Skip to main content

Advertisement

Log in

Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The development of suitable biomarker-based microbioassays with model species with ecological relevance would help increase the cost-efficiency of routine environmental monitoring and chemical toxicity testing. The anti-inflammatory drug diclofenac has been widely reported in the environment but ecotoxicological data are scarce. The aim of this work is to assess the acute and chronic sublethal toxicity of diclofenac in relevant taxa of aquatic and riparian ecosystems (the fish Danio rerio and the fern Polystichum setiferum). Reliable biomarkers of cell viability (mitochondrial activity), plant physiology (chlorophyll), growth (DNA content) or oxidative damage (lipid peroxidation) were assessed as sensitive endpoints of toxicity. DNA quantification shows that diclofenac induces acute lethal phytotoxicity at 24 and 48 h (LOECs 30 and 0.3 μg l−1, respectively). Hormetic effects in mitochondrial activity in spores of Polystichum setiferum mask lethality, and adverse effects are only observed at 48 h (LOEC 0.3 μg l−1). In chronic exposure (1 week) LOEC for DNA is 0.03 μg l−1. Mitochondrial activity shows a strong hormetic stimulation of the surviving spore population (LOEC 0.3 μg l−1). Little changes are observed in chlorophyll autofluorescence (LOEC 0.3 μg l−1). A very short exposure (90 min) of zebrafish embryos induces a reduction of lipid peroxidation at 0.03 μg l−1. Environmental concentrations of diclofenac can be deleterious for the development of significant populations of sensitive individuals in aquatic and riparian ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Malondialdehyde:

MDA

Sewage treatment plants:

STPs

Thiobarbituric acid:

TBA

Trichloroacetic acid:

TCA

References

  • Arshad M, Chaudhary MJI, Wink M (2009) High mortality and sex ratio imbalance in a critically declining White-backed Vulture population (Gyps bengalensis) in Pakistan. J Ornithol 150:495–503

    Article  Google Scholar 

  • Banks JA (1999) Gametophyte development in ferns. Annu Rev Plant Physiol Plant Mol Biol 50:163–186

    Article  CAS  Google Scholar 

  • Bremer P (1995) On the ecology and population dynamics of a Dutch population of Polystichum setiferum (Dryopteridaceae: Pteridophyta). Fern Gaz 15:11–20

    Google Scholar 

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474

    Article  CAS  Google Scholar 

  • Catalá M, Esteban M, Rodríguez Gil JL, Quintanilla LG (2009) Development of a naturally miniaturised testing method based on the mitochondrial activity of fern spores. A new higher plant bioassay. Chemosphere 77:983–988

    Article  Google Scholar 

  • Chung KW, Fulton MH, Scott GI (2007) Use of juvenile clam, Mercenaria mercenaria, as a sensitive indicator of aqueous and sediment toxicity. Ecotoxicol Environ Saf 67:333–340

    Article  CAS  Google Scholar 

  • Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194

    Article  CAS  Google Scholar 

  • Crane M, Watts C, Boucard T (2006) Chronic aquatic environmental risks from exposure to human pharmaceuticals. Sci Total Environ 367:23–41

    Article  CAS  Google Scholar 

  • Dietrich DR, Prietz A (1999) Fish embryotoxicity and teratogenicity of pharmaceuticals, detergents, and pesticides regularly detected in sewage treatment plants effluents and surface waters. Toxicologist 48(1-s):151

    Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Ferrari B, Paxéus N, Lo Giudice R, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ Saf 55:359–370

    Article  CAS  Google Scholar 

  • Gros M, Petrovic M, Barceló D (2007) Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the Ebro river basin (northeast Spain). Environ Toxicol Chem 26:1553–1562

    Article  CAS  Google Scholar 

  • Heberer T (2002) Occurrence, fate and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17

    Article  CAS  Google Scholar 

  • Jjemba PK (2006) Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol Environ Saf 63:113–130

    Article  CAS  Google Scholar 

  • Kapp T, Kammann U, Vobach M, Vetter W (2006) Synthesis of low and high chlorinated toxaphene and comparison of their toxicity by zebrafish (Danio rerio) embryo test. Environ Toxicol Chem 25:2884–2889

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res 42:3498–3518

    Article  CAS  Google Scholar 

  • Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T (2009) Is the fish embryo toxicity test (FET) with the zebrafish (Danio rerio) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol 149C:196–209

    CAS  Google Scholar 

  • Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2009) Fate of pharmaceuticals and personal care products in wastewater treatment plants–Conception of a database and first results. Environ Pollut 157:1721–1726

    Article  Google Scholar 

  • Montserrat JM, Geracitano LA, Bianchini A (2003) Current and future perspectives using biomarkers to assess pollution in aquatic ecosystems. Comments Toxicol 9:255–269

    Article  Google Scholar 

  • Nassef M, Matsumoto S, Seki M, Khalil F, Kang IJ, Shimasaki Y, Oshima Y, Honjo T (2010) Acute effects of triclosan, diclofenaco and carbamazepine on feeding performance of Japanese medada fish (Oryzias latipes). Chemosphere 80:1095–1100

    Article  CAS  Google Scholar 

  • Page CN (1997) The ferns of Britain and Ireland, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Reilly, CA, Aust SD (1999) Measurement of lipid peroxidation. In: Bus JS et al (eds). Currunt Protocols in Toxicology, 2.4.1–2.4.13. Academic Press, San Diego

  • Rodriguez-Gil JL, Catalá M, González Alonso S, Romo Maroto R, Valcárcel Y, Segura Y, Molina R, Melero JA, Martínez F (2010) Heterogeneous photo-Fenton treatment for the reduction of pharmaceutical contamination in Madrid rivers and ecotoxicological evaluation by a miniaturized fern spores bioassay. Chemosphere 80:381–388

    Article  CAS  Google Scholar 

  • Scholz S, Fischer S, Gündel U, Küster E, Luckenbach T, Voelker D (2008) The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environ Sci Pollut Res 15:394–404

    Article  CAS  Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731

    Article  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189

    Article  CAS  Google Scholar 

  • Van den Brandhof E-J, Montforts M (2010) Fish embryo toxicity of carbamazepine, diclofenac and metoprolol. Ecotoxicol Environ Saf 73:1862–1866

    Article  Google Scholar 

  • Wadhia K, Thompson KC (2007) Low-cost ecotoxicity testing of environmental samples using microbiotest for potencia implementation of the Water Framework Directive. Trend Anal Chem 26(4):300–307

    Article  CAS  Google Scholar 

  • Walker CH (1998) Biomarker strategies to evaluate the environmental effects of chemicals. Environ Health Perspect Suppl 106(Suppl 2):613–621

    Article  CAS  Google Scholar 

  • Walker CH, Kaiser L, Klein W, Lagadic L, Peakall D, Sheffield S, Soldan T, Yasuno M (1998) 13th meeting of the scientific group on methodologies for the safety evaluation of chemicals (SGOMSEC): alternative testing methodologies for ecotoxicity. Environ Health Perspect Suppl 106(Suppl 2):441–452

    Article  CAS  Google Scholar 

  • Wang W, Freemark K (1995) The use of plants for environmental monitoring and assessment. Ecotoxicol Environ Saf 30:289–301

    Article  CAS  Google Scholar 

  • Zhang Y, Geiβen S, Gal C (2008) Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 73:1151–1161

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fondo de Investigaciones Sanitarias de Castilla-La Mancha (project FISCAM 2007/08) for funding, and to Dr Pablo J. García Cambero for revision of the work and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Feito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feito, R., Valcárcel, Y. & Catalá, M. Biomarker assessment of toxicity with miniaturised bioassays: diclofenac as a case study. Ecotoxicology 21, 289–296 (2012). https://doi.org/10.1007/s10646-011-0790-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0790-2

Keywords

Navigation