Thyroid Nodule: Current Evaluation and Management

  • Alan A. Parsa
  • Hossein GharibEmail author


Thyroid nodules are common in clinical practice. The incidence of thyroid nodules has steadily increased over the past 50 years, primarily due to the widespread use of imaging modalities leading to detection of small, and often, incidental findings. With increased discovery of nodular disease, thyroid carcinoma prevalence has also increased significantly. These observations have prompted experts to develop a more efficient and cost-effective strategy to select nodules for biopsy, treatment, and follow-up.

Recent advances in thyroid nodule diagnosis and management include sonographic risk stratification of nodular appearance, application of ultrasound-guided fine needle aspiration, modified cytological classification, use of molecular markers in indeterminate cytology, minimally invasive procedures, and revised clinical practice guidelines. Ultrasound (US) findings and fine needle aspiration (FNA) results are essential in the optimal management of nodular thyroid disease.

Still, many questions remain, including what size nodule, or which US features, warrant biopsy? What is the role of molecular markers in the risk assessment of the indeterminate FNA cytology? How useful is the new cytological classification system? How should nodules be managed and followed? And, what is the utility of minimally invasive procedures, in comparison to conventional surgery, in treating thyroid nodules?

We have incorporated new recommendations and novel data in this chapter and hope that it will guide the reader to a better understanding of nodular thyroid disease and result in improved patient care.


Thyroid nodule Bethesda cytological classification Ultrasound (US) Molecular markers Multinodular goiter (MNG) Fine needle aspiration (FNA) biopsy Thyroid stimulating hormone (TSH) Thyroxine (T4) 


  1. 1.
    Vander JB, Gaston EA, Dawber TR. The significance of nontoxic thyroid nodules: final report of a 15-year study of the incidence of thyroid malgnancy. Ann Intern Med. 1968;69:537–40.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, Clark F, et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol. 1977;7(6):481–93.CrossRefGoogle Scholar
  3. 3.
    Ezzat S, Sarti DA, Cain DR, Braunstein GD. Thyroid incidentalomas. Prevalence by palpation and ultrasounography. Arch Int Med. 1994;154(16):1838–40.CrossRefGoogle Scholar
  4. 4.
    Hegedus L. Clinical practice: the thyoid nodule. N Engl J Med. 2004;351(17):1764–71.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Guth S, Theune U, Aberle J, Galach A, Bamberger CM. Very high prevalence of thyroid nodules detected by high frequency (13MHz) ultrasound examination. Eur J Clin Investig. 2009;39(8):699–706.CrossRefGoogle Scholar
  6. 6.
    Bartolotta TV, Midiri M, Runza G, Galia M, Taibbi A, Damiani L, Paalermo-Patera G, Lagalla R. Incidentally discovered thyroid nodules: incidence, and greyscale and colour doppler pattern in an adult population screeed by real-time compound spatial sonography. Radiol Med. 2006;111(7):989–98.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Russ G, Leboulleux S, Leenhardt L, Hegedus L. Thyroid incidentalomas: epidemiology, risk stratification with ultrasound and workup. Eur Thyroid J. 2014;3(3):154–63.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yoon DY, Chang SK, Choi CS, Yun EJ, Seo YL, Nam ES, Cho SJ, Rho YS, Ahn HY. The prevalence and significance of incidental thyroid nodules identified on computed tomography. J Comput Assist Tomogr. 2008;32(5):810–5.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Nguyen XV, Choudhury KR, Eastwood JD, et al. Incidental thyroid nodules on CT: evaluation of 2 risk categorization methods for work up of nodules. Am J Neuroradiol. 2013;34:1812–7.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lee C, Chalmers B, Treister D, Adhya S, Godwin B, Ji L, Groshen S, Grant E. Thyroid lesions visualized on CT: sonographic and pathologic correlation. Acad Radiol. 2015;22(2):203–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Youserm DM, Huang T, Loevner LA, Langlotz CP. Clinical and economic impact of incidental thyroid lesions found with CT and MR. Am J Neuroradiol. 1997;18(8):1423–8.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Elzein S, et al. Thyroid incidentaloma on PET imaging-evaluation of management and clinical outcomes. Surgeon. 2015;13(2):116–20.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kang KW, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab. 2003;88:4100–4.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Brindle R, Mullan D, Gandhi A. Thyroid incidentalomas discovered on positron emmision tomography CT scanning- malignancy rate and significance of standardised uptake values. Eur J Surg Oncol. 2014;40(11):1528–32.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bogsrud TV, et al. The value of quantifying 18FDG uptake in thyroid nodules found incidentally on whole-body PET-CT. Nucl Med Commun. 2007;28:373–81.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Zhai G, Zhang M, Xu H, Zhu C, Li B. The role of 18F-Fluorodeoxyglucose position emission tomography/computed tomography whole body imaging in the evlauation of focal thyroid incidentaloma. J Endocrinol Investig. 2010;33:151–5.CrossRefGoogle Scholar
  17. 17.
    Vander JB, Gaston EA, Dawber TR. The significance of nontoxic thyroid nodules: final report of a 15-year study of the incidence of thyroid malignancy. Ann Intern Med. 1968;69(3):537–40.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140:317–22.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Aschedbrook-Kilfoy B, Schechter RB, Shih YC, Kaplan EL, Chiu BC, Angelos P, Grogan RH. The clinical and economic burden of a sustained increase in thyroid cancer incidence. Cancer Epidemiol Biomark Prev. 2013;22(7):1252–9.CrossRefGoogle Scholar
  20. 20.
    Kilfoy BA, Zheng T, Holford TR, Han X, Ward MH, Sjodin A, Zhang Y, Bai Y, Guo GL, Rothman N, Zhang Y. International patterns and trends in thyroid cancer incidence, 1973-2002. Cancer Causes Control. 2009;20(5):252–531.CrossRefGoogle Scholar
  21. 21.
    Ponder BAJ, Ponder MA, Coffey R, et al. Risk estimation and screening in families of patients with medullary thyroid carcinoma. Lancet. 1988;1:397–401.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Fallah M, Pukkala E, Tryggvadottir L, et al. Risk of thyroid cancer in first-degree relatives of patients with nonmedullary thyroid cancer by histology type and age at diagnosis: a joint study from five Nordic countries. J Med Genet. 2013;50:373–82.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Mazeh H, Sippel RS. Familial nonmedullary thyroid carcinoma. Thyroid. 2013;23:1049–56.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bubien V, Bonnet F, Brouste V, et al. High cumulative risks of cancer in patients with PTEN hamartoma tomour syndrom. J Med Genet. 2013;50:255–63.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Steinhagen E, Guillem JG, Chang G, et al. The prevalence of thryoid cancer and benign disease in patients with familial adenomatous polyposis may be higher than previously recongized. Clin Colorectal Cancer. 2012;11:304–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Herraiz M, Barbesino G, Faquin W, et al. Prevalence of thyroid cancer in familial adenomatous polyposis syndrome and the role of screening ultrasound examinations. Clin Gastroenterol Hepatol. 2007;5:367–73.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Half E, Bercovich D, Rozen P. Famillial adenomatous polyposis. Orphanet J Rare Dis. 2009;4:22.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Campanella P, Ianni F, Rota CA, Corsello SM, Pontecorvi A. Quantification of cancer risk of each clinical and ultrasonographic suspicious feature of thyroid nodules: a systematic review and meta-analysis. Eur J Endocrinol. 2014;170(5):R203–11.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Rallison ML, Dobyns BM, Keating FR, Rall JE, Tyler FH. Thyroid nodularity in children. JAMA. 1975;233:1060–72.CrossRefGoogle Scholar
  30. 30.
    Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13:427–53.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Smith-Bindman R, Lebda P, Feldstein VA, Sellami D, Goldstein RB, Brasic N, Jin C, Kornak J. Risk of thyroid cancer based on thyroid ultrasound imaging characteristics: results of a population based study. JAMA Intern Med. 2013;173(19):1788–96.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gharib H, Papini E. Thyroid nodules: clinical importance, assessment, and treatment. Endocrinol Metab Clin N Am. 2007;36(3):707–35.CrossRefGoogle Scholar
  33. 33.
    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ. Cancer statistics, 2005. CA Cancer J Clin. 2005;55(1):10–30.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zimmerman D, Hay ID, Gough IR, Goellner JR, Ryan JJ, Grant CS, McConahey WM. Papillary thyroid carcinoma in children and adults: long-term follow-up of 1039 patients conservatievly treated at one institution during three decades. Surgery. 1988;104:1157–66.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ho WL, Zacharin MR. Thyroid carcinoma in children, adolescents and adults, both spontaneous and after childhood radiation exposure. Eur J Pediatr. 2016;175(5):677–83. [Epub ahead of print].PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kwong N, Medici M, Angell TE, Liu X, Marqusee E, Cibas ES, Krane JF, Barletta JA, Kim MI, Larsen PR, Alexander EK. The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk. J Clin Endocrinol Metab. 2015;100(12):4434–40.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Blum M. Ultrasonography of the thyroid. In: Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, Hershman JM, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, De Groot LJ, editors. Endotext [internet]. South Dartmouth:, Inc; 2000-2015.Google Scholar
  38. 38.
    Vanderpump MP. The epidemiology of thyroid disease. Br Med Bull. 2011;99(1):39–51.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bukjari MH, Niazi S, Hanif G, et al. An updated audit of fine needle aspiration cytology procedure of solitary thyroid nodule. Diagn Cytopathol. 2008;36:104–12.CrossRefGoogle Scholar
  40. 40.
    Lundgren CI, Zedenius J, Skoog L. Fine needle aspiration biopsy of benign thyroid nodules: an evidence-based review. World J Surg. 2008;32:1247–52.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Izquierdo R, Arekat MR, Knudson PE, Kartun KF, Khurana K, Kort K, Numann PJ. Comparison of palpation-guided versus ultrasound-guided fine-needle aspiration biopsies of thyroid nodules in an outpatient endocrinology practice. Endocr Pract. 2006;12(6):609–14.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kim MJ, Kim EK, Park SI, Kim BM, Kwak JY, Kim SJ, Youk JH, Park SH. US-guided fine-needle aspiration of thyroid nodules: indications, techniques, results. Radiographics. 2008;28(7):1869–86.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Degirmenci B, Haktanir A, Albayrak R, Acar M, Sahin DA, Sahin O, Yucel A, Caliskan G. Sonographically guided fine-needle biopsy of thyroid nodules: the effects of nodule characteristics, sampling technique, and needle size on the adequacy of cytological material. Clin Radiol. 2007;62(8):798–803.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kim DW. How to do it: ultrasound-guided fine-needle aspiration of thyroid nodules that commonly result in inappropriate cytology. Clin Imaging. 2013;37(1):1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Tublin ME, Martin JA, Rollin LJ, Pealer K, Kurs-Lasky M, Ohori NP. Ultrasound-guided fine-needle aspiration versus fine-needle capillary sampling biopsy of thyroid nodules: does technique matter? J Ultrasound Med. 2007;26(12):1697–701.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Ghofrani M, Beckman D, Rimm DL. The value of onsite adequacy assessment of thyroid fine needle aspirations is a function of operator experience. Cancer. 2006;108(2):110–3.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Braga M, Cavalcanti TC, Collaco LM, Graf H. Efficacy of ultrasound-guided fine-needle aspiration biopsy in the diagnosis of complex thyroid nodules. J Clin Endocrinol Metab. 2001;86(9):4089–91.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Belfiore A, La Rosa GL. Fine-needle aspiration biopsy of the thyroid. Endocrinol Metab Clin N Am. 2001;30:361–400.CrossRefGoogle Scholar
  49. 49.
    Yokozawa T, Miyauchi A, Kuma K, Sugawara M. Accurate and simple method of diagnosing thyroid nodules the modified technique of ultrasound-guided fine needle aspiration biopsy. Thyroid. 1995;5(2):141–5.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Papini E, Gugliemli R, Bianchini A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color doppler features. J Clin Endocrinol Metab. 2002;87(5):283–9.CrossRefGoogle Scholar
  51. 51.
    Hagag P, Strauss S, Weiss M. Role of ultrasound guided fine needle aspiration biopsy in evaluation of nonpalpable thyroid nodules. Thyroid. 1998;8(11):989–95.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bennedbaek FN, Hegedüs L. Treatment of recurrent thyroid cysts with ethanol: a randomized double-blind controlled trial. J Clin Endocrinol Metab. 2003;88(12):5773–7.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kini SR. Cysts and cystic lesions of the thyroid. Thyroid cytopathology: an atlas and text. Philadelphia: Lyppincott Williams & Wilkins; 2008. p. 369–84.Google Scholar
  54. 54.
    Shah KS, Ethunandan M. Tumour seeding after fine-needle aspiration and core biopsy of the head and neck—a systematic review. Br J Oral Maxillofac Surg. 2016. [Epub ahead of print].Google Scholar
  55. 55.
    Jatana KR, Zimmerman D. Pediatric thyroid nodules and malignancy. Otolaryngol Clin N Am. 2015;48(1):47–58.CrossRefGoogle Scholar
  56. 56.
    Nardi F, Basolo F, Crescenzi A, Fadda G, Frasoldati A, Orlandi F, et al. Italian consensus for the classification and reporting of thyroid cytology. J Endocrinol Investig. 2014;37(6):593–9.CrossRefGoogle Scholar
  57. 57.
    Redman R, Zalaznick H, Mazzaferri EL, Massoll NA. The impact of assessing specimen adequacy and number of needle passes for fine-needle aspiration biopsy of thyroid nodules. Thyroid. 2006;16(1):55–60.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    DeMay RM. The art and science of cytopathology. vol. 2, Aspiration cytology. Chicago: ASCP Press; 1996. p. 17.Google Scholar
  59. 59.
    Bastin S, Bolland MJ, Croxson MS. Role of ultrasound in the assessment of nodular thyroid disease. J Med Imaging Radiat Oncol. 2009;53(2):177–87.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Sipos JA. Advances in ultrasound for the diagnosis and management of thyroid cancer. Thyroid. 2009;19(12):1363–72.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gharib H, Papini E, Garber JR, Duick DS, Mack Harrell R, Hegedüs L, Paschke R, Valcavi R, Vitti P, on behalf of the AACE/ACE/AME Task Force on Thyroid Nodules. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules – 2016 Update. Appendix. Endocr Pract. 2016;22(Suppl 1):1–60.CrossRefGoogle Scholar
  63. 63.
    Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, Jung HK, Choi JS, Kim BM, Kim EK. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260(3):892–9.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Brito JP, Gionfriddo MR, Al Nofal A, Boehmer KR, Lepin AL, Reading C, Callstrom M, Elraiyah TA, Prokop LJ, Stan MN, Murad MH, Morris JC, Mntori VM. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab. 2014;99(4):1253–63.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lasithiotakis K, Grisbolaki E, Koutsomanolis D, Venianaki M, Petrakis I, Vrachassotakis N, Chrysos E, Zoras O, Chalkiadakis G. Indications for surgery and significance of unrecognized cancer in endemic multinodular goiter. World Surg. 2012;36(6):1286–92.CrossRefGoogle Scholar
  66. 66.
    Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedus L, Vitti P, AACE/AME/ETA task force on thyroid nodules. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European thyroid association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. J Endocrinol Investig. 2010;33(Suppl 5):51–6.Google Scholar
  67. 67.
    Arora N, Turbendian HK, Kato MA, Moo TA, Zarnegar R, Fahey TJ 3rd. Papillary thyroid carcinoma and microcarcinoma: is there a need to distinguish the two? Thyroid. 2009;19(5):473–7.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Wang M, Wu WD, Chen GM, Chou SL, Dai XM, Xu JM, Peng ZH. Could tumor size be a predictor for papillary thyroid microcarcinoma: a retrospective cohort study. Asian Pac J Cancer Prev. 2015;16(18):8625–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ardito G, Revelli L, Giustozzi E, Salvatori M, Fadda G, Ardito F, Avenia N, Ferretti A, Rampin L, Chondrogiannis S, Colletti PM, Rubello D. Aggressive papillary thyroid microcarcinoma: prognostic factors and therapeutic strategy. Clin Nucl Med. 2013;38(1):25–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Sugitani I, Toda K, Yamada K, Yamamoto N, Ikenaga M, Fujimoto Y. Three distinctly different kinds of papillary thyroid microcarcinoma should be recognized: our treatment strategies and outcomes. World J Surg. 2010;34(6):1222–31.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Oda H, Miyauchi A, Ito Y, Yoshioka K, Nakayama A, Sasai H, Masuoka H, Yabuta T, Fukushima M, Higashiyama T, Kihara M, Kobayashi K, Miya A. Incidences of unfavorable events in the management of low-risk papillary microcarcinoma of the thyroid by active surveillance versus immediate surgery. Thyroid. 2016;26(1):150–5.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ito Y, Miyauchi A, Inoue H, Fukushima M, Kihara M, Higashiyama T, Tomoda C, Takamura Y, Kobayashi K, Miya A. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg. 2010;34(1):28–35.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Ito Y, Miyauchi A. Nonoperative management of low-risk differentiated thyroid carcinoma. Curr Opin Oncol. 2015;27(1):15–20.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Miyauchi A. Clinical trials of active surveillance of papillary. World J Surg. [Epub ahead of print].Google Scholar
  75. 75.
    Brito JP, Ito Y, Miyauchi A, Tuttle RM. A clinical framework to facilitate risk stratification when considering an active surveillance alternative to immediate biopsy and surgery in papillary microcarcinoma. Thyroid. 2016;26(1):144–9.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Haser GC, Tuttle RM, Su HK, Alon EE, Bergman D, Bernet V, Brett E, Cobin R, Dewey EH, Doherty G, Dos Reis LL, et al. Active surveillance for papillary thyroid microcarcinoma: new challenges and opportunities for the health care system. Endocr Pract. 2016. [Epub ahead of print].Google Scholar
  77. 77.
    Xie C, Cox P, Taylor N, LaPorte S. Ultrasounography of thyroid nodules: a pictorial review. Insights Imaging. 2016;7(1):77–86.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Jun P, Chow LC, Jeffrey RB. The sonographic features of papillary thyroid carcinomas: pictorial essay. Ultrasound Q. 2005;21(1):39–45.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Chan BK, Desser TS, McDougall IR, Weigel RJ, Jeffrey RB Jr. Common and uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med. 2003;22(10):1083–90.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Yoon JH, Kim EK, Hong SW, Kwak JY, Kim MJ. Sonographic features of the follicular variant of papillary thyroid carcinoma. J Ultrasound Med. 2008;27(10):1431–7.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Rago T, Vitti P, Chiovato L, Mazzeo S, De Liperi A, Miccoli P, Viacava P, Bogazzi F, Martino E, Pinchera A. Role of conventional ultrasonography and color flow-doppler sonography in predicting malignancy in ‘cold’ thyroid nodules. Eur J Endocrinol. 1998;138(1):41–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kim EK, Park CS, Chung WY, Oh KK, Kim DI, Lee JT, Yoo HS. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. AJR Am J Roentgenol. 2002;178(3):687–91.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Tamsel S, Demirpolat G, Erdogan M, Nart D, Karadeniz M, Uluer H, Ozgen AG. Power doppler US pattern of vascularity and spectral doppler US parameters in predicting malignancy in thyroid nodules. Clin Radiol. 2007;62(3):245–51.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Moon HJ, Kwak JY, Kim MJ, Son EJ, Kim EK. Can vasculartiy at power doppler US help predict thyroid malignancy? Radiology. 2010;255(1):260–9.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kamaya A, Tahvildari AM, Patel BN, Willmann JK, Jeffrey RB, Desser TS. Sonographic detection of extracapsular extension in papillary thyroid cancer. J Ultrasound Med. 2015;34(12):2225–30.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Frasoldati A, Valcavi R. Challenges in neck ultrasounography: lymphadenopathy and parathyroid glands. Endocr Pract. 2004;10(3):261–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, et al. Society of radiologists in ultrasound. Management of thyroid nodules detected at US: society of radiologists in ultrasound consensus conference statement. Radiology. 2005;237(3):794–800.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Hong YJ, Son EJ, Kim EK, Kwak JY, Hong SW, Chang HS. Positive predictive values of sonographic features of solid thyorid nodule. Clin Imaging. 2010;34(2):127–33.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Tae HJ, Lim DJ, Baek KH, Lee YS, Choi JE, Lee JM, Kang MI, Cha BY, Son HY, Lee KW, Kang SK. Diagnostic value of ultrasonography to distinguish between benign and malignant lesions in the management of thyroid nodules. Thyroid. 2007;17(5):461–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Chan JM, Shin LK, Jeffrey RB. Ultrasonography of abnormal neck lymph nodes. Ultrasound Q. 2007;23(1):47–54.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Perros P, Boelaert K, Colley S, Evans C, Evans RM, Gerrard Ba G, et al. Guidelines for the management of thyroid cancer. Clin Endocrinol. 2014;81(1):1–122.CrossRefGoogle Scholar
  92. 92.
    Tian W, Hao S, Gao B, Jiang Y, Zhang S, Gu L, Luo D. Comparison of diagnostic accuracy of real-time elastography and shear wave elastography in differentiation malignant from benign thyroid nodules. Medicine (Baltimore). 2015;94(52):e2312.CrossRefGoogle Scholar
  93. 93.
    Zaleska-Dorobisz U, Kaczorowski K, Pawluś A, Puchalska A, Inglot M. Ultrasound elastography—review of techniques and its clinical applications. Adv Clin Exp Med. 2014;23(4):645–55.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Pawluś A, Sokołowska-Dąbek D, Szymańska K, Inglot MS, Zaleska-Dorobisz U. Ultrasound elastography--review of techniques and its clinical applications in pediatrics--part 1. Adv Clin Exp Med. 2015;24(3):537–43.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Sebag F, Vaillant-Lombard J, Berbis J, Griset V, Henry JF, Petit P, Oliver C. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95:5281–8.CrossRefGoogle Scholar
  96. 96.
    Bhatia KS, Tong CS, Cho CC, Yuen EH, Lee YY, Ahuja AT. Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol. 2012;22(11):2397–406.CrossRefGoogle Scholar
  97. 97.
    Kim H, Kim JA, Son EJ, Youk JH. Quantitative assessment of shear-wave ultrasound elastography in thyroid nodules: diagnostic performance for predicting malignancy. Eur Radiol. 2013;23(9):2532–7.CrossRefGoogle Scholar
  98. 98.
    Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917–22.CrossRefGoogle Scholar
  99. 99.
    Azizi G, Keller J, Lewis M, Puett D, Rivenbark K, Malchoff C. Performance of elastography for the evaluation of thyroid nodules: a prospective study. Thryoid. 2013;23(6):734–40.CrossRefGoogle Scholar
  100. 100.
    Lee SY, Rhee CM, Leung AM, Braveman LE, Brent GA, Pearce EN. A review: radiographic iodinated contrast media-induced thyroid dysfunction. J Clin Endocrinol Metab. 2015;100(2):376–83.CrossRefGoogle Scholar
  101. 101.
    Deandreis D, Al Ghunzlan A, Auperin A, Vielh P, Caillou B, Chami L, Lumbroso J, Travahli JP, Hartl D, Baudin E, Schlumberger M, Leboulleux S. Is (18)F-fluorodeoxyglucose-PET/CT useful for the presurgical characterization of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid. 2012;22(2):165–72.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Beech P, Lavender I, Jong I, Soo G, Ramdave S, Chong A, Nandurkar D. Ultrasound stratification of the FDG avid thyroid nodule. Clin Radiol. 2016;71(2):164–9.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Lodewijk L, Vriens MR, Vorselaars WM, van der Meij NT, Kist JW, Barentsz MW, Verkooijen HM, Rinkes IH, Valk GD. Same-day fine needle aspiration cytology diagnosis for thyroid nodules achieves rapid anxiety decrease and high diagnostic accuracy. Endocr Pract. 2015. [Epub ahead of print].Google Scholar
  104. 104.
    Bongiovanni M, Trimboli P, Rossi ED, Fadda G, Nobile A, Giovanella L. Diagnosis of endocrine disease: high-yield thyroid fine-needle aspiration cytology: an update focused on ancillary techniques improving its accuracy. Eur J Endocrinol. 2015;174(2):R53–63.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kim DW, Park JS, In HS, Choo HJ, Ryu JH, Jung SJ. Ultrasound based diagnostic classification for solid and partially cystic thyroid nodules. Am J Neuroradiol. 2012;33(6):1144–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Gharib H. Fine-needle aspiration biopsy of thyroid nodules: advantages, limitations, and effect. Mayo Clin Proc. 1994;69(1):44–9.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Goellner JR, Gharib H, Grant CS, et al. Fine needle aspiration cytology of the thyroid, 1980-1986. Acta Cytol. 1987;31(5):587–90.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Cesur M, Corapcioalu D, Bulut S, Gursoy A, Yilmaz AE, Erdogan N, Kamel N. Comparison of palpation guided fine needle aspiration biopsy to ultrasound guided fine needle aspiration biopsy in the evalauation of thyroid nodules. Thyroid. 2006;16(6):555–61.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Gharib H, Goellner JR. Fine needle aspiration biopsy of the thyroid: an appraisal. Ann Intern Med. 1993;118(4):282–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Cibas ES, Ali SZ and Conference, NCI Thyroid FNA State of the Science. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol. 2009;132(5):658–65.CrossRefGoogle Scholar
  111. 111.
    Liu X, Medici M, Kwong N, Angell TE, Marqusee E, Kim MI, Larsen PR, Cho NL, Nehs MA, Ruan DT, Gawande A, Moore F Jr, Barletta J, Krane JF, Cibas ES, Yang T, Alexander EK. Bethesda categorization of thyroid nodule cytology and prediction of thyroid cancer type and prognosis. Thyroid. 2016;26(2):256–61.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Cai XJ, Valiyaparambath N, Nixon P, Waghorn A, Giles T, Helliwell T. Ultrasound guided fine needle aspiration cytology in the diagnosis and management of thyroid nodules. Cytopathology. 2006;17:251–6.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Dincer N, Balci S, Yazgan A, Guney G, Ersoy R, Cakir B, Guler G. Follow-up of atypia and follicular lesions of undetermined significance in thyroid fine needle aspiration cytology. Cytopathology. 2013;24(6):385–90.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Yoo C, Choi HJ, Im S, Jung JH, Min K, Kang CS, Suh YJ. Fine needle aspiration cytology of thyroid follicular neoplasm: cytohistologic correlation and accuracy. Korean J Pathol. 2013;47(1):61–6.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Chehade JM, Silverberg AB, Kim J, Case C, Mooradian AD. Role of repeated fine needle aspiration of thyroid nodules with benign cytologic features. Endocr Pract. 2001;7(4):237–43.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Flanagan MB, Ohori NP, Carty SE, Hunt JL. Repeat thyroid nodule fine-needle aspiration in patients with initial benign cytologic results. Am J Clin Pathol. 2006;125(5):698–702.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Castro MR, Gharib H. Thyroid fine needle aspiration biopsy: progress, practice, and pitfalls. Endocr Pract. 2003;9(2):128–36.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Pacini F, Fugazzola I, Lippi F, et al. Detection of thyroglobulin in the needle aspirates of nonthyroidal neck masses: a clue to the diagnosis of metastatic differentiated thyroid cancer. J Clin Endocrinol Metab. 1992;74:1401–4.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Kim MJ, Kim EK, Kim BM, Kwak JY, Lee EJ, Park CS, Cheong WY, Nam KH. Thyroglobulin measurement in fine needle aspirate wahsouts: the criteria for neck node dissection for patients with thyroid cancer. Clin Endocrinol. 2009;70(1):145–51.CrossRefGoogle Scholar
  120. 120.
    Torres MR, Nobrega-Neto SH, Rosas RJ, Martins AL, Ramos AL, da Cruz TR. Thyroglobulin in the washout fluid of lymph node biopsy: what is its role in the follow up of differentiated thyroid carcinoma? Thyroid. 2014;24(1):7–18.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Jo K, Kim MH, Lim Y, Jung SL, Bae JS, Jung CK, Kang MI, Cha BY, Lim DJ. Lowered cutoff of lymph node fine needle aspiration thyroglobulin in thyroid cancer patients with serum antithyroglobulin antibody. Eur J Endocrinol. 2015;173(4):489–97.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Duick DS. Overview of molecular biomarkers for enhancing the management of cytologically indeterminate thyroid nodules and thyroid cancer. Endocr Pract. 2012;18(4):611–5.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Fuzio P, Napoli A, Ciampolilo A, Lattarulo S, Pezzolla A, Nuzziello N, Liuni S, Giorgino F, Maiorano E, Perlino E. Clusterin trascript variants expression in thyroid tumor: a potential marker of malignancy? BMC Cancer. 2015;15:349.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Chen YJ, Zhao RM, Li BY, Ma QY, Li X, Chen X. Diagnostic significance of elevated expression of HBME-1 in papilary thyroid carcinoma. Tumour Biol. 2016. [Epub ahead of print].Google Scholar
  125. 125.
    de Matos LL, Del Giglio AB, Matsubayashi CO, de Lima Farah M, Del Gigliio A, da Silva Pinhal MA. Expression of CK-19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol. 2012;13(7):97.Google Scholar
  126. 126.
    Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A. 2006;103(8):2746–51.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Zhang R, Hardin H, Chen J, Guo Z, Lloyd RV. Non-coding RNAs in thyroid cancer. Endocr Pathol. 2016;27(1):12–20.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Mazeh H. MicroRNA as a diagnostic tool in fine needle aspiration biopsy of thyroid nodules. Oncologist. 2012;17(8):1032–8.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Wójcicka A, Kolanowska M, Jażdżewski K. Mechanisms in endocrinology: MicroRNA in diagnostics and therapy of thyroid cancer. Eur J Endocrinol. 2016;174(3):R89–98.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, Nikiforova MN. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol. 2011;18(7):2035–41.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Erler P, Keutgen XM, Crowley MJ, Zetoune T, et al. Dicer expression and microRNA dysregulation associate with aggressive features in thyroid cancer. Surgery. 2014;156(6):1342–50.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Li L, Lv B, Chen B, Guan M, Sun Y, Li H, Zhang B, Ding C, He S, Zeng Q. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression. Biochem Biophys Res Commun. 2015;462(4):314–21.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Lakshmanan A, Wojcicka A, Kotlarek M, Zhang X, Jazdzewski K, Jhiang SM. microRNA-339-5p modulates Na+/I- symporter-mediated radioiodide uptake. Endocr Relat Cancer. 2015;22(1):11–21.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRefGoogle Scholar
  135. 135.
    Yarchoan M, LiVolsi VA, Brose MS. BRAF mutation and thyroid cancer recurrence. J Clin Oncol. 2014;33(1):7–8.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90:6373–9.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493–501.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;32:42–50.CrossRefGoogle Scholar
  139. 139.
    Fukahori M, Yoshida A, Hayashi H, Yoshihara M, Matsukuma S, Sakuma Y, Koizume S, Okamoto N, Kondo T, Masuda M, Miyagi Y. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort. Thyroid. 2012;22(7):683–9.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Jang EK, Song DE, Sim SY, Kwon H, Choi YM, Jeon MJ, Han JM, Kim WG, Kim TY, Shong YK, Kim WB. NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma. Thyroid. 2014;24(8):1275–81.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Chudova D, Wilde JI, Wang ET, Wang H, Rabbee N, Egidio CM, Reynolds J, Tom E, Pagan M, Rigl CT, Friedman L, Wang CC, Lanman RB, Zeiger M, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab. 2010;95(12):5296–304.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    McIver B, Castro MR, Morris JC, Bernet V, Smallridge R, Henry M, Kosok L, Reddi H. An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2014;99(11):4069–77.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, Friedman L, Kloos RT, LiVolsi VA, Mandel SJ, Raab SS, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Pagan M, Kloos RT, Lin CF, Travers KJ, Matsuzaki H, Tom EY, Kim SY, Wong MG, Stewart AC, Huang J, Walsh PS, Monroe RJ, Kennedy GC. The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes. BMC Bioinformatics. 2016;17(supp 1):6.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, Gooding WE, Hodak SP, LeBeau SO, Ohori NP, Seethala RR, Tublin ME, Yip L, Nikiforova MN. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, Gooding WE, LeBeau SO, Ohori NP, Seethala RR, Tublin ME, Yip L, Nikiforova MN. Impact of the multi-gene thyroseq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid. 2015;25(11):1217–23.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Boelaert K, Horacek J, Holder RL, Watkinson JC, Sheppard MC, Franklyn JA. Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J Clin Endocrinol Metab. 2006;91(11):4295–301.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Polyzos SA, Kita M, Efstathiadou Z, Poulakos P, Slavakis A, Sofianou D, Flaris N, Leontsini M, Kourtis A, Avramidis A. Serum thyrotropin concentration as a biochemical predictor of thyroid malignancy in patients presenting with thyroid nodules. J Cancer Res Clin Oncol. 2008;134(9):953–60.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Haymart MR, Repplinger DJ, Leverson GE, Elson DF, Sippel RS, Jaume JC, Chen H. Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J Clin Endocrinol Metab. 2008;93(3):809–14.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Mussa A, Salerno MC, Bona G, Wasniewska M, Segni M, Cassio A, Vigone MC, Gastaldi R, Iughetti L, Santanera A, Capalbo D, Matarazzo P, De Luca F, Weber G, Corrias A. Serum thyrotropin concentration in children with isolated thyroid nodules. J Pediatr. 2013;163(5):1465–70.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Repplinger D, Bargren A, Zhang YW, Adler JT, Haymart M, Chen H. Is Hashimoto’s thyroiditis a risk factor for papillary thyroid cancer? J Surg Res. 2008;150(1):49–52.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Jankovic B, Le KT, Hershman JM. Clinical review: Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J Clin Endocrinol Metab. 2013;98(2):474–82.CrossRefGoogle Scholar
  153. 153.
    Noureldine SI, Tufano RP. Association of Hashimoto’s thyroiditis and thyroid cancer. Curr Opin Oncol. 2015;27(1):21–5.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Wirtschafter A, Schmidt R, Rosen D, Kundu N, Santoro M, Fusco A, Multhaupt H, Atkins JP, Rosen MR, Keane WM, Rothstein JL. Expression of the RET/PTC fusion gene as a marker for papillary carcinoma in Hashimoto’s thyroiditis. Laryngoscope. 1997;107(1):95–100.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Rhoden KJ, Unger K, Salvatore G, Yilmaz Y, Vovk V, Chiappetta G, Qumsiyeh MB, Rothstein JL, Fusco A, Santoro M, Zitzelsberger H, Tallini G. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab. 2006;91(6):2414–23.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Nikiforov YE. RET/PTC rearrangement--a link between Hashimoto’s thyroiditis and thyroid cancer...or not. J Clin Endocrinol Metab. 2006;91(6):2040–2.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Arif S, Blanes A, Diaz-Cano SJ. Hashimoto’s thyroiditis shares features with early papillary thyroid carcinoma. Histopathology. 2002;41(4):357–62.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Hegedüs L, Bonnema SJ, Bennedbaek FN. Management of simple nodular goiter: current status and future perspectives. Endocr Rev. 2003;24(1):102–32.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Griebeler ML, Gharib H, Thompson GB. Medullary thyroid carcinoma. Endocr Pract. 2013;19(4):703–11.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Elisei R, Bottici V, Luchetti F, Di Coscio G, Romei C, Grasso L, et al. Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: expericen in 10,864 patients with nodular thyroid disease. J Clin Endocrinol Metab. 2004;89(1):163–8.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Costante G, Meringolo D, Durante C, Bianchi D, Nocera M, Tumino S, et al. Predictive value of serum calcitonin levels for preoperative diagnosis of medullary thyroid carcinoma in a cohort of 5817 consecutive patients with thyroid nodules. J Clin Endocrinol Metab. 2007;92(2):450–5.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Felsenfeld AJ, Levine BS. Calcitonin, the forgotten hormone: does it deserve to be forgotten? Clin Kidney. 2015;8(2):180–7.CrossRefGoogle Scholar
  163. 163.
    d’Herbomez M, Caron P, Bauters C, Do Cao C, Schlienger JL, Sapin R, Baldet L, Carnaille B, Wémeau JL, and Endocrines, French Group GTE (Groupe des Tumeurs). Reference range of serum calcitonin levels in humans: influence of calcitonin assays, sex, age, and cigarette smoking. Eur J Endocrinol. 2007;157(6):749–55.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Elisei R, Romei C. Calcitonin estimation in pateints with nodular goiter and its significance for early detection of MTC: European comments to the guidelines of the American Thyroid Association. Thyroid Res. 2013;6(1):Supp 2.CrossRefGoogle Scholar
  165. 165.
    Shulkin BL, Shapiro B. The role of imaging tests in the diagnosis of thyroid carcinoma. Endocrinol Metab Clin N Am. 1990;19(3):523–43.CrossRefGoogle Scholar
  166. 166.
    Meier DA, Kaplan MM. Radioiodine uptake and thyroid scintiscanning. Endocrinol Metab Clin N Am. 2001;30(2):291–313.CrossRefGoogle Scholar
  167. 167.
    Intenzo CM, dePapp AE, Jabbour S, Miller JL, Kim SM, Capuzzi DM. Scintigraphic manifestations of thyrotoxicosis. Radiographics. 2003;23(4):857–69.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Cases JA, Surks MI. The changing role of scintigraphy in the evaluation of thyroid nodules. Semin Nucl Med. 2000;30(2):81–7.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Cobin RH, Gharib H, Bergman DA, Clark OH, Cooper DS, Daniels GH, et al. Thyroid carcinoma task force. AACE/AAES medical/surgical guidelines for clinical practice: management of thyroid carcinoma. American Association of Clinical Endocrinologists. Endocr Pract. 2001;7(3):202–20.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W. European thyroid cancer taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154(6):787–803.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Calo PG, Pisano G, Medas F, Marcialis J, Gordini L, Erdas E, Nicolosi A. Total thyroidectomy without prophylactic central neck dissection in clinically node-negative papillary thyroid cancer: is it an adequate treatment? World J Surg Oncol. 2014;12.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    McHenry CR. Prophylactic central compartment node dissection for papillary thyroid cancer: the search for justification continues. Surgery. 2011;150:1058–60.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Caron NR, Clark OH. Papillary thyroid cancer: surgical management of lymph node metastasis. Curr Treat Options in Oncol. 2005;6:311–22.CrossRefGoogle Scholar
  174. 174.
    Sadowski BM, Snyder SK, Lairmore TC. Routine bilateral central lymph node clearance for papillary thyroid cancer. Surgery. 2009;146:696–705.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Hughes DT, White ML, Miller BS, Gauger PG, Burney RE, Doherty GM. Influence of prophylactic central lymph node dissection on postoperative thyroglobulin levels and radioiodine treatment in papillary thyroid cancer. Surgery. 2010;148:1100–6.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Bongiovanni M, Spitale A, Faquin WCm Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol. 2012;56(4):333–9.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Orlandi A, Puscar A, Capriata E, Fideleff H. Repeated fine needle aspiration of the thyroid in benign nodular thyroid disease: critical evaluation of long term follow-up. Thyroid. 2005;15:274–8.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Burman KD, Wartofsky L. Clinical practice. Thyroid nodules. N Engl J Med. 2015;373(24):2347–56.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Durante C, Costante G, Lucisano G, Bruno R, Meringolo D, Paciaroni A, et al. The natural history of benign thyroid nodules. JAMA. 2015;313(9):926–35.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Ajmal S, Rapoport S, Ramirez Batlle H, Mazzaglia PJ. The natural history of the benign thyroid nodule: what is the appropriate follow-up strategy? J Am Coll Surg. 2015;220(6):987–92.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Vermiglio F, Lo Presti VP, Violi MA, Moleti M, Catagna MG, Finocchiaro MD, Mattina F, Mandolfino M, Zimbaro G, Trimarchi F. Changes in both size and cytological features of thyroid nodule after levothyroxine treatment. Clin Endocrinol. 2003;59(3):347–53.CrossRefGoogle Scholar
  183. 183.
    Samuels M, Kolobova I, Smeraglio A, Peters D, Purnell J, Schuff KG. Effects of levothyroxine replacement or suppressive therapy on energy expenditure and body composition. Thyroid. 2015. [Epub ahead of print].Google Scholar
  184. 184.
    Samuels MH, Kolobova I, Smeraglio A, Peters D, Janowsky JS, Schuff KG. The effects of levothyroxine replacement or suppressive therapy on health status, mood, and cognition. J Clin Endocrinol Metab. 2014;99(3):843–51.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Samuels MH, Schuff KG, Carlson NE, Carello P, Janowsky JS. Health status, mood, and cognition in experimentally induced subclinical hypothyroidism. J Clin Endocrinol Metab. 2007;92(7):2545–51.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Baqui L, Payer J, Killinger Z, Susienkoba K, Jackuliak P, Cierny D, Langer P. The level of TSH appeared favourable in maintaining bone mineral density in postmenopausal women. Endocr Requl. 2010;44(1):9–15.Google Scholar
  187. 187.
    Baqi L, Payer J, Killinger Z, Hruzikova P, Cierny D, Susienkova K, Langer P. Thyrotropin versus thyroid hormone in regulating bone density and turnover in premenopausal women. Endocr Regul. 2010;44(2):57–63.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Heeringa J, Hoogendoorn EH, van der Deure WM, Hofman A, Peeters RP, Hop WC, et al. High-normal thyroid function and risk of atrial fibrillation: the Rotterdam stud. Arch Intern Med. 2008;168(20):2219–24.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Gencer B, Collet TH, Virgini V, Auer R, Rodondi N. Subclinical thyroid dysfunction and cardiovascular outcomes among prospective cohort studies. Endocr Metab Immune Disord Drug Targets. 2013;13(1):4–12.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Nanchen D, Gussekloo J, Westendorp RG, Stott DJ, Jukema JW, Trompet S, Ford I, Welsh P, Sattar N, Macfarlane PW, Mooijaart SP, Rodondi N, de Craen AJ, and Group, PROSPER. Subclinical thyroid dysfunction and the risk of heart failure in older persons at high cardiovascular risk. J Clin Endocrinol Metab. 2012;97(3):852–61.CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Baloch Z, LiVolsi VA, Jain P, Jain R, Aljada I, Mandel S, et al. Role of repeat fine-needle aspiration biopsy (FNAB) in the management of thyroid nodules. Diagn Cytopathol. 2003;29(4):203–6.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    VanderLaan PA, Marqusee E, Krane JF. Clinical outcome for atypia of undetermined significance in thyroid fine-needle aspirations: should repeated fna be the preferred initial approach? Am J Clin Pathol. 2011;135(5):770–5.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Yip L. Molecular diagostic testing and the indeterminate thyroid nodule. Curr Opin Oncol. 2014;26(1):8–13.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, Yip L, Seethala RR, Tublin ME, Stang MT, Coyne C, Johnson JT, Stewart AF, Nikiforova MN. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96(11):3390–7.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Bhatia P, Deniwar A, Friedlander P, Aslam R, Kandil E. Diagnostic potential of ancillary molecular testing in differentiation of benign and malignant thyroid nodules. Anticancer Res. 2015;35(3):1237–41.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Chow LS, Gharib H, Goellner JR, et al. Nondiagnostic thyroid fine needle aspiration cytology: management dilemmas. Thyroid. 2001;11(12):1147–51.PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Giovanella L, Fasolini F, Suriano S, Mazzucchelli L. Hyperfunctioning solid/trabecular follicular carcinoma of the thyroid gland. J Oncol. 2010.Google Scholar
  198. 198.
    Majima T, Doi K, Komatsu Y, Itoh H, Fukao A, Shigemoto M, Takagi C, Corners J, Mizuta N, Kato R, Nakao K. Papillary thyroid carcinoma without metastases manifesting as an autonomously functioning thyroid nodule. Endocr J. 2005;52(3):309–16.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Niedziela M, Breborowicz D, Trejster E, Korman E. Hot nodules in children and adolescents in western Poland from 1996 to 2000: clinical analysis of 31 patients. J Pediatr Endocrinol Metab. 2002;15(6):823–30.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Bahn RS, Castro MR. Approach to the patient with nontoxic multinodular goiter. J Clin Endocrinol Metab. 2011;96(5):1202–12.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Mauriello C, Marte G, Canfora A, Napolitano S, Pezzolla A, Gambardella C, Tartaglia E, Lanza M, Candela G. Bilateral benign multinodular goiter: what is the adequate surgical therapy? A review of literature. Int J Surg. 2015. [Epub ahead of print].Google Scholar
  202. 202.
    Moalem J, Suh I, Duh QY. Treatment and prevention of recurrence of multinodular goiter: an evidence-based review of the literature. World J Surg. 2008;32(7):1301–12.CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Röjdmark J, Järhult J. High long term recurrence rate after subtotal thyroidectomy for nodular goitre. Eur J Surg. 1995;161:725–7.PubMedPubMedCentralGoogle Scholar
  204. 204.
    Bistrup C, Nielsen JD, Gregersen G, Franch P. Preventive effect of levothyroxine in patients operated for non-toxic goitre: a randomized trial of one hundred patients with nine years follow-up. Clin Endocrinol. 1994;40(3):323–7.CrossRefGoogle Scholar
  205. 205.
    Miccoli P, Antonelli A, Iacconi P, Alberti B, Gambuzza C, Baschieri L. Prospective, randomized, double-blind study about effectiveness of levothyroxine suppressive therapy in prevention of recurrence after operation: result at the third year of follow-up. Surgery. 1993;114(6):1097–101.PubMedPubMedCentralGoogle Scholar
  206. 206.
    Agarwal G, Aggarwal V. Is total thyroidectomy the surgical procedure of choice for benign multinodular goiter? An evidence based review. World J Surg. 2008;32(7):1313–24.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Tezelman S, Borucu I, Senyurek Giles Y, Tunca F, Terzioglu T. The change in surgical practice from subtotal to near-total or total thyroidectomy in the treatment of patients with benign multinodular goiter. World J Surg. 2009;33(3):400–5.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Hurley DL, Gharib H. Evaluation and management of multinodular goiter. Otolaryngol Clin N Am. 1996;29(4):527–40.Google Scholar
  209. 209.
    Molinari AS, Treiguer A, Gava VG, Rojas JL, Evangelista PE, Gonçalves I, Golbert A. Thyroid surgery performed on an overnight basis: a 17 years of experience. Arch Endocrinol Metab. 2015;59(5):434–40.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Hänscheid H, Canzi C, Eschner W, Flux G, Luster M, Strigari L, Lassmann M. EANM dosimetry committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging. 2013;40(7):1126–34.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Wong FC. MIRD: radionuclide data and decay schemes. J Nucl Med. 2009;50:2091.CrossRefGoogle Scholar
  212. 212.
    Vaidya B, Pearce SH. Diagnosis and management of thyrotoxicosis. BMJ. 2014;349:g5128.PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Holm LE, Lundell G, Dahlqvist I, Israelsson A. Cure rate after 131I therapy for hyperthyroidism. Acta Radiol Oncol. 1981;20(3):161–6.PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Nygaard B, Hegedus L, Ulriksen P, Nielsen KG, Hansen JM. Radioiodine therapy for multinodular toxic goiter. Arch Intern Med. 1999;159(12):1364–8.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Metso S, Jaatinen P, Huhtala H, Luukkaala T, Oksala H, Salmi J. Long-term follow-up study of radioiodine treatment of hyperthyroidism. Clin Endocrinol. 2004;61(5):641–8.CrossRefGoogle Scholar
  216. 216.
    Pearce EN. Diagnosis and management of thyrotoxicosis. BJM. 2006;332(7554):1369–73.CrossRefGoogle Scholar
  217. 217.
    Kyrilli A, Tang BN, Huyge V, Blocklet D, Goldman S, Corvilain B, Moreno-Reyes R. Thiamazole pretreatment lowers the (131)I activity needed to cure hyperthyroidism in patients with nodular goiter. J Clin Endocrinol Metab. 2015;100(6):2261–7.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Bonnema SJ, Bennedbaek FN, Veje A, Marving J, Hegedüs L. Continuous methimazole therapy and its effect on the cure rate of hyperthyroidism using radioactive iodine: an evaluation by a randomized trial. J Clin Endocrinol Metab. 2006;91(8):2946–51.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Burch HB, Solomon BL, Cooper DS, Ferguson P, Walpert N, Howard R. The effect of antithyroid drug pretreatment on acute changes in thyroid hormone levels after 131I ablation for Graves’ disease. J Clin Endocrinol Metab. 2001;86:3016–21.PubMedPubMedCentralGoogle Scholar
  220. 220.
    Wallaschofski H, Muller D, Georgi P, Paschke R. Induction of TSH-receptor antibodies in patients with toxic multinodular goitre by radioiodine treatment. Horm Metab Res. 2002;34:36–9.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Nygaard B, Faber J, Veje A, Hegedus L, Hansen JM. Transition of nodular toxic goiter to autoimmune hyperthyroidism triggered by 131I therapy. Thyroid. 1999;9(5):477–81.CrossRefGoogle Scholar
  222. 222.
    Meier DA, Brill DR, Becker DV, et al. Society of Nuclear Medicine. Procedure guideline for therapy of thyroid disease with (131)iodine. J Nucl Med. 2002;43(6):856–61.Google Scholar
  223. 223.
    Stokkel MP, Handkiewicz Junak D, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37(11):2218–28.CrossRefGoogle Scholar
  224. 224.
    Verelst J, Bonnyns M, Glinoer D. Radioiodine therapy in voluminous multinodular non-toxic goitre. Acta Endocrinol. 1990;122(4):417–21.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Huysmans DA, Nieuwlaat WA, Erdtsieck RJ, Schellekens AP, Bus JW, Bravenboer B, Hermus AR. Administration of a single low dose of recombinant human thyrotropin significantly enhances thyroid radioiodide uptake in nontoxic nodular goiter. J Clin Endocrinol Metab. 2000;85(10):3592–6.PubMedPubMedCentralGoogle Scholar
  226. 226.
    Ceccarelli C, Antonangeli L, Brozzi F, Bianchi F, Tonacchera M, Santini P, Mazzeo S, Bencivelli W, Pinchera A, Vitti P. Radioiodine 131I treatment for large nodular goiter: recombinant human thyrotropin allows the reduction of radioiodine 131I activity to be administered in patients with low uptake. Thyroid. 2011;21(7):759–64.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Silva MN, Rubió IG, Romão R, Gebrin EM, Buchpiguel C, Tomimori E, Camargo R, Cardia MS, Medeiros-Neto G. Administration of a single dose of recombinant human thyrotrophin enhances the efficacy of radioiodine treatment of large compressive multinodular goitres. Clin Endocrinol. 2004;60(3):300–8.CrossRefGoogle Scholar
  228. 228.
    Fast S, Nielsen VE, Bonnema SJ, Hegedüs L. Time to reconsider nonsurgical therapy of benign non-toxic multinodular goitre: focus on recombinant human TSH augmented radioiodine therapy. Eur J Endocrinol. 2009;160(4):517–28.PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Medeiros-Neto G, Marui S, Knobel M. An outline concerning the potential use of recombinant human thyrotropin for improving radioiodine therapy of multinodular goiter. Endocrine. 2008;33(2):109–17.PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Albino CC, Mesa CO Jr, Olandoski M, Ueda CE, Woellner LC, Goedert CA, Souza AM, Graf H. Recombinant human thyrotropin as adjuvant in the treatment of multinodular goiters with radioiodine. J Clin Endocrinol Metab. 2005;90(5):2775–80.PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Nielsen VE, Bonnema SJ, Hegedüs L. Transient goiter enlargement after administration of 0.3 mg of recombinant human thyrotropin in patients with benign nontoxic nodular goiter: a randomized, double-blind, crossover trial. J Clin Endocrinol Metab. 2006;91(4):1317–22.PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Reverter JL, Alonso N, Avila M, Lucas A, Mauricio D, Puig-Domingo M. Evaluation of efficacy, safety, pain perception and health-related quality of life of percutaneous ethanol injection as first-line treatment in symptomatic thyroid cysts. BMC Endocr Disord. 2015;15(1):73.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Gharib H, Hegedüs L, Pacella CM, Baek JH, Papini E. Clinical review: nonsurgical, image-guided, minimally invasive therapy for thyroid nodules. J Clin Endocrinol Metab. 2013;98(10):3949–57.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Suh CH, Baek JH, Ha EJ, Choi YJ, Lee JH, Kim JK, Chung KW, Kim TY, Kim WB, Shong YK. Ethanol ablation of predominantly cystic thyroid nodules: evaluation of recurrence rate and factors related to recurrence. Clin Radiol. 2015;70(1):42–7.PubMedCrossRefPubMedCentralGoogle Scholar
  235. 235.
    Guglielmi R, Pacella CM, Bianchini A, Bizzarri G, Rinaldi R, Graziano FM, Petrucci L, Toscano V, Palma E, Poggi M, Papini E. Percutaneous ethanol injection treatment in benign thyroid lesions: role and efficacy. Thyroid. 2004;14(2):125–31.PubMedCrossRefPubMedCentralGoogle Scholar
  236. 236.
    Sung JY, Baek JH, Kim KS, Lee D, Yoo H, Kim JK, Park SH. Single session treatment of benign cystic thyroid nodules with ethanol versus radiofrequency ablation: a prospective randomized study. Radiology. 2013;269(1):293–300.PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Kim JH, Lee HK, Lee JH, Ahn IM, Choi CG. Efficacy of sonographically guided percutaneous ethanol injection for treatment of thyroid cysts versus solid thyroid nodules. AJR Am J Roentgenol. 2003;180(6):1723–6.PubMedCrossRefPubMedCentralGoogle Scholar
  238. 238.
    Park NH, Kim DW, Park HJ, Lee EJ, Park JS, Park SI, Bae JM, Lee JH. Thyroid cysts treated with ethanol ablation can mimic malignancy during sonographic follow-up. J Clin Ultrasound. 2011;39(8):441–6.PubMedCrossRefPubMedCentralGoogle Scholar
  239. 239.
    Del Prete S, Russo D, Caraglia M, Giuberti G, Marra M, Vitale G, Lupoli G, Abbruzzese A, Capasso E. Percutaneous ethanol injection of autonomous thyroid nodules with a volume larger than 40 ml: three years of follow-up. Clin Radiol. 2001;56(11):895–901.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Monzani F, Caraccio N, Goletti O, Lippolis PV, Casolaro A, Del Guerra P, Cavina E, Miccoli P. Five-year follow-up of percutaneous ethanol injection for the treatment of hyperfunctioning thyroid nodules: a study of 117 patients. Clin Endocrinol. 1997;46(1):9–15.CrossRefGoogle Scholar
  241. 241.
    Lippi F, Ferrari C, Manetti L, Rago T, Santini F, Monzani F, Bellitti P, Papini E, Busnardo B, Angelini F, Pinchera A. Treatment of solitary autonomous thyroid nodules by percutaneous ethanol injection: results of an Italian multicenter study. The Multicenter Study Group. J Clin Endocrinol Metab. 1996;81(9):3261–4.PubMedPubMedCentralGoogle Scholar
  242. 242.
    Tarantino L, Francica G, Sordelli I, Sperlongano P, Parmeggiani D, Ripa C, Parmeggiani U. Percutaneous ethanol injection of hyperfunctioning thyroid nodules: long-term follow-up in 125 patients. AJR Am J Roentgenol. 2008;190(3):800–8.PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Lewis BD, Hay ID, Charboneau JW, McIver B, Reading CC, Goellner JR. Percutaneous ethanol injection for treatment of cervical lymph node metastases in patients with papillary thyroid carcinoma. AJR Am J Roentgenol. 2002;178(3):699–704.PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Hay ID, Lee RA, Davidge-Pitts C, Reading CC, Charboneau JW. Long-term outcome of ultrasound-guided percutaneous ethanol ablation of selected “recurrent” neck nodal metastases in 25 patients with TNM stages III or IVA papillary thyroid carcinoma previously treated by surgery and 131I therapy. Surgery. 2013;154(6):1448–54.PubMedCrossRefPubMedCentralGoogle Scholar
  245. 245.
    Pacella CM, Mauri G, Achille G, Barbaro D, Bizzarri G, De Feo P, Di Stasio E, Esposito R, Gambelunghe G, Misischi I, Raggiunti B, et al. Outcomes and risk factors for complications of laser ablation for thyroid nodules: a multicenter study on 1531 patients. J Clin Endocrinol Metab. 2015;100(10):3903–10.PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Valcavi R, Riganti F, Bertani A, Formisano D, Pacella CM. Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid. 2010;20(11):1253–61.PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Barbaro D, Orsini P, Lapi P, Pasquini C, Tuco A, Righini A, Lemmi P. Percutaneous laser ablation in the treatment of toxic and pretoxic nodular goiter. Endocr Pract. 2007;13(1):30–6.PubMedCrossRefPubMedCentralGoogle Scholar
  248. 248.
    Papini E, Bizzarri G, Pacella CM. Percutaneous laser ablation of benign and malignant thyroid nodules. Curr Opin Endocrinol Diabetes Obes. 2008;15(5):434–9.PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Li XL, Xu HX, Lu F, Yue WW, Sun LP, Bo XW, Guo LH, Xu JM, Liu BJ, Li DD, Qu S. Treatment efficacy and safety of ultrasound-guided percutaneous bipolar radiofrequency ablation for benign thyroid nodules. Br J Radiol. 2016. [Epub ahead of print].Google Scholar
  250. 250.
    Suh CH, Baek JH, Choi YJ, Lee JH. Efficacy and safety of radiofrequency and ethanol ablation for treating locally recurrent thyroid cancer: a systematic review and meta-analysis. Thyroid. 2016;(22). [Epub ahead of print].Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine, John A. Burns School of Medicine, University of HawaiiHonoluluUSA
  2. 2.Division of Endocrinology, Diabetes, Metabolism and NutritionMayo Clinic College of MedicineRochesterUSA

Personalised recommendations