Advertisement

Metallomics pp 213-243 | Cite as

Advanced Nuclear and Related Techniques for Metallomics and Nanometallomics

  • Yu-Feng Li
  • Jiating Zhao
  • Yuxi Gao
  • Chunying Chen
  • Zhifang Chai
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1055)

Abstract

Metallomics, focusing on the global and systematic understanding of the metal uptake, trafficking, role, and excretion in biological systems, has attracted more and more attention. Metal-related nanomaterials, including metallic and metal-containing nanomaterials, have unique properties compared to their macroscale counterparts and therefore require special attention. The absorption, distribution, metabolism, excretion (ADME) behavior of metal-related nanomaterials in the biological systems is influenced by their physicochemical properties, the exposure route, and the microenvironment of the deposition site. Nanomaterials not only may interact directly or indirectly with genes, proteins, and other molecules to bring genotoxicity, immunotoxicity, DNA damage, and cytotoxicity but may also stimulate the immune responses, circumvent tumor resistance, and inhibit tumor metastasis. Because of their advantages of absolute quantification, high sensitivity, excellent accuracy and precision, low matrix effects, and nondestructiveness, nuclear and related analytical techniques have been playing important roles in the study of metallomics and nanometallomics. In this chapter, we present a comprehensive overview of nuclear and related analytical techniques applied to the quantification of metallome and nanometallome, the biodistribution, bioaccumulation, and transformation of metallome and nanometallome in vivo, and the structural analysis. Besides, metallomics and nanometallomics need to cooperate with other -omics, like genomics, proteomics, and metabolomics, to obtain the knowledge of underlying mechanisms and therefore to improve the application performance and to reduce the potential risk of metallome and nanometallome.

Keywords

Metallomics Nanometallomics Nuclear analytical techniques Metals Metal-related nanomaterials 

Abbreviations

ADME

Absorption, distribution, metabolism, and excretion

ASE

Accelerated solvent extraction

CAE

Capillary array electrophoresis

CD

Dichroism spectroscopy

CE

Capillary electrophoresis

CEC

Capillary electrochromatography

CGE

Capillary gel electrophoresis

CNT

Carbon nanotubes

CT-SPECT

Computed tomography coregistered with single-photon emission computerized Tomography

CZE

Capillary zone electrophoresis

EC

Electrochromatography

EDX

Energy dispersive X-ray fluorescence

ESI-MS

Electrospray ionization mass spectrometer

EXAFS

Extended X-ray absorption fine structure

GC

Gas chromatography

GE

Gel electrophoresis

HPLC

High-performance liquid chromatography

ICP-AES

Inductively coupled plasma atomic emission spectrometry

ICP-MS

Inductively coupled plasma mass spectrometry

LA

Laser ablation

MALDI-TOF-MS

Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy

MECC

Micelle electrokinetic capillary chromatography

MEKC

Micelle electrokinetic capillary electrophoresis

MMP

Matrix metalloproteinases

MW

Multiwalled

NAA

Neutron activation analysis

nanoXRF

XRF mapping with the nano-sized spatial resolution

NATs

Advanced nuclear analytical techniques

NMR

Nuclear magnetic resonance spectroscopy

NPs

Nanoparticles

PAHs

Polycyclic aromatic hydrocarbons

PCBs

Polychlorinated biphenyls

PDDAC

Poly(diallydimethylammonium chloride)

PEI

Polyethyleneimine

PET

Positron emission tomography

PIXE

Proton-inducted X-ray emission spectrometry

PLE

Pressurized liquid extraction

POPs

Persistent Organic Pollutants

QDs

Quantum dots

RES

Reticuloendothelial systems

ROS

Reactive oxygen species

SANS

Small angle neutron scattering

SAXS

Small angle X-ray scattering

SCND

Single crystal neutron diffraction spectroscopy

SEM

Scanning electron microscopy

SFE

Supercritical fluid extraction

SIMS

Secondary ion mass spectroscopy

SPE

Solid-phase extraction

SPECT

Single-photon emission computed tomography

SPME

Solid-phase microextraction

SR

Synchrotron radiation

SR-μXRF

Synchrotron radiation-based microbeam X-ray fluorescence analysis

SW

Single-walled

SWE

Subcritical water extraction

TEM

Transmission electron microscopy

WDX

Wavelength dispersive x-ray fluorescence

XAS

X-ray absorption spectroscopy

XRD

X-ray diffraction

XRF

X-ray fluorescence analysis

μ-XRF

Microbeam X-ray fluorescence analysis

Notes

Acknowledgments

Y-F Li gratefully acknowledges the support of K. C. Wong Education Foundation, Hong Kong, and the CAS Youth Innovation Association, Chinese Academy of Sciences. This work was supported by the National Natural Science Foundation of China (11205168, 11405196, and U1432241) and the Ministry of Science and Technology of China (2011CB933401, 2012CB934003, and 2016YFA0201600). We thank staffs at Beijing Synchrotron Radiation Facility (BSRF) and Shanghai Synchrotron Radiation Facility (SSRF), who provided us beam time and technical assistance.

References

  1. Aksenov VL, Kuzmin AY, Purans J, Tyutyunnikov SI (2001) EXAFS spectroscopy at synchrotron-radiation beams. Phys Part Nucl 32:1–33Google Scholar
  2. Alexander J, Thomassen Y, Aaseth J (1983) Increased urinary excretion of selenium among workers exposed to elemental mercury vapor. J Appl Toxicol 3:143–145PubMedCrossRefPubMedCentralGoogle Scholar
  3. Auffan M, Achouak W, Rose J, Roncato M-A, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero J-Y (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735PubMedCrossRefPubMedCentralGoogle Scholar
  4. Becker JS, Zoriy M, Przybylski M, Becker JS (2007) High resolution mass spectrometric brain proteomics by MALDI-FTICR-MS combined with determination of P, S, Cu, Zn and Fe by LA-ICP-MS. Int J Mass Spectrom 261:68–73CrossRefGoogle Scholar
  5. Bendall JS, Ilie A, Welland ME, Sloan J, Green MLH (2006) Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. J Phys Chem B 110:6569–6573PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beneš B, Jakubec K, Šmíd J, Spěváčková V (2000) Determination of thirty-two elements in human autopsy tissue. Biol Trace Elem Res 75:95–203CrossRefGoogle Scholar
  7. Benninghoven A, Rüdenauer FG, Werner HW (1987) Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends. Wiley, New York, pp 1–1227Google Scholar
  8. Bowerman WW, Evans ED, Giesy JP, Postupalsky S (1994) Using feathers to assess risk of mercury and selenium to bald eagle reproduction in the Great Lakes region. Arch Environ Contam Toxicol 27:294–298CrossRefGoogle Scholar
  9. Briggs BYD, Brown A, Vickerman JC (1988) Handbook of static secondary ion mass spectrometry (SIMS). Anal Chem 60:1791–1799CrossRefGoogle Scholar
  10. Brumfiel G (2003) Nanotechnology: a little knowledge. Nature 424:246–248PubMedCrossRefPubMedCentralGoogle Scholar
  11. Burk RF, Foster KA, Greenfield PM, Kiker KW, Hannon JP (1974) Binding of simultaneously administered inorganic selenium and mercury to a rat plasma protein. Proc Soc Exp Biol Med 145:782–785PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bussy C, Cambedouzou J, Lanone S, Leccia E, Heresanu V, Pinault M, Mayne-lhermite M, Brun N, Mory C, Cotte M, Doucet J, Boczkowski J, Launois P (2008) Carbon nanotubes in macrophages: imaging and chemical analysis by X-ray fluorescence microscopy. Nano Lett 8:2659–2663PubMedCrossRefPubMedCentralGoogle Scholar
  13. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71PubMedCrossRefPubMedCentralGoogle Scholar
  14. Caurant F, Navarro M, Amiard J-C (1996) Mercury in pilot whales: possible limits to the detoxification process. Sci Total Environ 186:95–104PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chai Z, Zhu H (1994) Introduction to trace element chemistry. Atomic Energy Press, Beijing, pp 1–280Google Scholar
  16. Chai Z, Sun J, Ma S (1992) Neutron activation analysis in environmental sciences, biological and geological sciences. Atomic Energy Press, Beijing, pp 1–302Google Scholar
  17. Chai C, Mao X, Wang Y, Sun J, Qian Q, Hou X, Zhang P, Chen C, Feng W, Ding W (1999) Molecular activation analysis for chemical species studies. Fresenius J Anal Chem 363:477–480CrossRefGoogle Scholar
  18. Chai ZF, Zhang ZY, Feng WY, Chen CY, Xu DD, Hou XL (2004) Study of chemical speciation of trace elements by molecular activation analysis and other nuclear techniques. J Anal At Spectrom 19:26–33CrossRefGoogle Scholar
  19. Chandra S (2004) 3D subcellular SIMS imaging in cryogenically prepared single cells. Appl Surf Sci 231-232:467–469CrossRefGoogle Scholar
  20. Chandra S, Morrison GH (1992) Sample preparation of animal tissues and cell cultures for secondary ion mass spectrometry (SIMS) microscopy. Biol Cell 74:31–42PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chen T, Huang Z, Huang Y, Xie H, Liao X (2003) Cellular distribution of arsenic and other elements in hyperaccumulator Pteris nervosa and their relations to arsenic accumulation. Chin Sci Bull 48:1586–1591Google Scholar
  22. Chen C, Xing G, Wang J, Zhao Y, Li B, Tang J, Jia G, Wang T, Sun J, Xing L (2005) Multihydroxylated [Gd@C82(OH)22] n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5:2050–2057PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chen C, Yu H, Zhao J, Li B, Qu L, Liu S, Zhang P, Chai Z (2006) The roles of serum selenium and selenoproteins on mercury toxicity in environmental and occupational exposure. Environ Health Perspect 114:297–301PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chen Z, Chen H, Meng H, Xing G, Gao X, Sun B, Shi X, Yuan H, Zhang C, Liu R, Zhao F, Zhao Y, Fang X (2008) Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol Appl Pharmacol 230:364–371PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chen C, Chai Z, Gao Y (2010) Nuclear analytical techniques for metallomics and metalloproteomics. RSC Publishing, Cambridge, pp 1–428CrossRefGoogle Scholar
  26. Chen C, Li Y-F, Qu Y, Chai Z, Zhao Y (2013) Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. Chem Soc Rev 42:8266–8303PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cheung KC, Strange RW, Hasnain SS (2000) 3D EXAFS refinement of the Cu site of structural change at the metal centre in an oxidation–reduction process: an integrated approach combining EXAFS and crystallography. Acta Crystallogr D 56:697–704PubMedCrossRefPubMedCentralGoogle Scholar
  28. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1170PubMedCrossRefPubMedCentralGoogle Scholar
  29. Corezzi S, Urbanelli L, Cloetens P, Emiliani C, Helfen L, Bohic S, Elisei F, Fioretto D (2009) Synchrotron-based X-ray fluorescence imaging of human cells labeled with CdSe quantum dots. Anal Biochem 388:33–39PubMedCrossRefPubMedCentralGoogle Scholar
  30. Derfus AM, Chan WCW, Bhatia SN (2003) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18PubMedPubMedCentralCrossRefGoogle Scholar
  31. Devos W, Senn-Luder M, Moor C, Salter C (2000) Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for spatially resolved trace analysis of early-medieval archaeological iron finds. Fresenius J Anal Chem 366:873–880PubMedCrossRefGoogle Scholar
  32. Dickson DPE, Berry FJ (1986) Mössbauer spectroscopy. Cambridge University Press, New York, pp 1–16CrossRefGoogle Scholar
  33. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2:469–478PubMedCrossRefGoogle Scholar
  34. Drescher D, Giesen C, Traub H, Panne U, Kneipp J, Jakubowski N (2012) Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS. Anal Chem 84:9684–9688PubMedCrossRefGoogle Scholar
  35. Drickamer K, Taylor M (2002) Glycan arrays for functional glycomics. Genome Biol 3:10341–10344CrossRefGoogle Scholar
  36. Durrant SF, Ward NI (1994) Laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS) for the multielemental analysis of biological materials: a feasibility study. Food Chem 49:317–323CrossRefGoogle Scholar
  37. Espinosa EH, Ionescu R, Bittencourt C, Felten A, Erni R, Van Tendeloo G, Pireaux JJ, Llobet E (2007) Metal-decorated multi-wall carbon nanotubes for low temperature gas sensing. Thin Solid Films 515:8322–8327CrossRefGoogle Scholar
  38. Fahrni CJ (2007) Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opi Chem Biol 11:121–127CrossRefGoogle Scholar
  39. Falnoga I, Tušek-Žnidarič M, Horvat M, Stegnar P (2000) Mercury, selenium, and cadmium in human autopsy samples from Idrija residents and mercury mine workers. Environ Res 84:211–218PubMedCrossRefPubMedCentralGoogle Scholar
  40. Feigin LA, Svergun DI (1987) Structure analysis by small-angle X-ray and neutron scattering. Plenum Press, New York, pp 1–335CrossRefGoogle Scholar
  41. Feldmann Y, Jakubowski N, Thomas C, Stueweret D (1999) Part II: analytical figures of merit and first applications. Fresenius J Anal Chem 365:422–428CrossRefGoogle Scholar
  42. Fischer HC, Liu L, Pang KS, Chan WCW (2006) Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater 16:1299–1305CrossRefGoogle Scholar
  43. Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490PubMedCrossRefPubMedCentralGoogle Scholar
  44. Freitas VAP, Glories Y, Bourgeois G, Vitry C (1998) Characterisation of oligomeric and polymeric procyanidins from grape seeds by liquid secondary ion mass spectrometry. Phytochemistry 49:1435–1441CrossRefGoogle Scholar
  45. Fu C, Lü T, Cao X, Liu J (2005) Pharmacokinetic research of nerve growth factor marked with 99mTc in rabbit. Chin J Pract Med 4:1108–1109Google Scholar
  46. Gailer J, George GN, Pickering IJ, Madden S, Prince RC, Yu EY, Denton MB, Younis HS, Aposhian HV (2000) Structural basis of the antagonism between inorganic mercury and selenium in mammals. Chem Res Toxicol 13:1135–1142PubMedCrossRefPubMedCentralGoogle Scholar
  47. Gan H, Gao H, Zhu H, Chen J, Zhu P, Xian D (2006) X-ray fluorescence tomography. Laser Optoelectr Prog 43:56–64Google Scholar
  48. Gao Y, Chen C, Chai Z (2007) Advanced nuclear analytical techniques for metalloproteomics. J Anal At Spectrom 22:856–866CrossRefGoogle Scholar
  49. Gao Y, Liu N, Chen C, Luo Y, Li Y-F, Zhang Z, Zhao Y, Zhao Y, Iida A, Chai Z (2008) Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. J Anal At Spectrom 23:1121–1124CrossRefGoogle Scholar
  50. Ge R, Sun H (2009) Metallomics: an integrated biometal science. Sci China Chem 52:2055–2070CrossRefGoogle Scholar
  51. Ge C, Du J, Zhao L, Wang L, Liu Y, Li D, Yang Y, Zhou R, Zhao Y, Chai Z, Chen C (2011) Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U S A 108:16968–16973PubMedPubMedCentralCrossRefGoogle Scholar
  52. Green M, Howman E (2005) Semiconductor quantum dots and free radical induced DNA nicking. Chem Comm 122:121–123CrossRefGoogle Scholar
  53. Hansel CM, La Force MJ, Fendorf S, Sutton S (2002) Spatial and temporal Association of as and Fe Species on aquatic plant roots. Environ Sci Technol 36:1988–1994PubMedCrossRefPubMedCentralGoogle Scholar
  54. Haraguchi H (2004) Metallomics as integrated biometal science. J Anal At Spectrom 19:5–14CrossRefGoogle Scholar
  55. Hasnain SS, Strange RW (2003) Marriage of XAFS and crystallography for structure±function studies of metalloproteins. J Synchrotron Rad 10:9–15CrossRefGoogle Scholar
  56. Hazemann I, Dauvergne MT, Blakeley MP, Meilleur F, Haertlein M, Van Dorsselaer A, Mitschler A, Myles DA, Podjarny A (2005) High-resolution neutron protein crystallography with radically small crystal volumes: application of perdeuteration to human aldose reductase. Acta Crystallogr D 61:1413–1417PubMedCrossRefPubMedCentralGoogle Scholar
  57. Heumann K, Gallus SM, Radlinger G, Vogl J (1998) Accurate determination of element species by on-line coupling of chromatographic systems with ICP-MS using isotope dilution technique. Spectrochim Acta B 53:273–278CrossRefGoogle Scholar
  58. Hoet PHM, Nemmar A, Nemery B (2004) Health impact of nanomaterials? Nat Biotechnol 22:19PubMedCrossRefPubMedCentralGoogle Scholar
  59. http://pubs.rsc.org/en/journals/journalissues/mt#!recentarticles&all. Accessed on 23 Oct 2017Google Scholar
  60. Hulle MV, Cremer KD, Vanholder R, Cornelis R (2005) In vivo distribution and fractionation of indium in rats after subcutaneous and oral administration of [114mIn] InAs. J Environ Monit 7:365–370PubMedCrossRefPubMedCentralGoogle Scholar
  61. Ide-Ektessabi A, Fujisawa S, Sugimura K, Kitamura Y, Gotoh A (2002) Quantitative analysis of zinc in prostate cancer tissues using synchrotron radiation microbeams. X-Ray Spectrom 31:7–11CrossRefGoogle Scholar
  62. Iida A (1997) X-ray spectrometric applications of a synchrotron X-ray microbeam. X-Ray Spectrom 26:359–363CrossRefGoogle Scholar
  63. Iida A, Noma T (1993) Synchrotron X-ray muprobe and its application to human hair analysis. Nucl Instrum Meth Phys Res Sec B 82:129–138CrossRefGoogle Scholar
  64. Isaure M-P, Fayard B, Sarret G, Pairis S, Bourguignon J (2006) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim Acta B 61:1242–1252CrossRefGoogle Scholar
  65. Ishii K, Matsuyama S, Watanabe Y, Kawamura Y, Yamaguchi T, Oyama R, Momose G, Ishizaki A, Yamazaki H, Kikuchi Y (2007) 3D-imaging using micro-PIXE. Nucl Instrum Meth Phys Res Sect A 571:64–68CrossRefGoogle Scholar
  66. Jackson BP, Hopkins WA, Baionno J (2003) Laser ablation-ICP-MS analysis of dissected tissue: a conservation-minded approach to assessing contaminant exposure. Environ Sci Technol 37:2511–2515PubMedCrossRefPubMedCentralGoogle Scholar
  67. Jackson B, Harper S, Smith L, Flinn J (2006) Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS. Anal Bioanal Chem 384:951–957PubMedCrossRefPubMedCentralGoogle Scholar
  68. James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Quart Rev Biophy 30:279–331CrossRefGoogle Scholar
  69. Janssens K, Proost K, Falkenberg G (2004) Confocal microscopic X-ray fluorescence at the HASYLAB microfocus beamline: characteristics and possibilities. Spectrochim Acta B 59:1637–1645CrossRefGoogle Scholar
  70. Jarvis KE, Williams JG (1993) Laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS): a rapid technique for the direct, quantitative determination of major, trace and rare-earth elements in geological samples. Chem Geol 106:251–262CrossRefGoogle Scholar
  71. Jenkins R (1999) X-ray fluorescence spectrometry. Vol. 152 in chemical analysis: a series of monographs on analytical chemistry and its applications. Wiley, New York, pp 1–232CrossRefGoogle Scholar
  72. Jiang J, Sato S (1999) Detection of calcium and aluminum in pyramidal neurons in the gerbil hippocampal CA1 region following repeated brief cerebral ischemia: X-ray microanalysis. Med Electron Microsc 32:161–166CrossRefGoogle Scholar
  73. Johansson E (1989) PIXE: a novel technique for elemental analysis. Endeavour 13:48–53CrossRefGoogle Scholar
  74. Johansson E, Lindh U, Johansson H, Sundstrom C (1987) Micro-PIXE analysis of macro-and trace elements in blood cells and tumors of patients with breast cancer. Nucl Instrum Methods Phys Res Sect B 22:179–183CrossRefGoogle Scholar
  75. Kametani K, Nagata T (2006) Quantitative elemental analysis on aluminum accumulation by HVTEM-EDX in liver tissues of mice orally administered with aluminum chloride. Med Mol Morphol 39:97–105PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kang D, Amarasiriwardena D, Goodman A (2004) Application of laser ablation–inductively coupled plasma-mass spectrometry (LA–ICP–MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp. Anal Bioanal Chem 378:1608–1615PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kang S-G, Zhou G, Yang P, Liu Y, Sun B, Huynh T, Meng H, Zhao L, Xing G, Chen C, Zhao Y, Zhou R (2012) Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine. Proc Natl Acad Sci U S A 109:15431–15436PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kanngießer B, Malzer W, Reiche I (2003) A new 3D micro X-ray fluorescence analysis set-up – first archaeometric applications. Nucl Instrum Meth Phys Res Sect B 211:259–264CrossRefGoogle Scholar
  79. Kanngießer B, Karydas AG, Schütz R, Sokaras D, Reiche I, Rohrs S, Pichon L, Salomon J (2007a) 3D micro-PIXE at atmospheric pressure: a new tool for the investigation of art and archaeological objects. Nucl Instrum Meth Phys Res Sect B 264:383–388CrossRefGoogle Scholar
  80. Kanngießer B, Malzer W, Pagels M, Lühl L, Weseloh G (2007b) Three-dimensional micro-XRF under cryogenic conditions: a pilot experiment for spatially resolved trace analysis in biological specimens. Anal Bioanal Chem 389:1171–1176PubMedCrossRefPubMedCentralGoogle Scholar
  81. Karanatsios J, Freiburg C, Reichert W, Barnert-Wiemer H (1988) Quantitative multi-element analysis of denitration ceramics by X-ray fluorescence spectrometry. J Anal At Spectrom 3:979–983CrossRefGoogle Scholar
  82. Karydas AG, Sokaras D, Zarkadas C, Grlj N, Pelicon P, Zitnik M, Schütz R, Malzer W, Kanngießer B (2007) 3D Micro PIXE—a new technique for depth-resolved elemental analysis. J Anal At Spectrom 22:1260–1265CrossRefGoogle Scholar
  83. Kemner KM, Kelly SD, Lai B, Maser J, O’Loughlin EJ, Sholto-Douglas D, Cai Z, Schneegurt MA, CFJr K, Nealson KH (2004) Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science 306:686–687PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kindness A, Sekaran CN, Feldmann J (2003) Two-dimensional mapping of copper and zinc in liver sections by laser ablation-inductively coupled plasma mass spectrometry. Clin Chem 49:1916–1923PubMedCrossRefPubMedCentralGoogle Scholar
  85. Koeman JH, Peeters WHM, Koudstaal-Hol CHM, Tjioe PS, de Goeij JJ (1973) Mercury-selenium correlations in marine mammals. Nature 245:385–386PubMedCrossRefPubMedCentralGoogle Scholar
  86. Koppenaal DW, Eiden GC, Barinaga CJ (2004) Collision and reaction cells in atomic mass spectrometry: development, status, and applications. J Anal At Spectrom 19:561–570CrossRefGoogle Scholar
  87. Kosta L, Byrne AR, Zelenko V (1975) Correlation between selenium and mercury in man following exposure to inorganic mercury. Nature 254:238–239PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kouichi Tsuji KN (2007) Development of confocal 3D micro-XRF spectrometer with dual Cr-Mo excitation. X-Ray Spectrom 36:145–149CrossRefGoogle Scholar
  89. Kramer U, Grime GW, Smith JAC, Hawes CR, Baker AJM (1997) Micro-PIXE as a technique for studying nickel localization in leaves of the hyperaccumulator plant Alyssum lesbiacum. Nucl Instrum Meth Phys Res Sect B 130:346–350CrossRefGoogle Scholar
  90. Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdorster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 65:1513–1530PubMedCrossRefPubMedCentralGoogle Scholar
  91. Laera S, Ceccone G, Rossi F, Gilliland D, Hussain R, Siligardi G, Calzolai L (2011) Measuring protein structure and stability of protein-nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett 11:4480–4484PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lambertsson L, Lundberg E, Nilsson M, Frech W (2001) Applications of enriched stable isotope tracers in combination with isotope dilution GC-ICP-MS to study mercury species transformation in sea sediments during in situ ethylation and determination. J Anal At Spectrom 16:1296–1301CrossRefGoogle Scholar
  93. Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations—many questions, some answers. Mut Res 681:241–258CrossRefGoogle Scholar
  94. Lazof DB, Goldsmith JG, Rufty TW, Linton RW (1994) Rapid uptake of aluminum into cells of intact soybean root tips (a microanalytical study using secondary ion mass spectrometry). Plant Physiol 106:1107–1114PubMedPubMedCentralCrossRefGoogle Scholar
  95. Le XC, Li XF, Lai V, Ma M, Yalcin S, Feldmann J (1998) Simultaneous speciation of selenium and arsenic using elevated temperature liquid chromatography separation with inductively coupled plasma mass spectrometry detection. Spectrochim Acta B 53:899–909CrossRefGoogle Scholar
  96. Lesk AM (2002) Introduction to bioinformatics. Oxford University Press, New York, pp 1–400Google Scholar
  97. Li Y-F, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980PubMedCrossRefPubMedCentralGoogle Scholar
  98. Li Y-F, Chen C, Xing L, Liu T, Xie Y, Gao Y, Li B, Qu L, Chai Z (2004) Concentrations and XAFS speciation in situ of mercury in hair from populations in Wanshan mercury mine area, Guizhou Province. Nucl Tech 27:899–903Google Scholar
  99. Li Y-F, Chen C, Li B, Sun J, Wang J, Gao Y, Zhao Y, Chai Z (2006) Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J Anal At Spectrom 6(21):94–96CrossRefGoogle Scholar
  100. Li Y-F, Chen C, Li B, Wang Q, Wang J, Gao Y, Zhao Y, Chai Z (2007) Simultaneous speciation of selenium and mercury in human urine samples from long-term mercury-exposed populations with supplementation of selenium-enriched yeast by HPLC-ICP-MS. J Anal At Spectrom 22:925–930CrossRefGoogle Scholar
  101. Li Y-F, Wang L, Zhang L, Chen C (2010) Nuclear-based metallomics in metallic nanomaterials: nanometallomics. In: Chen C, Chai Z, Gao Y (eds) Nuclear analytical techniques for metallomics and Metalloproteomics. RSC publishing, Cambridge, pp 342–384CrossRefGoogle Scholar
  102. Li Y-F, Gao Y, Chai Z, Chen C (2014) Nanometallomics: an emerging field studying the biological effects of metal-related nanomaterials. Metallomics 6:220–232PubMedCrossRefPubMedCentralGoogle Scholar
  103. Li Y-F, Sun H, Chen C, Chai Z (2016) Metallomics. Science Press, Beijing, pp 1–103Google Scholar
  104. Liang X (1976) Nuclear magnetic resonance. Science Press, Beijing, pp 1–358Google Scholar
  105. Liang X-J, Huang B, Meng H, He H, Meng J, Wang Y, Lu J, Wang PC, Zhao Y, Gao X, Chen C, Sun B, Xing G, Gottesman MM, Shen D, Jia L (2010) Metallofullerene nanoparticles overcome tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Sci U S A 107:7449–7454PubMedPubMedCentralCrossRefGoogle Scholar
  106. Linse S, Cabaleiro-Lago C, Xue W-F, Lynch I, Lindman S, Thulin EN, Radford SE, Dawson KA (2007) Nucleation of protein fibrillation by nanoparticles. Proc Natl Acad Sci U S A 104:8691–8696PubMedPubMedCentralCrossRefGoogle Scholar
  107. Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, Li W, Liu Y, Li Y, Li B, Chai Z, Wu G, Chen C (2009a) Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol 9:1–9CrossRefGoogle Scholar
  108. Liu Y, Jiao F, Qiu Y, Li W, Lao F, Zhou G, Zhao Y, Sun B, Xing G, Dong J, Chai Z, Chen C (2009b) The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-α mediated cellular immunity. Biomaterials 30:3934–3945PubMedCrossRefPubMedCentralGoogle Scholar
  109. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 105:14265–14270PubMedPubMedCentralCrossRefGoogle Scholar
  110. Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, Zhang C, Zhao Y (2007) Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicol Lett 175:102–110PubMedCrossRefPubMedCentralGoogle Scholar
  111. Meurer WP, Claeson DT (2002) Evolution of crystallizing interstitial liquid in an arc-related cumulate determined by LA ICP-MS mapping of a large amphibole oikocryst. J Petrol 43:607–629CrossRefGoogle Scholar
  112. Montes-Bayón M (2002) Metal speciation in biomolecules. Anal Bioanal Chem 376:287–288CrossRefGoogle Scholar
  113. Motelica-Heino M, Le Coustumer P, Thomassin JH, Gauthier A, Donard OFX (1998) Macro and microchemistry of trace metals in vitrified domestic wastes by laser ablation ICP-MS and scanning electron microprobe X-ray energy dispersive spectroscopy. Talanta 46:407–422PubMedCrossRefPubMedCentralGoogle Scholar
  114. Mounicou S, Szpunar J, Lobinski R (2009) Metallomics: the concept and methodology. Chem Soc Rev 38:1119–1138PubMedPubMedCentralCrossRefGoogle Scholar
  115. Muradin AK (2000) Capillary optics and their use in x-ray analysis. X-Ray Spectrom 29:343–348CrossRefGoogle Scholar
  116. Nakano K, Tsuji K (2006) Development of confocal 3D micro XRF spectrometer and its application to rice grain. Bunseki Kagaku 55:427CrossRefGoogle Scholar
  117. Nemmar A, Hoylaerts MF, Hoet PHM, Dinsdale D, Smith T, Xu H, Vermylen J, Nemery B (2002) Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med 166:998–1004PubMedCrossRefPubMedCentralGoogle Scholar
  118. Ng C-T, Li JJ, Bay B-H, Yung L-YL (2010) Current studies into the genotoxic effects of nanomaterials. J Nucl Acids 2010:Article ID 947859. 12 pagesCrossRefGoogle Scholar
  119. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056PubMedCrossRefPubMedCentralGoogle Scholar
  120. Oberdörster G (2000) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8CrossRefGoogle Scholar
  121. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedPubMedCentralCrossRefGoogle Scholar
  122. Oberdoster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445CrossRefGoogle Scholar
  123. Ortega R, Bohic S, Tucoulou R, Somogyi A, Deves G (2004) Microchemical element imaging of yeast and human cells using synchrotron X-ray microprobe with Kirkpatrick-Baez optics. Anal Chem 76:309–314PubMedCrossRefPubMedCentralGoogle Scholar
  124. Oughton DH, Hertel-Aas T, Pellicer E, Mendoza E, Joner EJ (2008) Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environ Toxicol Chem 27:1883–1887PubMedCrossRefPubMedCentralGoogle Scholar
  125. Pan F, Tyson JF, Uden PC (2007) Simultaneous speciation of arsenic and selenium in human urine by high-performance liquid chromatography inductively coupled plasma mass spectrometry. J Anal At Spectrom 22:931–937CrossRefGoogle Scholar
  126. Paunesku T, Vogt S, Maser J, Lai B, Woloschak G (2006) X-ray fluorescence microprobe imaging in biology and medicine. J Cell Biochem 99:1489–1502PubMedCrossRefPubMedCentralGoogle Scholar
  127. Paunesku T, Vogt S, Lai B, Maser J, Stojicevic N, Thurn KT, Osipo C, Liu H, Legnini D, Wang Z, Lee C, Woloschak GE (2007) Intracellular distribution of TiO2-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett 7:596–601PubMedPubMedCentralCrossRefGoogle Scholar
  128. Provencher SW, Gloeckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37PubMedCrossRefPubMedCentralGoogle Scholar
  129. Przybylowicz WJ, Mesjasz-Przybylowicz J, Pineda CA, Churms CL, Ryan CG, Prozesky VM, Frei R, Slabbert JP, Padayachee J, Reimold WU (2001) Elemental mapping using proton-induced x-rays. X-Ray Spectrom 30:156–163CrossRefGoogle Scholar
  130. Punshon T, Jackson BP, Bertsch PM, Burger J (2004) Mass loading of nickel and uranium on plant surfaces: application of laser ablation-ICP-MS. J Environ Monit 6:153–159PubMedCrossRefPubMedCentralGoogle Scholar
  131. Qu Y, Li W, Zhou Y, Liu X, Zhang L, Wang L, Li Y-F, Iida A, Tang Z, Zhao Y, Chai Z, Chen C (2011) Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett 11:3174–3183PubMedCrossRefPubMedCentralGoogle Scholar
  132. Raith A, Godfrey J, Hutton RC (1996) Quantitation methods using laser ablation ICP-MS. Fresenius J Anal Chem 354:163–168CrossRefGoogle Scholar
  133. Rowe EM, Mills FE, Tantalus I (1973) A dedicated storage ring synchrotron radiation source. Particle Accelerators 4:211–227Google Scholar
  134. Ryan CG (2000) Quantitative trace element imaging using PIXE and the nuclear microprobe. Int J Imag Syst Technol 11:219–230CrossRefGoogle Scholar
  135. Ryan CG, Jamieson DN, Churms CL, Pilcher JV (1995) A new method for on-line true-elemental imaging using PIXE and the proton microprobe. Nucl Instrum Methods Phys Res Sect B 104:157–165CrossRefGoogle Scholar
  136. Savchenko A, Yee A, Khachatryan A, Skarina T, Evdokimova E, Pavlova M, Semesi A, Northey J, Beasley S, Lan N (2003) Strategies for structural proteomics of prokaryotes: quantifying the advantages of studying orthologous proteins and of using both NMR and X-ray crystallography approaches. Proteins Struct Funct Genet 50:392–399PubMedCrossRefPubMedCentralGoogle Scholar
  137. Scheuhammer AM, Wong AHK, Bond D (1998) Mercury and selenium accumulation in common loons (Gavia immer) and common mergansers (Mergus merganser) from eastern Canada. Environ Toxicol Chem 17:197–201CrossRefGoogle Scholar
  138. Scott RA, Shokes JE, Cosper NJ, Jenney FE, Adams MWW (2005) Bottlenecks and roadblocks in high-throughput XAS for structural genomics. J Synchrotron Rad 12:19–22CrossRefGoogle Scholar
  139. Seemungal D, Newton G (2001) Human Genome Project. In: Sydney B, Jeffrey HM (eds) Encycl. Gen. Academic Press, New York, pp 980–981CrossRefGoogle Scholar
  140. Service RF (2003) Nanomaterials show signs of toxicity. Science 300:243–243PubMedCrossRefPubMedCentralGoogle Scholar
  141. Shi Y, Acharya R, Chatt A (2004) Speciation of arsenic in natural waters by HPLC-NAA. J Radioanal Nucl Chem 262:277–286CrossRefGoogle Scholar
  142. Sie SH, Thresher RE (1992) Micro-PIXE analysis of fish otoliths: methodology and evaluation of first results for stock discrimination. Int J PIXE 2:357–379CrossRefGoogle Scholar
  143. Skerfving S (1974) Methylmercury exposure, mercury levels in blood and hair, and health status in Swedes consuming contamination fish. Toxicology 2:3–23PubMedCrossRefPubMedCentralGoogle Scholar
  144. Snigirev A, Kohn V, Snigireva I, Lengeler B (1996) A compound refractive lens for focusing high-energy X-rays. Nature 384:49–51CrossRefGoogle Scholar
  145. Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 130:442–465PubMedCrossRefPubMedCentralGoogle Scholar
  146. Tertian R, Claisse F (1982) Principles of quantitative XRF analysis. Heyden, London, pp 1–386Google Scholar
  147. Thompson M, Walsh JN (1983) Handbook of inductively coupled plasma spectrometry. Blackie, Glasgow, pp 1–327Google Scholar
  148. Tu C, Ma X, House A, Kauzlarich SM, Louie AY (2011) PET imaging and biodistribution of silicon quantum dots in mice. ACS Med Chem Lett 2:285–288PubMedPubMedCentralCrossRefGoogle Scholar
  149. Tylko G, Mesjasz-Przybylowicz J, Przybylowicz WJ (2007) In-vacuum micro-PIXE analysis of biological specimens in frozen-hydrated state. Nucl Instrum Meth Phys Res Sect B 260:141–148CrossRefGoogle Scholar
  150. Upadhyay AK, Hooper AB, Hendrich MP (2006) NO reductase activity of the tetraheme cytochrome c554 of Nitrosomonas europaea. J Am Chem Soc 128:4330–4337PubMedPubMedCentralCrossRefGoogle Scholar
  151. Van Langevelde F, Vis RD (1991) Trace element determinations using a 15-keV synchrotron x-ray microprobe. Anal Chem 63:2253–2259PubMedCrossRefPubMedCentralGoogle Scholar
  152. Villiers C, Freitas H, Couderc R, Villiers M-B, Marche P (2010) Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions. J Nanopart Res 12:55–60PubMedPubMedCentralCrossRefGoogle Scholar
  153. Vincze L, Vekemans B, Szaloki I, Janssens K, Van Grieken R, Feng H, Jones KW, Adams F (2001) In high resolution X-ray fluorescence micro-tomography on single sediment particles, 46th SPIE annual meeting international symposium of optical science and technology, San Diego, 2001; Bonse Ulrich, U., Ed. San Diego, pp 240––245Google Scholar
  154. Vincze L, Vekemans B, Brenker FE, Falkenberg G, Rickers K, Somogyi A, Kersten M, Adams F (2004) Three-dimensional trace element analysis by confocal X-ray microfluorescence imaging. Anal Chem 76:6786–6791PubMedCrossRefGoogle Scholar
  155. Walkey CD, Chan WCW (2012) Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 41:2780–2799PubMedCrossRefPubMedCentralGoogle Scholar
  156. Wang Q-W, Liu W-H (1994) X-ray absorption fine structure and it’s application. Science Press, Beijing, pp 1–347Google Scholar
  157. Wang J, Chen C, Li B, Yu H, Zhao Y, Sun J, Li Y, Xing G, Yuan H, Tang J, Chen Z, Meng H, Gao Y, Ye C, Chai Z, Zhu C, Ma B, Fang X, Wan L (2006) Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem Pharmacol 71:872–881PubMedCrossRefGoogle Scholar
  158. Wang M, Feng W, Lu W, Li B, Wang B, Zhu M, Wang Y, Yuan H, Zhao Y, Chai Z (2007) Quantitative analysis of proteins via sulfur determination by HPLC coupled to isotope dilution ICP-MS with hexapole collision cell. Anal Chem 79:9128–9134PubMedCrossRefGoogle Scholar
  159. Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, Ouyang H, Shi J, Zhang F, Zhao Y, Chai Z, Wang H, Wang J (2008a) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276CrossRefGoogle Scholar
  160. Wang J, Chen C, Liu Y, Jiao F, Li W, Lao F, Li Y, Li B, Ge C, Zhou G, Gao Y, Zhao Y, Chai Z (2008b) Potential neurological lesion after nasal instillation of TiO2 nanoparticles in the anatase and rutile crystal phases. Toxicol Lett 183:72–80PubMedCrossRefPubMedCentralGoogle Scholar
  161. Wang J, Liu Y, Jiao F, Lao F, Li W, Gu Y, Li Y, Ge C, Zhou G, Li B, Zhao Y, Chai Z, Chen C (2008c) Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254:82–90PubMedCrossRefPubMedCentralGoogle Scholar
  162. Wang L, Li Y-F, Zhou L, Liu Y, Meng L, Zhang K, Wu X, Zhang L, Li B, Chen C (2010) Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Anal Bioanal Chem 396:1105–1114PubMedCrossRefPubMedCentralGoogle Scholar
  163. Wang B, Yin J-J, Zhou X, Kurash I, Chai Z, Zhao Y, Feng W (2013) Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states. J Phys Chem C 117:383–392CrossRefGoogle Scholar
  164. Watanabe I, Kashimono T, Kawano M (1987) A study of organic bound halogens in human adipose, marine organisms and sediment by neutron activation and gas chromatographic analysis. Chemosphere 16:847–857Google Scholar
  165. Watmough SA, Hutchinson TC, Evans RD (1997) Application of laser ablation inductively coupled plasma-mass spectrometry in dendrochemical analysis. Environ Sci Technol 31:114–118CrossRefGoogle Scholar
  166. Wilson RG, Stevie FA, Magee CW (1989) Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis. Wiley, New York, pp 1–364Google Scholar
  167. Wilson LJ, Cagle DW, Thrash TP, Kennel SJ, Mirzadeh S, Alford JM, Ehrhardt GJ (1999) Metallofullerene drug design. Coord Chem Rev 190-192:199–207CrossRefGoogle Scholar
  168. Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31:1647–1651PubMedCrossRefPubMedCentralGoogle Scholar
  169. Xiong Y, Ouyang L, Liu Y, Xie Q, Wang J (2006) One of the most important parts for bio-elementomics: specific correlation study of bio-elements in a given tissue. J Chin Mass Spectrom Soc 27:35–36Google Scholar
  170. Xu DD, Zhong WK, Deng LL, Chai Z, Mao X (2003) Levels of extractable organohalogens in pine needles in China. Environ Sci Technol 37:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  171. Yang P, Gao F (2002) Principle of inorganic biochemistry. Science Press, Beijing, pp 1–628Google Scholar
  172. Yang L, McRae R, Henary MM, Patel R, Lai B, Vogt S, Fahrni CJ (2005) Imaging of the intracellular topography of copper with a fluorescent sensor and by synchrotron x-ray fluorescence microscopy. Proc Natl Acad Sci U S A 102:11179–11184PubMedPubMedCentralCrossRefGoogle Scholar
  173. Yang S-T, Liu Y, Wang Y-W, Cao A (2013) Biosafety and bioapplication of nanomaterials by designing protein–nanoparticle interactions. Small 9:1635–1653PubMedCrossRefPubMedCentralGoogle Scholar
  174. Yin J-J, Lao F, Fu PP, Wamer WG, Zhao Y, Wang PC, Qiu Y, Sun B, Xing G, Dong J, Liang X-J, Chen C (2009) The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 30:611–621PubMedCrossRefPubMedCentralGoogle Scholar
  175. Yin Y, Tan Z, Hu L, Yu S, Liu J, Jiang G (2017) Isotope tracers to study the environmental fate and Bbioaccumulation of metal-containing engineered nanoparticles: techniques and applications. Chem Rev 117:4462–4487PubMedCrossRefPubMedCentralGoogle Scholar
  176. Yoneda S, Suzuki KT (1997) Equimolar Hg-Se complex binds to selenoprotein P. Biochem Biophys Res Comm 231:7–11PubMedCrossRefPubMedCentralGoogle Scholar
  177. Zhang P, Chen C, Zhao J, Li B, Qu L, Chai Z (2004) Correlation of mercury, selenium and other elements in the tissues of fishes from the regions at different mercury exposure level. Environ Sci 25:159–165Google Scholar
  178. Zhang H, Chai ZF, Sun HB, Zhang JL (2006) A survey of extractable persistent organochlorine pollutants in Chinese commercial yogurt. J Dairy Sci 89:1413–1419PubMedCrossRefPubMedCentralGoogle Scholar
  179. Zhang H, Chai Z, Sun H, Xu H (2007) Neutron activation analysis of organohalogens in Chinese human hair. J Radioanal Nucl Chem 272:561–564CrossRefGoogle Scholar
  180. Zhang L, Wang L, Hu Y, Liu Z, Tian Y, Wu X, Zhao Y, Tang H, Chen C, Wang Y (2013) Selective metabolic effects of gold nanorods on normal and cancer cells and their application in anticancer drug screening. Biomaterials 34:7117–7126PubMedCrossRefPubMedCentralGoogle Scholar
  181. Zhao Y, Nalwa HS (2006) Nanotoxicology – interactions of nanomaterials with biological systems. American scientific publishers, California, pp 1–300Google Scholar
  182. Zhao Y, Xing G, Chai Z (2008) Nanotoxicology: are carbon nanotubes safe? Nat Nanotechnol 3:191–192PubMedCrossRefPubMedCentralGoogle Scholar
  183. Zhong W, Xu D, Chai Z, Mao X (2004) Neutron activation analysis of extractable organohalogens in milk from China. J Radioanal Nucl Chem 259:485–488CrossRefGoogle Scholar
  184. Zhu M-T, Feng W-Y, Wang Y, Wang B, Wang M, Ouyang H, Zhao Y-L, Chai Z-F (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107:342–351PubMedCrossRefPubMedCentralGoogle Scholar
  185. Zhu M, Li Y, Shi J, Feng W, Nie G, Zhao Y (2012) Exosomes as extrapulmonary signaling conveyors for nanoparticle-induced systemic immune activation. Small 8:404–412PubMedCrossRefPubMedCentralGoogle Scholar
  186. Zoeger N, Streli C, Wobrauschek P, Jokubonis C, Pepponi G, Roschger P, Hofstaetter J, Berzlanovich A, Wegrzynek D, Chinea-Cano E, Markowicz A, Simon R, Falkenbergu G (2007) Determination of the elemental distribution in human joint bones by SR micro XRF. X-Ray Spectrom 37(1):3–11CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Feng Li
    • 1
  • Jiating Zhao
    • 1
  • Yuxi Gao
    • 1
  • Chunying Chen
    • 2
  • Zhifang Chai
    • 1
  1. 1.CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Laboratory for Metallomic and NanometallomicsInstitute of High Energy Physics, Chinese Academy of SciencesBeijingChina
  2. 2.CAS Key Laboratory for Biomedical Effects of Nanomaterials and NanosafetyNational Center for Nanoscience and TechnologyBeijingChina

Personalised recommendations