Skip to main content

Update on the Assessment of Chronic Phytotoxicity Using Fern Spore Biomarkers

  • Chapter
  • First Online:
Current Advances in Fern Research

Abstract

The use of an adequate range of taxa in ecotoxicological studies is a key point for the achievement of ecologically relevant results. Higher plants are an essential part of a healthy and balanced ecosystem, and new plant models are essential in the evaluation of potential impacts of pollutants. With more than 10,000 living species, ferns are the second largest group of vascular plants. Fern spores and spore-developed gametophytes have long been recognized as useful models in many important areas of plant research. Fern spores are single meiotic cells that develop into gametophytes which are miniature mature higher plants. The use of microtubes and microplates is imposed by the natural model. Chronic toxicity testing involves longer periods of exposure to toxicants (>48 h) and assesses the ability of a substance to disrupt a significant portion of an organism’s life stage. DNA content in developing gametophytes can be used as a biomarker of the disturbance that the toxicant provokes in gametophyte growth and development. Chlorophyll autofluorescence can also be used as a biomarker of the physiological state. Both biomarkers can easily be measured using 96 multiwell plates and plate readers. The combined use of these biomarkers in chronic toxicity tests using developing gametophytes of the riparian Polystichum setiferum is yielding very satisfactory results and is a promising new model for ecotoxicology. This bioassay has been successfully used in environmental toxicology/ecotoxicology, assessment of environmental technology and environmental monitoring studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 15 U.S.C. §2601, et seq (1976) The toxic substances control act

    Google Scholar 

  • Agati G (1998) Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength. Pure Appl Opt 7:797–807

    Article  CAS  Google Scholar 

  • Banks JA (1999) Gametophyte developement in ferns. Annu Rev Plant Phys 50:163–186

    Article  CAS  Google Scholar 

  • Benenati FE (1990) Keynote address: plants - Kesystone to risk assessment. In: Wang W-c, Gorsuch JW, Lower WR (eds) Plants for toxicity assessment. ASTM, Philadelphia, pp 5–14

    Chapter  Google Scholar 

  • Boutin C, Aya KL, Carpenter D, Thomas PJ, Rowland O (2012) Phytotoxicity testing for herbicide regulation: shortcomings in relation to biodiversity and ecosystem services in agrarian systems. Sci Total Environ 415:79–92

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474

    Article  CAS  PubMed  Google Scholar 

  • Catala M, Esteban M, Rodríguez-Gil JL, Quintanilla LG (2009) Development of a naturally miniaturised testing method based on the mitochondrial activity of fern spores: a new higher plant bioassay. Chemosphere 77:983–988

    Article  CAS  PubMed  Google Scholar 

  • Catalá M, Domínguez-Morueco N, Migens A, Molina R, Martínez F, Valcárcel Y, Mastroianni N, López de Alda M, Barceló D, Segura Y (2015) Elimination of drugs of abuse and their toxicity from natural waters by photo-Fenton treatment. Sci Total Environ 520:198–205

    Article  PubMed  Google Scholar 

  • Chung KW, Fulton MH, Scott GI (2007) Use of juvenile clam Mercenaria Mercenaria, as a sensitive indicator of aqueus and sediment toxicity. Ecotoxicol Environ Saf 67:333–340

    Article  CAS  PubMed  Google Scholar 

  • Czerniawska-Kusza I, Ciesielczuk T, Kusza G, Cichon A (2006) Comparison of the Phytotoxkit microbiotest and chemical variables for toxicity evaluation of sediments. Environ Toxicol 21:367–372

    Article  CAS  PubMed  Google Scholar 

  • Daxhelet GA, Coene MM, Hoet PP, Cocito CG (1989) Spectrofluorometry of dyes with Dnas of Different Base composition and conformation. Anal Biochem 179:401–403

    Article  CAS  PubMed  Google Scholar 

  • Doust JL, Schmidt M, Doust LL (1994) Biological assessment of aquatic pollution - a review, with emphasis on plants as biomonitors. Biol Rev 69:147–186

    Article  CAS  PubMed  Google Scholar 

  • EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues) (2014) Scientific opinion addressing the state of the science on risk assessment of plant protection products for non-target terrestrial plants. EFSA J 12(7):3800. 163 pp. https://doi.org/10.2903/j.efsa.2014.3800

    Article  Google Scholar 

  • Esteban S, Fernández Rodríguez J, Díaz López G, Nuñez M, Valcárcel Y, Catalá M (2013) New microbioassays based on biomarkers are more sensitive to fluvial water micropollution than standard testing methods. Ecotoxicol Environ Saf 93:52–59

    Article  CAS  PubMed  Google Scholar 

  • Esteban S, Llamas PM, García-Cortés H, Catalá M (2016) The endocrine disruptor nonylphenol induces sublethal toxicity in vascular plant development at environmental concentrations: a risk for riparian plants and irrigated crops? Environ Pollut 216:480–486

    Article  CAS  PubMed  Google Scholar 

  • Evenari M (1949) Germination inhibitors. Bot Rev 15:153–194

    Article  Google Scholar 

  • Feito R, Valcárcel Y, Catalá M (2012) Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study. Ecotoxicology 21:289–296

    Article  CAS  PubMed  Google Scholar 

  • Feito R, Valcárcel Y, Catalá M (2013) Preliminary data suggest that venlafaxine environmental concentrations could be toxic to plants. Chemosphere 90:2065–2069

    Article  CAS  PubMed  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  PubMed  Google Scholar 

  • Ferrat L, Pergent-Martini C, Romeo M (2003) Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. Aquat Toxicol 65:187–204

    Article  CAS  PubMed  Google Scholar 

  • Galbraith DW, Harkins KR, Jefferson RA (1988) Flow cytometric characterization of the chlorophyll contents and size distributions of plant protoplasts. Cytometry 9:75–83

    Article  CAS  PubMed  Google Scholar 

  • García-Cambero JP, García-Cortés H, Valcárcel Y, Catalá M (2015) Environmental concentrations of the cocaine metabolite benzoylecgonine induced sublethal toxicity in the development of plants but not in a zebrafish embryo-larval model. J Hazard Mater 300:866–872

    Article  PubMed  Google Scholar 

  • Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis - the basics. Annu Rev Plant Phys 42:313–349

    Article  CAS  Google Scholar 

  • Labarca C, Paigen K (1980) Simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352

    Article  CAS  PubMed  Google Scholar 

  • Landis WG, Hughes JS, Lewis MA (1993) Environmental toxicology and risk assessment. ASTM, Philadelphia, 431 p

    Book  Google Scholar 

  • Lewis MA (1995) Use of fresh-water plants for Phytotoxicity testing - a review. Environ Pollut 87:319–336

    Article  CAS  PubMed  Google Scholar 

  • Maiti S, Maiti P, Sinha SS, Mitra RK, Pal SK (2009) Molecular recognition of plant DNA: does it differ from conventional animal DNA? Int J Biol Macromol 44:133–137

    Article  CAS  PubMed  Google Scholar 

  • Mocharla R, Mocharla H, Hodes ME (1987) A novel, sensitive fluorometric staining technique for the detection of DNA in RNA preparations. Nucleic Acids Res 15:133–137

    Article  Google Scholar 

  • Mohan BS, Hosetti BB (1999) Aquatic plants for toxicity assessment. Environ Res 81:259–274

    Article  CAS  PubMed  Google Scholar 

  • Newmaster SJ, Bell FW (2002) The effects of silvicultural disturbances on cryptogam diversity in the boreal-mixedwood forest. Can J For Res 32:38–51

    Article  Google Scholar 

  • OECD (2006), Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test, OECD Publishing, Paris

    Google Scholar 

  • OECD (2006), Test No. 227: Terrestrial Plant Test: Vegetative Vigour Test, OECD Publishing, Paris

    Google Scholar 

  • OECD (2007) Section 2 – effects on biotic systems (draft). In: Guidelines for the testing of chemicals. Organisation for Economic Co-Operation and Development, Paris

    Google Scholar 

  • Quintanilla LG, Escudero A (2006) Spore fitness components do not differ between diploid and allotetraploid species of Dryopteris (Dryopteridaceae). Ann Bot 98:609–618

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Gil JL, Catala M, Alonso SG, Maroto RR, Valcarcel Y, Segura Y, Molina R, Melero JA, Martinez F (2010) Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay. Chemosphere 181:41–49

    Google Scholar 

  • Rodriguez-Gil JL, San Sebastián Sauto J, González-Alonso S, Sánchez Sánchez P, Valcarcel Y, Catalá M (2013) Development of cost-effective strategies for environmental monitoring of irrigated areas in Mediterranean regions: traditional and new approaches in a changing world. Agric Ecosyst Environ 181:41–49

    Article  Google Scholar 

  • Rowntree JK, Sheffield E (2005) The effects of Asulam spraying on non-target ferns. Canadian Journal of Botany, 83:1622–1629

    Google Scholar 

  • USEPA (1997) Terms of environment: glossary, abbreviations and acronyms (EPA publication no.175-B-97-001). U.S. Environmental Protection Agency, Washington DC

    Google Scholar 

  • USEPA (2002) Method 1003.0: Green Alga, Selenastrum capricornutum, growth test; chronic toxicity

    Google Scholar 

  • USEPA (2012) Series 850 – ecological effects test guidelines –terrestrial plants field study. U.S. Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention (OCSPP), Washington DC

    Google Scholar 

  • Wang WC (1991) Literature-review on higher-plants for toxicity testing. Water Air Soil Poll 59:381–400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Catalá .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Cortés, H., Catalá, M., Rodríguez-Gil, J.L. (2018). Update on the Assessment of Chronic Phytotoxicity Using Fern Spore Biomarkers. In: Fernández, H. (eds) Current Advances in Fern Research. Springer, Cham. https://doi.org/10.1007/978-3-319-75103-0_24

Download citation

Publish with us

Policies and ethics