Skip to main content
Log in

Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Integrated analytical techniques were used to study the tissue distribution and structural information of gold nanorods (Au NRs) in Sprague-Dawley rats through tail intravenous injection. Before in vivo experiments were conducted, careful characterization of Au NRs was performed. The zeta potential proved that adsorption of bovine serum albumin on Au NRs turned the surface charges from positive to negative as in an in vitro simulation. The biodistribution of Au NRs was investigated quantitatively by inductively coupled plasma mass spectrometry at different time points after injection. As target tissues, both liver and spleen were chosen to further demonstrate the intracellular localization of Au NRs by the combination of transmission electron microscopy and energy-dispersive X-ray spectroscopy. Moreover, synchrotron-radiation-based X-ray absorption spectroscopy was employed and it was observed that long-term retention of Au NRs in liver and spleen did not induce obvious changes in the oxidation states of gold. Therefore, the present systematic method can provide important information about the fates of Au NRs in vivo and can also be extended to study the biological effects of other metallic nanomaterials in the future.

Systematic method to study biodistribution and characterization of metallic nanomaterials in vivo

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) Chem Soc Rev 37:1896–1908

    Article  CAS  Google Scholar 

  2. Boisselier E, Astruc D (2009) Chem Soc Rev 38:1759–1782

    Article  CAS  Google Scholar 

  3. Link S, Mohamed MB, El-Sayed MA (1999) J Phys Chem C 103:3073–3077

    CAS  Google Scholar 

  4. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Chem Rev 105:1103–1170

    Article  CAS  Google Scholar 

  5. Zanchet D, Tolentino H, Martins Alves MC, Alves OL, Ugarte D (2000) Chem Phys Lett 323:167–172

    Article  CAS  Google Scholar 

  6. Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Adv Drug Deliv Rev 61:457–466

    Article  CAS  Google Scholar 

  7. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) J Control Release 114:343–347

    Article  CAS  Google Scholar 

  8. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M (2005) Langmuir 21:10644–10654

    Article  CAS  Google Scholar 

  9. Chithrani BD, Ghazani AA, Chan WCW (2006) Nano Lett 6:662–668

    Article  CAS  Google Scholar 

  10. Fischer HC, Chan WCW (2007) Curr Opin Biotechnol 18:565–571

    Article  CAS  Google Scholar 

  11. Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L (2006) Toxicol Lett 163:109–120

    Article  CAS  Google Scholar 

  12. Xia T, Kovochich M, Liong M, Maldler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) ACS Nano 2:2121–2134

    Article  CAS  Google Scholar 

  13. Xia T, Li N, Nel AE (2009) Annu Rev Public Health 30:137–150

    Article  Google Scholar 

  14. Rao CNR, Biswas K (2009) Annu Rev Anal Chem 2:435–462

    Article  CAS  Google Scholar 

  15. Sosinsky GE, Giepmans BN, Deerinck TJ, Gaietta GM, Ellisman MH (2007) Methods Cell Biol 79:575–591

    Article  CAS  Google Scholar 

  16. Scheffer A, Engelhard C, Sperling M, Buscher W (2008) Anal Bioanal Chem 390:249–252

    Article  CAS  Google Scholar 

  17. Nel A, Xia T, Madler L, Li N (2006) Science 311:622–627

    Article  CAS  Google Scholar 

  18. Pickering IJ, Prince RC, Divers T, George GN (1998) FEBS Lett 441:11–14

    Article  CAS  Google Scholar 

  19. Barnard PJ, Berners-Price SJ (2007) Coord Chem Rev 251:1889–1902

    Article  CAS  Google Scholar 

  20. Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. Wiley, New York

    Google Scholar 

  21. Rompel A, Cinco RM, Latimer MJ, McDermott AE, Guiles RD, Quintanilha A, Krauss RM, Sauer K, Yachandra VK, Klein MP (1998) Proc Natl Acad Sci USA 95:6122–6127

    Article  CAS  Google Scholar 

  22. Xiang Y, Wu X, Liu D, Li Z, Chu W, Feng L, Zhang K, Zhou W, Xie S (2008) Langmuir 24:3465–3470

    Article  CAS  Google Scholar 

  23. Marrack JR, Hoch H (1949) J Clin Pathol 2:161–192

    Article  Google Scholar 

  24. Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Langmuir 21:9303–9307

    Article  CAS  Google Scholar 

  25. Chithrani BD, Stewart J, Allen C, Jaffray DA (2009) Nanomedicine 5:118–127

    CAS  Google Scholar 

  26. Yu C, Irudayaraj J (2006) Anal Chem 79:572–579

    Article  CAS  Google Scholar 

  27. Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G (2007) Part Fibre Toxicol 4:1743–1749

    Article  CAS  Google Scholar 

  28. Cho WS, Cho MJ, Jeong J, Choi M, Cho HY, Han BS, Kim SH, Kim HO, Lim YT, Chung BH, Jeong J (2009) Toxicol Appl Pharmacol 236:16–24

    Article  CAS  Google Scholar 

  29. James W, Hirsch L, West J, O’Neal P, Payne J (2007) J Radioanal Nucl Chem 271:455–459

    Article  CAS  Google Scholar 

  30. Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng JX (2005) Proc Natl Acad Sci USA 102:15752–15756

    Article  CAS  Google Scholar 

  31. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) Nano Lett 6:2225–2231

    Article  CAS  Google Scholar 

  32. Willets KA (2009) Anal Bioanal Chem 394:85–94

    Article  CAS  Google Scholar 

  33. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Br J Radiol 79:248–253

    Article  CAS  Google Scholar 

  34. Lopez-Cartes C, Rojas TC, Litran R, Martinez-Martinez D, de la Fuente JM, Penades S, Fernandez A (2005) J Phys Chem B 109:8761–8766

    Article  CAS  Google Scholar 

  35. Jia HY, Liu Y, Zhang XJ, Han L, Du LB, Tian Q, Xu YC (2009) J Am Chem Soc 131:40–41

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Basic Research Program of China (2006CB705603 and 2010CB934004) and the Chinese Academy of Sciences Knowledge Innovation Program (KJCX2-YW-M02). We are very grateful to Masaharu Nomura and Yoshinori Kitajima for their kind help with XAS experiments at Photon Factory, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaochun Wu or Chunying Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Li, YF., Zhou, L. et al. Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms. Anal Bioanal Chem 396, 1105–1114 (2010). https://doi.org/10.1007/s00216-009-3302-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3302-y

Keywords

Navigation