Skip to main content

To Survive or to Die: How Neurons Deal with it

  • Chapter
  • First Online:
Acute Neuronal Injury

Abstract

Unlike the majority of cells in the organism, neurons have only two options during their entire existence, to survive or to die. As a result, they have evolved elaborate mechanisms to determine which path they will follow in response to a multitude of internal and external signals, and to the wear-and-tear associated with the aging process. Until recently, activation of the calcium-dependent protease, calpain, had been traditionally associated with neurodegeneration. This chapter will review recent findings that indicate that two of the major calpain isoforms present in the brain, calpain-1 and calpain-2, play opposite functions in neuronal survival/death. Thus, calpain-1 activation, downstream of synaptic NMDA receptors, is part of a neuronal survival pathway through the truncation of PHLPP1 and the stimulation of the Akt pathway. In contrast, calpain-2 activation is downstream of extrasynaptic NMDA receptors and is neurodegenerative through the truncation of the phosphatase, STEP, and the activation of the p38 protein kinase. These findings have major significance for our understanding of neurological conditions associated with neurodegeneration and for the development of new therapeutic approaches to prevent neuronal death in these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anagli J, Han Y, Stewart L, Yang D, Movsisyan A, Abounit K, Seyfried D (2009) A novel calpastatin-based inhibitor improves postischemic neurological recovery. Biochem Biophys Res Commun 385(1):94–99

    Article  CAS  PubMed  Google Scholar 

  • Arias E, Koga H, Diaz A, Mocholi E, Patel B, Cuervo AM (2015) Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. Mol Cell 59(2):270–284. https://doi.org/10.1016/j.molcel.2015.05.030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Azuma M, Shearer T (2008) The role of calcium-activated protease calpain in experimental retinal pathology. Surv Ophthalmol 53(2):150–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bains M, Cebak JE, Gilmer LK, Barnes CC, Thompson SN, Geddes JW, Hall ED (2013) Pharmacological analysis of the cortical neuronal cytoskeletal protective efficacy of the calpain inhibitor SNJ-1945 in a mouse traumatic brain injury model. J Neurochem 125(1):125–132

    Article  CAS  PubMed  Google Scholar 

  • Balazs R, Jorgensen OS, Hack N (1988) N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture. Neuroscience 27(2):437–451

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Baker KL, Heiser AD, Sawyer SD, Dean RL, Elliott PJ, Straub JA (1994a) Postischemic administration of AK275, a calpain inhibitor, provides substantial protection against focal ischemic brain damage. J Cereb Blood Flow Metab 14(4):537–544. https://doi.org/10.1038/jcbfm.1994.67

    Article  PubMed  CAS  Google Scholar 

  • Bartus RT, Hayward NJ, Elliott PJ, Sawyer SD, Baker KL, Dean RL, Akiyama A, Straub JA, Harbeson SL, Li Z et al (1994b) Calpain inhibitor AK295 protects neurons from focal brain ischemia. Effects of postocclusion intra-arterial administration. Stroke 25(11):2265–2270

    Article  CAS  PubMed  Google Scholar 

  • Baudry M, Bi X (2016) Calpain-1 and Calpain-2: the Yin and Yang of synaptic plasticity and neurodegeneration. Trends Neurosci 39(4):235–245. https://doi.org/10.1016/j.tins.2016.01.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baudry M, Simonson L, Dubrin R, Lynch G (1986) A comparative study of soluble calcium-dependent proteolytic activity in brain. J Neurobiol 17(1):15–28. https://doi.org/10.1002/neu.480170103

    Article  PubMed  CAS  Google Scholar 

  • Bevers MB, Lawrence E, Maronski M, Starr N, Amesquita M, Neumar RW (2009) Knockdown of m-calpain increases survival of primary hippocampal neurons following NMDA excitotoxicity. J Neurochem 108(5):1237–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boda B, Mendez P, Boury-Jamot B, Magara F, Muller D (2014) Reversal of activity-mediated spine dynamics and learning impairment in a mouse model of Fragile X syndrome. Eur J Neurosci 39(7):1130–1137. https://doi.org/10.1111/ejn.12488

    Article  PubMed  Google Scholar 

  • Briz V, Hsu Y-T, Li Y, Lee E, Bi X, Baudry M (2013) Calpain-2-mediated PTEN degradation contributes to BDNF-induced stimulation of dendritic protein synthesis. J Neurosci 33(10):4317–4328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cagmat EB, Guingab-Cagmat JD, Vakulenko AV, Hayes RL, Anagli J (2015) Potential use of calpain inhibitors as brain injury therapy. In: Kobeissy FH (ed) Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. CRC Press/Taylor & Francis, Boca Raton, FL. Chapter 40. Frontiers in Neuroengineering

    Google Scholar 

  • Chazot PL (2004) The NMDA receptor NR2B subunit: a valid therapeutic target for multiple CNS pathologies. Curr Med Chem 11(3):389–396

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Pratt CP, Zeeman ME, Schultz N, Taylor BS, O'Neill A, Castillo-Martin M, Nowak DG, Naguib A, Grace DM, Murn J, Navin N, Atwal GS, Sander C, Gerald WL, Cordon-Cardo C, Newton AC, Carver BS, Trotman LC (2011) Identification of PHLPP1 as a tumor suppressor reveals the role of feedback activation in PTEN-mutant prostate cancer progression. Cancer Cell 20(2):173–186. https://doi.org/10.1016/j.ccr.2011.07.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen B, Van Winkle JA, Lyden PD, Brown JH, Purcell NH (2013) PHLPP1 gene deletion protects the brain from ischemic injury. J Cereb Blood Flow Metab 33(2):196–204

    Article  CAS  PubMed  Google Scholar 

  • Chiu K, Lam TT, Ying Li WW, Caprioli J, Kwong Kwong JM (2005) Calpain and N-methyl-d-aspartate (NMDA)-induced excitotoxicity in rat retinas. Brain Res 1046(1–2):207–215. https://doi.org/10.1016/j.brainres.2005.04.016

    Article  PubMed  CAS  Google Scholar 

  • Donkor IO (2011) Calpain inhibitors: a survey of compounds reported in the patent and scientific literature. Expert Opin Ther Pat 21(5):601–636

    Article  CAS  PubMed  Google Scholar 

  • Downward J (1999) How BAD phosphorylation is good for survival. Nat Cell Biol 1(2):E33–E35

    Article  CAS  PubMed  Google Scholar 

  • Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273(49):32377–32379

    Article  CAS  PubMed  Google Scholar 

  • Forman OP, De Risio L, Mellersh CS (2013) Missense mutation in CAPN1 is associated with spinocerebellar ataxia in the Parson Russell Terrier dog breed. PLoS One 8(5):e64627. https://doi.org/10.1371/journal.pone.0064627

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frey U, Morris RG (1998) Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21(5):181–188

    Article  CAS  PubMed  Google Scholar 

  • Gan-Or Z, Bouslam N, Birouk N, Lissouba A, Chambers DB, Veriepe J, Androschuck A, Laurent SB, Rochefort D, Spiegelman D, Dionne-Laporte A, Szuto A, Liao M, Figlewicz DA, Bouhouche A, Benomar A, Yahyaoui M, Ouazzani R, Yoon G, Dupre N, Suchowersky O, Bolduc FV, Parker JA, Dion PA, Drapeau P, Rouleau GA, Bencheikh BO (2016) Mutations in CAPN1 cause autosomal-recessive hereditary spastic paraplegia. Am J Hum Genet 98(5):1038–1046. https://doi.org/10.1016/j.ajhg.2016.04.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao T, Furnari F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18(1):13–24

    Article  CAS  PubMed  Google Scholar 

  • Hamakubo T, Kannagi R, Murachi T, Matus A (1986) Distribution of calpains I and II in rat brain. J Neurosci 6(11):3103–3111

    Article  CAS  PubMed  Google Scholar 

  • Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4(3):261–267

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Fukaya M, Qiao X, Sakimura K, Watanabe M, Kano M (1999) Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer. J Neurosci 19(14):6027–6036

    Article  CAS  PubMed  Google Scholar 

  • Hong SC, Goto Y, Lanzino G, Soleau S, Kassell NF, Lee KS (1994) Neuroprotection with a calpain inhibitor in a model of focal cerebral ischemia. Stroke 25(3):663–669

    Article  CAS  PubMed  Google Scholar 

  • Jackson TC, Verrier JD, Semple-Rowland S, Kumar A, Foster TC (2010) PHLPP1 splice variants differentially regulate AKT and PKCα signaling in hippocampal neurons: characterization of PHLPP proteins in the adult hippocampus. J Neurochem 115(4):941–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim AH, Khursigara G, Sun X, Franke TF, Chao MV (2001) Akt phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol Cell Biol 21(3):893–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JC, Cook MN, Carey MR, Shen C, Regehr WG, Dymecki SM (2009) Linking genetically defined neurons to behavior through a broadly applicable silencing allele. Neuron 63(3):305–315. https://doi.org/10.1016/j.neuron.2009.07.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kobeissy FH, Liu MC, Yang Z, Zhang Z, Zheng W, Glushakova O, Mondello S, Anagli J, Hayes RL, Wang KK (2015) Degradation of βII-Spectrin protein by Calpain-2 and Caspase-3 under neurotoxic and traumatic brain injury conditions. Mol Neurobiol 52(1):696–709

    Article  CAS  PubMed  Google Scholar 

  • Koumura A, Nonaka Y, Hyakkoku K, Oka T, Shimazawa M, Hozumi I, Inuzuka T, Hara H (2008) A novel calpain inhibitor,((1S)-1 ((((1S)-1-benzyl-3-cyclopropylamino-2, 3-di-oxopropyl) amino) carbonyl)-3-methylbutyl) carbamic acid 5-methoxy-3-oxapentyl ester, protects neuronal cells from cerebral ischemia-induced damage in mice. Neuroscience 157(2):309–318

    Article  CAS  PubMed  Google Scholar 

  • Krapivinsky G, Krapivinsky L, Manasian Y, Ivanov A, Tyzio R, Pellegrino C, Ben-Ari Y, Clapham DE, Medina I (2003) The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. Neuron 40(4):775–784

    Article  CAS  PubMed  Google Scholar 

  • Li PA, Howlett W, He QP, Miyashita H, Siddiqui M, Shuaib A (1998) Postischemic treatment with calpain inhibitor MDL 28170 ameliorates brain damage in a gerbil model of global ischemia. Neurosci Lett 247(1):17–20

    Article  CAS  PubMed  Google Scholar 

  • Li D, Qu Y, Mao M, Zhang X, Li J, Ferriero D, Mu D (2009) Involvement of the PTEN-AKT-FOXO3a pathway in neuronal apoptosis in developing rat brain after hypoxia-ischemia. J Cereb Blood Flow Metab 29(12):1903–1913. https://doi.org/10.1038/jcbfm.2009.102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Liu MC, Wang K (2008) Calpain in the CNS: from synaptic function to neurotoxicity. Sci Signal 1(14):re1

    Article  PubMed  Google Scholar 

  • Liu J, Weiss HL, Rychahou P, Jackson LN, Evers BM, Gao T (2009) Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis. Oncogene 28(7):994–1004

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Yin F, Zhang J, Qian Y (2014) The role of calpains in traumatic brain injury. Brain Inj 28(2):133–137

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Jia J, Zhou X, Xiao Y, Wang Y, Mao X, Zhen X, Guan Y, Alkayed NJ, Cheng J (2013) Delayed administration of a PTEN inhibitor BPV improves functional recovery after experimental stroke. Neuroscience 231:272–281. https://doi.org/10.1016/j.neuroscience.2012.11.050

    Article  PubMed  CAS  Google Scholar 

  • Markgraf CG, Velayo NL, Johnson MP, McCarty DR, Medhi S, Koehl JR, Chmielewski PA, Linnik MD (1998) Six-hour window of opportunity for calpain inhibition in focal cerebral ischemia in rats. Stroke 29(1):152–158

    Article  CAS  PubMed  Google Scholar 

  • Masubuchi S, Gao T, O’Neill A, Eckel-Mahan K, Newton AC, Sassone-Corsi P (2010) Protein phosphatase PHLPP1 controls the light-induced resetting of the circadian clock. Proc Natl Acad Sci U S A 107(4):1642–1647. https://doi.org/10.1073/pnas.0910292107

    Article  PubMed  PubMed Central  Google Scholar 

  • Mingorance-Le Meur A, O’Connor TP (2009) Neurite consolidation is an active process requiring constant repression of protrusive activity. EMBO J 28(3):248–260

    Article  CAS  PubMed  Google Scholar 

  • Monti B, Contestabile A (2000) Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat cerebellum. Eur J Neurosci 12(9):3117–3123

    Article  CAS  PubMed  Google Scholar 

  • Monti B, Marri L, Contestabile A (2002) NMDA receptor-dependent CREB activation in survival of cerebellar granule cells during in vivo and in vitro development. Eur J Neurosci 16(8):1490–1498

    Article  Google Scholar 

  • Moran J, Patel AJ (1989) Stimulation of the N-methyl-D-aspartate receptor promotes the biochemical differentiation of cerebellar granule neurons and not astrocytes. Brain Res 486(1):15–25

    Article  CAS  PubMed  Google Scholar 

  • Papadia S, Stevenson P, Hardingham NR, Bading H, Hardingham GE (2005) Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J Neurosci 25(17):4279–4287

    Article  CAS  PubMed  Google Scholar 

  • Papouin T, Oliet SH (2014) Organization, control and function of extrasynaptic NMDA receptors. Philos Trans R Soc B 369(1654):20130601

    Article  CAS  Google Scholar 

  • Paquet-Durand F, Johnson L, Ekström P (2007) Calpain activity in retinal degeneration. J Neurosci Res 85(4):693–702

    Article  CAS  PubMed  Google Scholar 

  • Pennacchio LA, Bouley DM, Higgins KM, Scott MP, Noebels JL, Myers RM (1998) Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet 20(3):251–258. https://doi.org/10.1038/3059

    Article  PubMed  CAS  Google Scholar 

  • Perkinton MS, Ip J, Wood GL, Crossthwaite AJ, Williams RJ (2002) Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J Neurochem 80(2):239–254

    Article  CAS  PubMed  Google Scholar 

  • Perlmutter LS, Siman R, Gall C, Seubert P, Baudry M, Lynch G (1988) The ultrastructural localization of calcium-activated protease “calpain” in rat brain. Synapse 2(1):79–88

    Article  CAS  PubMed  Google Scholar 

  • Saavedra A, Garcia-Martinez J, Xifro X, Giralt A, Torres-Peraza J, Canals J, Diaz-Hernandez M, Lucas J, Alberch J, Perez-Navarro E (2010) PH domain leucine-rich repeat protein phosphatase 1 contributes to maintain the activation of the PI3K/Akt pro-survival pathway in Huntington's disease striatum. Cell Death Differ 17(2):324–335

    Article  CAS  PubMed  Google Scholar 

  • Schoch KM, Evans HN, Brelsfoard JM, Madathil SK, Takano J, Saido TC, Saatman KE (2012) Calpastatin overexpression limits calpain-mediated proteolysis and behavioral deficits following traumatic brain injury. Exp Neurol 236(2):371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazawa M, Suemori S, Inokuchi Y, Matsunaga N, Nakajima Y, Oka T, Yamamoto T, Hara H (2010) A novel calpain inhibitor, ((1S)-1-((((1S)-1-Benzyl-3-cyclopropylamino-2,3-di-oxopropyl)amino)carbonyl)-3-me thylbutyl)carbamic acid 5-methoxy-3-oxapentyl ester (SNJ-1945), reduces murine retinal cell death in vitro and in vivo. J Pharmacol Exp Ther 332(2):380–387. https://doi.org/10.1124/jpet.109.156612

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Okada M, Nagai K, Fukada Y (2003) Suprachiasmatic nucleus circadian oscillatory protein, a novel binding partner of K-Ras in the membrane rafts, negatively regulates MAPK pathway. J Biol Chem 278(17):14920–14925

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Phan T, Mansuy IM, Storm DR (2007) Proteolytic degradation of SCOP in the hippocampus contributes to activation of MAP kinase and memory. Cell 128(6):1219–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shmerling D, Hegyi I, Fischer M, Blattler T, Brandner S, Gotz J, Rulicke T, Flechsig E, Cozzio A, von Mering C, Hangartner C, Aguzzi A, Weissmann C (1998) Expression of amino-terminally truncated PrP in the mouse leading to ataxia and specific cerebellar lesions. Cell 93(2):203–214

    Article  CAS  PubMed  Google Scholar 

  • Siklos M, BenAissa M, Thatcher GR (2015) Cysteine proteases as therapeutic targets: does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm Sin B 5(6):506–519

    Article  PubMed  PubMed Central  Google Scholar 

  • Simonson L, Baudry M, Siman R, Lynch G (1985) Regional distribution of soluble calcium activated proteinase activity in neonatal and adult rat brain. Brain Res 327(1–2):153–159

    Article  CAS  PubMed  Google Scholar 

  • Soriano FX, Papadia S, Hofmann F, Hardingham NR, Bading H, Hardingham GE (2006) Preconditioning doses of NMDA promote neuroprotection by enhancing neuronal excitability. J Neurosci 26(17):4509–4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward O, Wallace CS (1995) mRNA distribution within dendrites: relationship to afferent innervation. J Neurobiol 26(3):447–459

    Article  CAS  PubMed  Google Scholar 

  • Thompson SN, Carrico KM, Mustafa AG, Bains M, Hall ED (2010) A pharmacological analysis of the neuroprotective efficacy of the brain-and cell-permeable calpain inhibitor MDL-28170 in the mouse controlled cortical impact traumatic brain injury model. J Neurotrauma 27(12):2233–2243

    Article  PubMed  PubMed Central  Google Scholar 

  • Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19(10):4180–4188

    Article  CAS  PubMed  Google Scholar 

  • Tsubokawa T, Solaroglu I, Yatsushige H, Cahill J, Yata K, Zhang JH (2006) Cathepsin and calpain inhibitor E64d attenuates matrix metalloproteinase-9 activity after focal cerebral ischemia in rats. Stroke 37(7):1888–1894. https://doi.org/10.1161/01.STR.0000227259.15506.24

    Article  PubMed  CAS  Google Scholar 

  • Vosler P, Brennan C, Chen J (2008) Calpain-mediated signaling mechanisms in neuronal injury and neurodegeneration. Mol Neurobiol 38(1):78–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C-F, Huang Y-S (2012) Calpain 2 activated through N-methyl-D-aspartic acid receptor signaling cleaves CPEB3 and abrogates CPEB3-repressed translation in neurons. Mol Cell Biol 32(16):3321–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JT, Medress ZA, Barres BA (2012a) Axon degeneration: molecular mechanisms of a self-destruction pathway. J Cell Biol 196(1):7–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-B, Wang J-J, Wang S-H, Liu S-S, Cao J-Y, Li X-M, Qiu S, Luo J-H (2012b) Adaptor protein APPL1 couples synaptic NMDA receptor with neuronal prosurvival phosphatidylinositol 3-kinase/Akt pathway. J Neurosci 32(35):11919–11929

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Briz V, Chishti A, Bi X, Baudry M (2013) Distinct roles for mu-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci 33(48):18880–18892. https://doi.org/10.1523/JNEUROSCI.3293-13.2013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Zhu G, Briz V, Hsu YT, Bi X, Baudry M (2014) A molecular brake controls the magnitude of long-term potentiation. Nat Commun 5:3051. https://doi.org/10.1038/ncomms4051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Hersheson J, Lopez D, Hammer M, Liu Y, Lee KH, Pinto V, Seinfeld J, Wiethoff S, Sun J, Amouri R, Hentati F, Baudry N, Tran J, Singleton AB, Coutelier M, Brice A, Stevanin G, Durr A, Bi X, Houlden H, Baudry M (2016a) Defects in the CAPN1 gene result in alterations in cerebellar development and cerebellar ataxia in mice and humans. Cell Rep 16(1):79–91. https://doi.org/10.1016/j.celrep.2016.05.044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Lopez D, Davey PG, Cameron DJ, Nguyen K, Tran J, Marquez E, Liu Y, Bi X, Baudry M (2016b) Calpain-1 and calpain-2 play opposite roles in retinal ganglion cell degeneration induced by retinal ischemia/reperfusion injury. Neurobiol Dis 93:121–128. https://doi.org/10.1016/j.nbd.2016.05.007

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y, Liu, Y, Lopez, D, Lee, M, Dayal, S, Hirtado, A, Bi, X and Baudry, M (2017) Protection against TBI-induced neuronal death with post-treatment with a selective calpain-2 inhibitor in mice. J Neurotrauma 34:1–13

    Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14(2):128–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Kurup P, Zhang Y, Goebel-Goody SM, Wu PH, Hawasli AH, Baum ML, Bibb JA, Lombroso PJ (2009) Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci 29(29):9330–9343. https://doi.org/10.1523/JNEUROSCI.2212-09.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi A, Tamatani M, Matsuzaki H, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J Biol Chem 276(7):5256–5264

    Article  CAS  PubMed  Google Scholar 

  • Yan X-X, Jeromin A (2012) Spectrin breakdown products (SBDPs) as potential biomarkers for neurodegenerative diseases. Curr Trans Geriatr Exp Gerontol Rep 1(2):85–93

    Article  CAS  Google Scholar 

  • Yildiz-Unal A, Korulu S, Karabay A (2015) Neuroprotective strategies against calpain-mediated neurodegeneration. Neuropsychiatr Dis Treat 11:297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zadran S, Jourdi H, Rostamiani K, Qin Q, Bi X, Baudry M (2010) Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation. J Neurosci 30(3):1086–1095

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Baudry M (2006) Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci 26(11):2956–2963

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Liu Y, Wang Y, Bi X, Baudry M (2015) Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways. J Neurosci 35(2):621–633. https://doi.org/10.1523/JNEUROSCI.2193-14.2015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant P01NS045260-01 from NINDS (PI: Dr. C.M. Gall), grant R01NS057128 from NINDS to M.B., and grant R15MH101703 from NIMH to X.B. X.B. is also supported by funds from the Daljit and Elaine Sarkaria Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Baudry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Y., Bi, X., Baudry, M. (2018). To Survive or to Die: How Neurons Deal with it. In: Fujikawa, D. (eds) Acute Neuronal Injury. Springer, Cham. https://doi.org/10.1007/978-3-319-77495-4_2

Download citation

Publish with us

Policies and ethics