed mutations. Arch Biochem Biophy 47:143–153

    Article  Google Scholar 

  • Shen J, Zhang L, Zhao R (2007) Biochemical characterization of the ATPase and helicase activity of UAP56, an essential pre-mRNA splicing and mRNA export factor. J Biol Chem 282:22544–22550

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Cordin O, Minder CM, Linder P, Xu RM (2004) Crystal structure of the human ATP-dependent splicing and export factor UAP56. Proc Natl Acad Sci U S A 101:17628–17633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spies T, Blanck G, Bresnahan M, Sands J, Strominger JL (1989) A new cluster of genes within the human major histocompatibility complex. Science 243:214–217

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi I, Ohno M (2008) ATP-dependent recruitment of export factor Aly/ REF onto intronless mRNAs by RNA helicase UAP56. Mol Cell Biol 28:601–608

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tarique M, Ahmad M, Ansari A, Tuteja R (2013) Plasmodium falciparum DOZI, an RNA helicase interacts with eIF4E. Gene 522:46–59

    Article  CAS  PubMed  Google Scholar 

  • Thomas M, Lischka P, Muller R, Stamminger T (2011) The Cellular DExD/H-Box RNA-helicases UAP56 and URH49 exhibit a CRM1-independent nucleocytoplasmic shuttling activity. PLoS One 6(7):e22671. doi:10.1371/journal.pone.0022671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signalling. Plant Sig Behav 2:135–138

    Article  Google Scholar 

  • Tuteja R (2010) Genome wide identification of Plasmodium falciparum helicases: a comparison with human host. Cell Cycle 9:104–120

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Tuteja R (2004a) Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 271:1849–1863

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Tuteja R (2004b) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271:1835–1848

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Rahman K, Tuteja R, Falaschi A (1993) Human DNA helicase V, a novel DNA unwinding enzyme from HeLa cells. Nucleic Acids Res 21:2323–2329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja R (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127

    CAS  PubMed  Google Scholar 

  • Tuteja N, Banu MSA, Huda KMK, Gill SS, Jain P, Pham XH, Tuteja R (2014a) Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLoS One 9(5):e98287. doi:10.1371/journal.pone.0098287

    Article  PubMed Central  PubMed  Google Scholar 

  • Tuteja N, Tarique M, Banu MSA, Ahmad M, Tuteja R (2014b) Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase. Plant Mol Biol 85:639–651

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Sahoo RK, Huda KMK, Tula S, Tuteja R (2014c) OsBAT1 augments salinity stress tolerance by enhancing detoxification of ROS and expression of stress-responsive genes in transgenic rice. Plant Mol Biol Reporter. doi:10.1007/s11105-014-0827-9

    Google Scholar 

  • Umate P, Tuteja R, Tuteja N (2010) Genome wide analysis of helicase gene family from rice and Arabidopsis: a comparison with yeast and human. Plant Mol Biol 73:449–465

    Article  CAS  PubMed  Google Scholar 

  • Vashisht A, Pradhan A, Tuteja R, Tuteja N (2005) Cold and salinity stress-induced pea bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J 44:76–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work on helicases in N. T.’s laboratory is partially supported by Department of Science and Technology (DST) and Department of Biotechnology (DBT), Government of India.

Conflict of interest

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tuteja.

Additional information

Handling Editor: Bhumi Nath Tripathi

Gene Bank Accession Number of OsBAT1: GQ 478227 (Locus id: LOC_Os01g36890.2)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1

Alignment of OsBAT1 protein. An alignment of amino acid sequences using the NCBI database revealed that OsBAT1 aligned contiguously and showed highest homology with its counterpart UAP56 from Arabidopsis thaliana (~89 %). (PPTX 146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuteja, N., Tarique, M., Trivedi, D.K. et al. Stress-induced Oryza sativa BAT1 dual helicase exhibits unique bipolar translocation. Protoplasma 252, 1563–1574 (2015). https://doi.org/10.1007/s00709-015-0791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0791-8

Keywords

Navigation