Skip to main content
Log in

Plant MCM proteins: role in DNA replication and beyond

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Mini-chromosome maintenance (MCM) proteins form heterohexameric complex (MCM2–7) to serve as licensing factor for DNA replication to make sure that genomic DNA is replicated completely and accurately once during S phase in a single cell cycle. MCMs were initially identified in yeast for their role in plasmid replication or cell cycle progression. Each of six MCM contains highly conserved sequence called “MCM box”, which contains two ATPase consensus Walker A and Walker B motifs. Studies on MCM proteins showed that (a) the replication origins are licensed by stable binding of MCM2–7 to form pre-RC (pre-replicative complex) during G1 phase of the cell cycle, (b) the activation of MCM proteins by CDKs (cyclin-dependent kinases) and DDKs (Dbf4-dependent kinases) and their helicase activity are important for pre-RC to initiate the DNA replication, and (c) the release of MCMs from chromatin renders the origins “unlicensed”. DNA replication licensing in plant is, in general, less characterized. The MCMs have been reported from Arabidopsis, maize, tobacco, pea and rice, where they are found to be highly expressed in dividing tissues such as shoot apex and root tips, localized in nucleus and cytosol and play important role in DNA replication, megagametophyte and embryo development. The identification of six MCM coding genes from pea and Arabidopsis suggest six distinct classes of MCM protein in higher plant, and the conserved function right across the eukaryotes. This overview of MCMs contains an emphasis on MCMs from plants and the novel role of MCM6 in abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CDC6:

Cell division cycle 6

CDT1:

Cdc10-dependent transcript 1

DDKs:

Dbf4-dependent kinases

E2F:

Adenovirus E2 promoter factor

ETG:

E2F target genes

HIF-1:

Hypoxia-inducible factor 1

MCM:

Mini-chromosome maintenance

ORC:

Origin recognition complex

PRL:

PROLIFERA

RBR:

Retinoblastoma-related genes

ROA:

Replication origin activator

References

  • Aparicio T, Ibarra A, Mendez J (2006) Cdc45-MCM-GINS, a new power player for DNA replication. Cell Div 1:18

    Article  PubMed  Google Scholar 

  • Arias RS, Filichkin SA, Strauss SH (2006) Divide and conquer: development and cell cycle genes in plant transformation. Trends Biotechnol 24(6):267–273

    Article  PubMed  CAS  Google Scholar 

  • Bastida M, Puigdomenech P (2002) Specific expression of ZmPRL, the maize homolog of MCM7, during early embryogenesis. Plant Sci 162:97–106

    Article  CAS  Google Scholar 

  • Bell SP (2002) The origin recognition complex: from simple origins to complex functions. Genes Dev 16(6):659–672

    Article  PubMed  CAS  Google Scholar 

  • Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  PubMed  CAS  Google Scholar 

  • Blow JJ, Dutta A (2005) Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6(6):476–486

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448

    Article  PubMed  CAS  Google Scholar 

  • Bryant JA, Aves SJ (2011) Initiation of DNA replication: functional and evolutionary aspects. Ann Bot 107(7):1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Bryant JA, Moore K, Aves SJ (2001) Origins and complexes: the initiation of DNA replication. J Exp Bot 52(355):193–202

    Article  PubMed  CAS  Google Scholar 

  • Castellano MM, del Pozo JC, Ramirez-Parra E, Brown S, Gutierrez C (2001) Expression and stability of Arabidopsis CDC6 are associated with endoreplication. Plant Cell 13(12):2671–2686

    Article  PubMed  CAS  Google Scholar 

  • Castellano MM, Boniotti MB, Caro E, Schnittger A, Gutierrez C (2004) DNA replication licensing affects cell proliferation or endoreplication in a cell type-specific manner. Plant Cell 16(9):2380–2393

    Article  CAS  Google Scholar 

  • Cho JH, Kim HB, Kim HS, Choi SB (2008) Identification and characterization of a rice MCM2 homologue required for DNA replication. BMB Rep 41(8):581–586

    Article  PubMed  CAS  Google Scholar 

  • Coleman TR, Carpenter PB, Dunphy WG (1996) The xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell-free extracts. Cell 87(1):53–63

    Article  PubMed  CAS  Google Scholar 

  • Costa A, Pape T, van Heel M, Brick P, Patwardhan A, Onesti S (2006) Structural basis of the Methanothermobacter thermautotrophicus MCM helicase activity. Nucl Acids Res 34(20):5829–5838

    Article  PubMed  CAS  Google Scholar 

  • Costas C, de la Paz Sanchez M, Stroud H, Yu Y, Oliveros JC, Feng S, Benguria A, Lopez-Vidriero I, Zhang X, Solano R, Jacobsen SE, Gutierrez C (2011) Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks. Nat Struct Mol Biol 18(3):395–400

    Article  PubMed  CAS  Google Scholar 

  • Dambrauskas G, Aves SJ, Bryant JA, Francis D, Rogers HJ (2003) Genes encoding two essential DNA replication activation proteins, Cdc6 and Mcm3, exhibit very different patterns of expression in the tobacco BY-2 cell cycle. J Exp Bot 54(383):699–706

    Article  PubMed  CAS  Google Scholar 

  • Dang HQ, Tran NQ, Gill SS, Tuteja R, Tuteja N (2011) A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. Plant Mol Biol 76(1–2):19–34

    Article  PubMed  CAS  Google Scholar 

  • De Veylder L, Larkin JC, Schnittger A (2011) Molecular control and function of endoreplication in development and physiology. Trends Plant Sci. PMID:21889902. [Epub ahead of print]

  • Dita AM, Rispail N, Prats E, Rubiales D, Singh KB (2006) Biotechnology approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica 147:1–24

    Article  Google Scholar 

  • Dresselhaus T, Srilunchang KO, Leljak-Levanic D, Schreiber DN, Garg P (2006) The fertilization-induced DNA replication factor MCM6 of maize shuttles between cytoplasm and nucleus, and is essential for plant growth and development. Plant Physiol 140(2):512–527

    Article  PubMed  CAS  Google Scholar 

  • Duderstadt KE, Berger JM (2008) AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 43(3):163–187

    Article  PubMed  CAS  Google Scholar 

  • Dyson T (1999) World food trends and prospects to 2025. Proc Natl Acad Sci USA 96(11):5929–5936

    Article  PubMed  CAS  Google Scholar 

  • Edwards MC, Tutter AV, Cvetic C, Gilbert CH, Prokhorova TA, Walter JC (2002) MCM2–7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in xenopus egg extracts. J Biol Chem 277(36):33049–33057

    Article  PubMed  CAS  Google Scholar 

  • Fitch MJ, Donato JJ, Tye BK (2003) Mcm7, a subunit of the presumptive MCM helicase, modulates its own expression in conjunction with Mcm1. J Biol Chem 278(28):25408–25416

    Article  PubMed  CAS  Google Scholar 

  • Fu YV, Yardimci H, Long DT, Ho TV, Guainazz A, Bermudez VP, Hurwitz J, van Oijen A, Schärer OD, Walter JC (2011) Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase. Cell 146(6):931–941

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm W, Dilkes BP, Lowe K, Hoerster G, Sun X, Ross M, Church L, Bunde C, Farrell J, Hill P, Maddock S, Snyder J, Sykes L, Li Z, Woo YM, Bidney D, Larkins BA (2002) Stimulation of the cell cycle and maize transformation by disruption of the plant retinoblastoma pathway. Proc Natl Acad Sci USA 99(18):11975–11980

    Article  PubMed  CAS  Google Scholar 

  • Hirano H, Harashima H, Shinmyo A, Sekine M (2008) Arabidopsis RETINOBLASTOMA-RELATED PROTEIN 1 is involved in G1 phase cell cycle arrest caused by sucrose starvation. Plant Mol Biol 66(3):259–275

    Article  PubMed  CAS  Google Scholar 

  • Holding DR, Springer PS (2002) The Arabidopsis gene PROLIFERA is required for proper cytokinesis during seed development. Planta 214(3):373–382

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Springer PS, Kaloshian I (2003) Expression of the Arabidopsis MCM Gene PROLIFERA during root-knot and cyst nematode infection. Phytopathology 93(1):35–41

    Article  PubMed  CAS  Google Scholar 

  • Hubbi ME, Luo W, Baek JH, Semenza GL (2011) MCM proteins are negative regulators of hypoxia-inducible factor 1. Mol cell 42(5):700–712

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kim KA, Oh TR, Park CM, Kang H (2008) Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol 49(10):1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Lee TJ, Pascuzzi PE, Settlage SB, Shultz RW, Tanurdzic M, Rabinowicz PD, Menges M, Zheng P, Main D, Murray JA, Sosinski B, Allen GC, Martienssen RA, Hanley-Bowdoin L, Vaughn MW, Thompson WF (2010) Arabidopsis thaliana chromosome 4 replicates in two phases that correlate with chromatin state. PLoS Genet 6(6):e1000982

    Article  PubMed  Google Scholar 

  • Lei M, Kawasaki Y, Tye BK (1996) Physical interactions among Mcm proteins and effects of Mcm dosage on DNA replication in Saccharomyces cerevisiae. Mol Cell Biol 16(9):5081–5090

    PubMed  CAS  Google Scholar 

  • Liang DT, Hodson JA, Forsburg SL (1999) Reduced dosage of a single fission yeast MCM protein causes genetic instability and S phase delay. J Cell Sci 112(Pt 4):559–567

    PubMed  CAS  Google Scholar 

  • Liu HH, Liu J, Fan SL, Song MZ, Han XL, Liu F, Shen FF (2008) Molecular cloning and characterization of a salinity stress-induced gene encoding DEAD-box helicase from the halophyte Apocynum venetum. J Exp Bot 59(3):633–644

    Article  PubMed  CAS  Google Scholar 

  • Luo Y, Liu YB, Dong YX, Gao XQ, Zhang XS (2009) Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. J Plant Physiol 166(4):385–394

    Article  PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  PubMed  CAS  Google Scholar 

  • Mahbubani HM, Chong JP, Chevalier S, Thommes P, Blow JJ (1997) Cell cycle regulation of the replication licensing system: involvement of a Cdk-dependent inhibitor. J Cell Biol 136(1):125–135

    Article  PubMed  CAS  Google Scholar 

  • Masuda HP, Ramos GB, de Almeida-Engler J, Cabral LM, Coqueiro VM, Macrini CM, Ferreira PC, Hemerly AS (2004) Genome based identification and analysis of the pre-replicative complex of Arabidopsis thaliana. FEBS Lett 574:192–202

    Article  PubMed  CAS  Google Scholar 

  • Moyer SE, Lewis PW, Botchan MR (2006) Isolation of the Cdc45/MCM2–7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase. Proc Natl Acad Sci USA 103(27):10236–10241

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VQ, Co C, Li JJ (2001) Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411(6841):1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Ni DA, Sozzani R, Blanchet S, Domenichini S, Reuzeau C, Cella R, Bergounioux C, Raynaud C (2009) The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function. New Phytol 184(2):311–322

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Lygerou Z (2004) DNA replication licensing. Front Biosci 9:2115–2132

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Lygerou Z, Nishimoto T, Nurse P (2000) The Cdt1 protein is required to license DNA for replication in fission yeast. Nature 404(6778):625–628

    Article  PubMed  CAS  Google Scholar 

  • Nishitani H, Taraviras S, Lygerou Z, Nishimoto T (2001) The human licensing factor for DNA replication Cdt1 accumulates in G1 and is destabilized after initiation of S-phase. J Biol Chem 276(48):44905–44911

    Article  PubMed  CAS  Google Scholar 

  • Ogura T, Wilkinson AJ (2001) AAA+ superfamily ATPases: common structure-diverse function. Genes Cells 6(7):575–597

    Google Scholar 

  • Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252(5007):809–817

    Article  PubMed  CAS  Google Scholar 

  • Piatti S, Bohm T, Cocker JH, Diffley JF, Nasmyth K (1996) Activation of S-phase-promoting CDKs in late G1 defines a “point of no return” after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev 10(12):1516–1531

    Article  PubMed  CAS  Google Scholar 

  • Pinstrup-Andersen P, Pandya-Lorch R, Rosegrant MW (1999) World food prospects: critical issues for the early Twenty-First century In: Food Policy Report—International Food Policy Research Institute (USA). International Food Policy Research Institute, Washington, DC, USA

  • Ramachandra Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161(11):1189–1202

    Article  PubMed  Google Scholar 

  • Sabelli PA, Burgess SR, Kush AK, Young MR, Shewry PR (1996) cDNA cloning and characterisation of a maize homologue of the MCM proteins required for the initiation of DNA replication. Mol Gen Genet 252(1–2):125–136

    Article  PubMed  CAS  Google Scholar 

  • Sabelli PA, Parker J, Barlow P (1999) cDNA and promoter sequences for MCM3 homologues from maize, and protein localization in cycling cells. J Exp Bot 50:1315–1322

    Article  CAS  Google Scholar 

  • Sabelli PA, Hoerster G, Lizarraga LE, Brown SW, Gordon-Kamm WJ, Larkins BA (2009) Positive regulation of minichromosome maintenance gene expression, DNA replication, and cell transformation by a plant retinoblastoma gene. Proc Natl Acad Sci USA 106(10):4042–4047

    Article  PubMed  CAS  Google Scholar 

  • Sanan-Mishra N, Pham XH, Sopory SK, Tuteja N (2005) Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield. Proc Natl Acad Sci USA 102(2):509–514

    Article  PubMed  CAS  Google Scholar 

  • Sheu YJ, Stillman B (2010) The Dbf4-Cdc7 kinase promotes S phase by alleviating an inhibitory activity in Mcm4. Nature 463(7277):113–117

    Article  PubMed  CAS  Google Scholar 

  • Shultz RW, Tatineni VM, Hanley-Bowdoin L, Thompson WF (2007) Genome-wide analysis of the core DNA replication machinery in the higher plants Arabidopsis and rice. Plant Physiol 144(4):1697–1714

    Article  PubMed  CAS  Google Scholar 

  • Shultz RW, Lee TJ, Allen GC, Thompson WF, Hanley-Bowdoin L (2009) Dynamic localization of the DNA replication proteins MCM5 and MCM7 in plants. Plant Physiol 150(2):658–669

    Article  PubMed  CAS  Google Scholar 

  • Springer PS, McCombie WR, Sundaresan V, Martienssen RA (1995) Gene trap tagging of PROLIFERA, an essential MCM2–3-5-like gene in Arabidopsis. Science 268(5212):877–880

    Article  PubMed  CAS  Google Scholar 

  • Springer PS, Holding DR, Groover A, Yordan C, Martienssen RA (2000) The essential Mcm7 protein PROLIFERA is localized to the nucleus of dividing cells during the G(1) phase and is required maternally for early Arabidopsis development. Development 127(9):1815–1822

    PubMed  CAS  Google Scholar 

  • Stevens R, Mariconti L, Rossignol P, Perennes C, Cella R, Bergounioux C (2002) Two E2F sites in the Arabidopsis MCM3 promoter have different roles in cell cycle activation and meristematic expression. J Biol Chem 277(36):32978–32984

    Article  PubMed  CAS  Google Scholar 

  • Stillman B (1994) Initiation of chromosomal DNA replication in eukaryotes. Lessons from lambda. J Biol Chem 269(10):7047–7050

    PubMed  CAS  Google Scholar 

  • Takahashi N, Lammens T, Boudolf V, Maes S, Yoshizumi T, De Jaeger G, Witters E, Inze D, De Veylder L (2008) The DNA replication checkpoint aids survival of plants deficient in the novel replisome factor ETG1. EMBO J 27(13):1840–1851

    Article  PubMed  CAS  Google Scholar 

  • Tran LS, Nakashima K, Sakuma Y, Osakabe Y, Qin F, Simpson SD, Maruyama K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2007) Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. Plant J 49(1):46–63

    Article  PubMed  CAS  Google Scholar 

  • Tran NQ, Dang HQ, Tuteja R, Tuteja N (2010) A single subunit MCM6 from pea forms homohexamer and functions as DNA helicase. Plant Mol Biol 74(4–5):327–336

    Article  PubMed  CAS  Google Scholar 

  • Tubon TC, Tansey WP, Herr W (2004) A nonconserved surface of the TFIIB zinc ribbon domain plays a direct role in RNA polymerase II recruitment. Mol Cell Biol 24(7):2863–2874

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N (1997) Unraveling DNA helicases from plant cells. Plant Mol Biol 33(6):947–952

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N (2000) Plant cell and viral helicases: essential enzymes for nucleic acid transactions. Crit Rev Plant Sci 19:449–478

    CAS  Google Scholar 

  • Tuteja N (2007) Mechanisms of high salinity tolerance in plants. Methods Enzymol 428:419–438

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Tuteja R (1996) DNA helicases: the long unwinding road. Nat Genet 13(1):11–12

    Article  PubMed  CAS  Google Scholar 

  • Tuteja N, Tuteja R (2004) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271(10):1835–1848

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Jurgens G (2002) Stem cells that make stems. Nature 415(6873):751–754

    Article  PubMed  CAS  Google Scholar 

  • Wildwater M, Campilho A, Perez–Perez JM, Heidstra R, Blilou I, Korthout H, Chatterjee J, Mariconti L, Gruissem W, Scheres B (2005) The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123(7):1337–1349

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work on DNA replication and plant stress signaling in Tuteja’s Laboratory is supported by Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tuteja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuteja, N., Tran, N.Q., Dang, H.Q. et al. Plant MCM proteins: role in DNA replication and beyond. Plant Mol Biol 77, 537–545 (2011). https://doi.org/10.1007/s11103-011-9836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-011-9836-3

Keywords

Navigation