Skip to main content

Thyroid Nodule: Current Evaluation and Management

  • Chapter
  • First Online:
The Thyroid and Its Diseases

Abstract

Thyroid nodules are common in clinical practice. The incidence of thyroid nodules has steadily increased over the past 50 years, primarily due to the widespread use of imaging modalities leading to detection of small, and often, incidental findings. With increased discovery of nodular disease, thyroid carcinoma prevalence has also increased significantly. These observations have prompted experts to develop a more efficient and cost-effective strategy to select nodules for biopsy, treatment, and follow-up.

Recent advances in thyroid nodule diagnosis and management include sonographic risk stratification of nodular appearance, application of ultrasound-guided fine needle aspiration, modified cytological classification, use of molecular markers in indeterminate cytology, minimally invasive procedures, and revised clinical practice guidelines. Ultrasound (US) findings and fine needle aspiration (FNA) results are essential in the optimal management of nodular thyroid disease.

Still, many questions remain, including what size nodule, or which US features, warrant biopsy? What is the role of molecular markers in the risk assessment of the indeterminate FNA cytology? How useful is the new cytological classification system? How should nodules be managed and followed? And, what is the utility of minimally invasive procedures, in comparison to conventional surgery, in treating thyroid nodules?

We have incorporated new recommendations and novel data in this chapter and hope that it will guide the reader to a better understanding of nodular thyroid disease and result in improved patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vander JB, Gaston EA, Dawber TR. The significance of nontoxic thyroid nodules: final report of a 15-year study of the incidence of thyroid malgnancy. Ann Intern Med. 1968;69:537–40.

    Article  CAS  PubMed  Google Scholar 

  2. Tunbridge WM, Evered DC, Hall R, Appleton D, Brewis M, Clark F, et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol. 1977;7(6):481–93.

    Article  CAS  Google Scholar 

  3. Ezzat S, Sarti DA, Cain DR, Braunstein GD. Thyroid incidentalomas. Prevalence by palpation and ultrasounography. Arch Int Med. 1994;154(16):1838–40.

    Article  CAS  Google Scholar 

  4. Hegedus L. Clinical practice: the thyoid nodule. N Engl J Med. 2004;351(17):1764–71.

    Article  PubMed  Google Scholar 

  5. Guth S, Theune U, Aberle J, Galach A, Bamberger CM. Very high prevalence of thyroid nodules detected by high frequency (13MHz) ultrasound examination. Eur J Clin Investig. 2009;39(8):699–706.

    Article  CAS  Google Scholar 

  6. Bartolotta TV, Midiri M, Runza G, Galia M, Taibbi A, Damiani L, Paalermo-Patera G, Lagalla R. Incidentally discovered thyroid nodules: incidence, and greyscale and colour doppler pattern in an adult population screeed by real-time compound spatial sonography. Radiol Med. 2006;111(7):989–98.

    Article  CAS  PubMed  Google Scholar 

  7. Russ G, Leboulleux S, Leenhardt L, Hegedus L. Thyroid incidentalomas: epidemiology, risk stratification with ultrasound and workup. Eur Thyroid J. 2014;3(3):154–63.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Yoon DY, Chang SK, Choi CS, Yun EJ, Seo YL, Nam ES, Cho SJ, Rho YS, Ahn HY. The prevalence and significance of incidental thyroid nodules identified on computed tomography. J Comput Assist Tomogr. 2008;32(5):810–5.

    Article  PubMed  Google Scholar 

  9. Nguyen XV, Choudhury KR, Eastwood JD, et al. Incidental thyroid nodules on CT: evaluation of 2 risk categorization methods for work up of nodules. Am J Neuroradiol. 2013;34:1812–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee C, Chalmers B, Treister D, Adhya S, Godwin B, Ji L, Groshen S, Grant E. Thyroid lesions visualized on CT: sonographic and pathologic correlation. Acad Radiol. 2015;22(2):203–9.

    Article  PubMed  Google Scholar 

  11. Youserm DM, Huang T, Loevner LA, Langlotz CP. Clinical and economic impact of incidental thyroid lesions found with CT and MR. Am J Neuroradiol. 1997;18(8):1423–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Elzein S, et al. Thyroid incidentaloma on PET imaging-evaluation of management and clinical outcomes. Surgeon. 2015;13(2):116–20.

    Article  PubMed  Google Scholar 

  13. Kang KW, et al. Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects. J Clin Endocrinol Metab. 2003;88:4100–4.

    Article  CAS  PubMed  Google Scholar 

  14. Brindle R, Mullan D, Gandhi A. Thyroid incidentalomas discovered on positron emmision tomography CT scanning- malignancy rate and significance of standardised uptake values. Eur J Surg Oncol. 2014;40(11):1528–32.

    Article  CAS  PubMed  Google Scholar 

  15. Bogsrud TV, et al. The value of quantifying 18FDG uptake in thyroid nodules found incidentally on whole-body PET-CT. Nucl Med Commun. 2007;28:373–81.

    Article  PubMed  Google Scholar 

  16. Zhai G, Zhang M, Xu H, Zhu C, Li B. The role of 18F-Fluorodeoxyglucose position emission tomography/computed tomography whole body imaging in the evlauation of focal thyroid incidentaloma. J Endocrinol Investig. 2010;33:151–5.

    Article  CAS  Google Scholar 

  17. Vander JB, Gaston EA, Dawber TR. The significance of nontoxic thyroid nodules: final report of a 15-year study of the incidence of thyroid malignancy. Ann Intern Med. 1968;69(3):537–40.

    Article  CAS  PubMed  Google Scholar 

  18. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140:317–22.

    Article  PubMed  Google Scholar 

  19. Aschedbrook-Kilfoy B, Schechter RB, Shih YC, Kaplan EL, Chiu BC, Angelos P, Grogan RH. The clinical and economic burden of a sustained increase in thyroid cancer incidence. Cancer Epidemiol Biomark Prev. 2013;22(7):1252–9.

    Article  Google Scholar 

  20. Kilfoy BA, Zheng T, Holford TR, Han X, Ward MH, Sjodin A, Zhang Y, Bai Y, Guo GL, Rothman N, Zhang Y. International patterns and trends in thyroid cancer incidence, 1973-2002. Cancer Causes Control. 2009;20(5):252–531.

    Article  Google Scholar 

  21. Ponder BAJ, Ponder MA, Coffey R, et al. Risk estimation and screening in families of patients with medullary thyroid carcinoma. Lancet. 1988;1:397–401.

    Article  CAS  PubMed  Google Scholar 

  22. Fallah M, Pukkala E, Tryggvadottir L, et al. Risk of thyroid cancer in first-degree relatives of patients with nonmedullary thyroid cancer by histology type and age at diagnosis: a joint study from five Nordic countries. J Med Genet. 2013;50:373–82.

    Article  CAS  PubMed  Google Scholar 

  23. Mazeh H, Sippel RS. Familial nonmedullary thyroid carcinoma. Thyroid. 2013;23:1049–56.

    Article  PubMed  Google Scholar 

  24. Bubien V, Bonnet F, Brouste V, et al. High cumulative risks of cancer in patients with PTEN hamartoma tomour syndrom. J Med Genet. 2013;50:255–63.

    Article  CAS  PubMed  Google Scholar 

  25. Steinhagen E, Guillem JG, Chang G, et al. The prevalence of thryoid cancer and benign disease in patients with familial adenomatous polyposis may be higher than previously recongized. Clin Colorectal Cancer. 2012;11:304–8.

    Article  PubMed  Google Scholar 

  26. Herraiz M, Barbesino G, Faquin W, et al. Prevalence of thyroid cancer in familial adenomatous polyposis syndrome and the role of screening ultrasound examinations. Clin Gastroenterol Hepatol. 2007;5:367–73.

    Article  PubMed  Google Scholar 

  27. Half E, Bercovich D, Rozen P. Famillial adenomatous polyposis. Orphanet J Rare Dis. 2009;4:22.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Campanella P, Ianni F, Rota CA, Corsello SM, Pontecorvi A. Quantification of cancer risk of each clinical and ultrasonographic suspicious feature of thyroid nodules: a systematic review and meta-analysis. Eur J Endocrinol. 2014;170(5):R203–11.

    Article  CAS  PubMed  Google Scholar 

  29. Rallison ML, Dobyns BM, Keating FR, Rall JE, Tyler FH. Thyroid nodularity in children. JAMA. 1975;233:1060–72.

    Article  Google Scholar 

  30. Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13:427–53.

    Article  CAS  PubMed  Google Scholar 

  31. Smith-Bindman R, Lebda P, Feldstein VA, Sellami D, Goldstein RB, Brasic N, Jin C, Kornak J. Risk of thyroid cancer based on thyroid ultrasound imaging characteristics: results of a population based study. JAMA Intern Med. 2013;173(19):1788–96.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gharib H, Papini E. Thyroid nodules: clinical importance, assessment, and treatment. Endocrinol Metab Clin N Am. 2007;36(3):707–35.

    Article  CAS  Google Scholar 

  33. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ. Cancer statistics, 2005. CA Cancer J Clin. 2005;55(1):10–30.

    Article  PubMed  Google Scholar 

  34. Zimmerman D, Hay ID, Gough IR, Goellner JR, Ryan JJ, Grant CS, McConahey WM. Papillary thyroid carcinoma in children and adults: long-term follow-up of 1039 patients conservatievly treated at one institution during three decades. Surgery. 1988;104:1157–66.

    CAS  PubMed  Google Scholar 

  35. Ho WL, Zacharin MR. Thyroid carcinoma in children, adolescents and adults, both spontaneous and after childhood radiation exposure. Eur J Pediatr. 2016;175(5):677–83. [Epub ahead of print].

    Article  CAS  PubMed  Google Scholar 

  36. Kwong N, Medici M, Angell TE, Liu X, Marqusee E, Cibas ES, Krane JF, Barletta JA, Kim MI, Larsen PR, Alexander EK. The influence of patient age on thyroid nodule formation, multinodularity, and thyroid cancer risk. J Clin Endocrinol Metab. 2015;100(12):4434–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Blum M. Ultrasonography of the thyroid. In: Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, Hershman JM, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, De Groot LJ, editors. Endotext [internet]. South Dartmouth: MDText.com, Inc; 2000-2015.

    Google Scholar 

  38. Vanderpump MP. The epidemiology of thyroid disease. Br Med Bull. 2011;99(1):39–51.

    Article  PubMed  Google Scholar 

  39. Bukjari MH, Niazi S, Hanif G, et al. An updated audit of fine needle aspiration cytology procedure of solitary thyroid nodule. Diagn Cytopathol. 2008;36:104–12.

    Article  Google Scholar 

  40. Lundgren CI, Zedenius J, Skoog L. Fine needle aspiration biopsy of benign thyroid nodules: an evidence-based review. World J Surg. 2008;32:1247–52.

    Article  PubMed  Google Scholar 

  41. Izquierdo R, Arekat MR, Knudson PE, Kartun KF, Khurana K, Kort K, Numann PJ. Comparison of palpation-guided versus ultrasound-guided fine-needle aspiration biopsies of thyroid nodules in an outpatient endocrinology practice. Endocr Pract. 2006;12(6):609–14.

    Article  PubMed  Google Scholar 

  42. Kim MJ, Kim EK, Park SI, Kim BM, Kwak JY, Kim SJ, Youk JH, Park SH. US-guided fine-needle aspiration of thyroid nodules: indications, techniques, results. Radiographics. 2008;28(7):1869–86.

    Article  PubMed  Google Scholar 

  43. Degirmenci B, Haktanir A, Albayrak R, Acar M, Sahin DA, Sahin O, Yucel A, Caliskan G. Sonographically guided fine-needle biopsy of thyroid nodules: the effects of nodule characteristics, sampling technique, and needle size on the adequacy of cytological material. Clin Radiol. 2007;62(8):798–803.

    Article  CAS  PubMed  Google Scholar 

  44. Kim DW. How to do it: ultrasound-guided fine-needle aspiration of thyroid nodules that commonly result in inappropriate cytology. Clin Imaging. 2013;37(1):1–7.

    Article  PubMed  Google Scholar 

  45. Tublin ME, Martin JA, Rollin LJ, Pealer K, Kurs-Lasky M, Ohori NP. Ultrasound-guided fine-needle aspiration versus fine-needle capillary sampling biopsy of thyroid nodules: does technique matter? J Ultrasound Med. 2007;26(12):1697–701.

    Article  PubMed  Google Scholar 

  46. Ghofrani M, Beckman D, Rimm DL. The value of onsite adequacy assessment of thyroid fine needle aspirations is a function of operator experience. Cancer. 2006;108(2):110–3.

    Article  PubMed  Google Scholar 

  47. Braga M, Cavalcanti TC, Collaco LM, Graf H. Efficacy of ultrasound-guided fine-needle aspiration biopsy in the diagnosis of complex thyroid nodules. J Clin Endocrinol Metab. 2001;86(9):4089–91.

    Article  CAS  PubMed  Google Scholar 

  48. Belfiore A, La Rosa GL. Fine-needle aspiration biopsy of the thyroid. Endocrinol Metab Clin N Am. 2001;30:361–400.

    Article  CAS  Google Scholar 

  49. Yokozawa T, Miyauchi A, Kuma K, Sugawara M. Accurate and simple method of diagnosing thyroid nodules the modified technique of ultrasound-guided fine needle aspiration biopsy. Thyroid. 1995;5(2):141–5.

    Article  CAS  PubMed  Google Scholar 

  50. Papini E, Gugliemli R, Bianchini A, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color doppler features. J Clin Endocrinol Metab. 2002;87(5):283–9.

    Article  Google Scholar 

  51. Hagag P, Strauss S, Weiss M. Role of ultrasound guided fine needle aspiration biopsy in evaluation of nonpalpable thyroid nodules. Thyroid. 1998;8(11):989–95.

    Article  CAS  PubMed  Google Scholar 

  52. Bennedbaek FN, Hegedüs L. Treatment of recurrent thyroid cysts with ethanol: a randomized double-blind controlled trial. J Clin Endocrinol Metab. 2003;88(12):5773–7.

    Article  CAS  PubMed  Google Scholar 

  53. Kini SR. Cysts and cystic lesions of the thyroid. Thyroid cytopathology: an atlas and text. Philadelphia: Lyppincott Williams & Wilkins; 2008. p. 369–84.

    Google Scholar 

  54. Shah KS, Ethunandan M. Tumour seeding after fine-needle aspiration and core biopsy of the head and neck—a systematic review. Br J Oral Maxillofac Surg. 2016. [Epub ahead of print].

    Google Scholar 

  55. Jatana KR, Zimmerman D. Pediatric thyroid nodules and malignancy. Otolaryngol Clin N Am. 2015;48(1):47–58.

    Article  Google Scholar 

  56. Nardi F, Basolo F, Crescenzi A, Fadda G, Frasoldati A, Orlandi F, et al. Italian consensus for the classification and reporting of thyroid cytology. J Endocrinol Investig. 2014;37(6):593–9.

    Article  Google Scholar 

  57. Redman R, Zalaznick H, Mazzaferri EL, Massoll NA. The impact of assessing specimen adequacy and number of needle passes for fine-needle aspiration biopsy of thyroid nodules. Thyroid. 2006;16(1):55–60.

    Article  PubMed  Google Scholar 

  58. DeMay RM. The art and science of cytopathology. vol. 2, Aspiration cytology. Chicago: ASCP Press; 1996. p. 17.

    Google Scholar 

  59. Bastin S, Bolland MJ, Croxson MS. Role of ultrasound in the assessment of nodular thyroid disease. J Med Imaging Radiat Oncol. 2009;53(2):177–87.

    Article  CAS  PubMed  Google Scholar 

  60. Sipos JA. Advances in ultrasound for the diagnosis and management of thyroid cancer. Thyroid. 2009;19(12):1363–72.

    Article  PubMed  Google Scholar 

  61. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gharib H, Papini E, Garber JR, Duick DS, Mack Harrell R, Hegedüs L, Paschke R, Valcavi R, Vitti P, on behalf of the AACE/ACE/AME Task Force on Thyroid Nodules. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules – 2016 Update. Appendix. Endocr Pract. 2016;22(Suppl 1):1–60.

    Article  Google Scholar 

  63. Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, Jung HK, Choi JS, Kim BM, Kim EK. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260(3):892–9.

    Article  PubMed  Google Scholar 

  64. Brito JP, Gionfriddo MR, Al Nofal A, Boehmer KR, Lepin AL, Reading C, Callstrom M, Elraiyah TA, Prokop LJ, Stan MN, Murad MH, Morris JC, Mntori VM. The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J Clin Endocrinol Metab. 2014;99(4):1253–63.

    Article  CAS  PubMed  Google Scholar 

  65. Lasithiotakis K, Grisbolaki E, Koutsomanolis D, Venianaki M, Petrakis I, Vrachassotakis N, Chrysos E, Zoras O, Chalkiadakis G. Indications for surgery and significance of unrecognized cancer in endemic multinodular goiter. World Surg. 2012;36(6):1286–92.

    Article  Google Scholar 

  66. Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedus L, Vitti P, AACE/AME/ETA task force on thyroid nodules. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European thyroid association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. J Endocrinol Investig. 2010;33(Suppl 5):51–6.

    CAS  Google Scholar 

  67. Arora N, Turbendian HK, Kato MA, Moo TA, Zarnegar R, Fahey TJ 3rd. Papillary thyroid carcinoma and microcarcinoma: is there a need to distinguish the two? Thyroid. 2009;19(5):473–7.

    Article  PubMed  Google Scholar 

  68. Wang M, Wu WD, Chen GM, Chou SL, Dai XM, Xu JM, Peng ZH. Could tumor size be a predictor for papillary thyroid microcarcinoma: a retrospective cohort study. Asian Pac J Cancer Prev. 2015;16(18):8625–8.

    Article  PubMed  Google Scholar 

  69. Ardito G, Revelli L, Giustozzi E, Salvatori M, Fadda G, Ardito F, Avenia N, Ferretti A, Rampin L, Chondrogiannis S, Colletti PM, Rubello D. Aggressive papillary thyroid microcarcinoma: prognostic factors and therapeutic strategy. Clin Nucl Med. 2013;38(1):25–8.

    Article  PubMed  Google Scholar 

  70. Sugitani I, Toda K, Yamada K, Yamamoto N, Ikenaga M, Fujimoto Y. Three distinctly different kinds of papillary thyroid microcarcinoma should be recognized: our treatment strategies and outcomes. World J Surg. 2010;34(6):1222–31.

    Article  PubMed  Google Scholar 

  71. Oda H, Miyauchi A, Ito Y, Yoshioka K, Nakayama A, Sasai H, Masuoka H, Yabuta T, Fukushima M, Higashiyama T, Kihara M, Kobayashi K, Miya A. Incidences of unfavorable events in the management of low-risk papillary microcarcinoma of the thyroid by active surveillance versus immediate surgery. Thyroid. 2016;26(1):150–5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ito Y, Miyauchi A, Inoue H, Fukushima M, Kihara M, Higashiyama T, Tomoda C, Takamura Y, Kobayashi K, Miya A. An observational trial for papillary thyroid microcarcinoma in Japanese patients. World J Surg. 2010;34(1):28–35.

    Article  PubMed  Google Scholar 

  73. Ito Y, Miyauchi A. Nonoperative management of low-risk differentiated thyroid carcinoma. Curr Opin Oncol. 2015;27(1):15–20.

    Article  PubMed  Google Scholar 

  74. Miyauchi A. Clinical trials of active surveillance of papillary. World J Surg. [Epub ahead of print].

    Google Scholar 

  75. Brito JP, Ito Y, Miyauchi A, Tuttle RM. A clinical framework to facilitate risk stratification when considering an active surveillance alternative to immediate biopsy and surgery in papillary microcarcinoma. Thyroid. 2016;26(1):144–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Haser GC, Tuttle RM, Su HK, Alon EE, Bergman D, Bernet V, Brett E, Cobin R, Dewey EH, Doherty G, Dos Reis LL, et al. Active surveillance for papillary thyroid microcarcinoma: new challenges and opportunities for the health care system. Endocr Pract. 2016. [Epub ahead of print].

    Google Scholar 

  77. Xie C, Cox P, Taylor N, LaPorte S. Ultrasounography of thyroid nodules: a pictorial review. Insights Imaging. 2016;7(1):77–86.

    Article  PubMed  Google Scholar 

  78. Jun P, Chow LC, Jeffrey RB. The sonographic features of papillary thyroid carcinomas: pictorial essay. Ultrasound Q. 2005;21(1):39–45.

    PubMed  Google Scholar 

  79. Chan BK, Desser TS, McDougall IR, Weigel RJ, Jeffrey RB Jr. Common and uncommon sonographic features of papillary thyroid carcinoma. J Ultrasound Med. 2003;22(10):1083–90.

    Article  PubMed  Google Scholar 

  80. Yoon JH, Kim EK, Hong SW, Kwak JY, Kim MJ. Sonographic features of the follicular variant of papillary thyroid carcinoma. J Ultrasound Med. 2008;27(10):1431–7.

    Article  PubMed  Google Scholar 

  81. Rago T, Vitti P, Chiovato L, Mazzeo S, De Liperi A, Miccoli P, Viacava P, Bogazzi F, Martino E, Pinchera A. Role of conventional ultrasonography and color flow-doppler sonography in predicting malignancy in ‘cold’ thyroid nodules. Eur J Endocrinol. 1998;138(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  82. Kim EK, Park CS, Chung WY, Oh KK, Kim DI, Lee JT, Yoo HS. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. AJR Am J Roentgenol. 2002;178(3):687–91.

    Article  PubMed  Google Scholar 

  83. Tamsel S, Demirpolat G, Erdogan M, Nart D, Karadeniz M, Uluer H, Ozgen AG. Power doppler US pattern of vascularity and spectral doppler US parameters in predicting malignancy in thyroid nodules. Clin Radiol. 2007;62(3):245–51.

    Article  CAS  PubMed  Google Scholar 

  84. Moon HJ, Kwak JY, Kim MJ, Son EJ, Kim EK. Can vasculartiy at power doppler US help predict thyroid malignancy? Radiology. 2010;255(1):260–9.

    Article  PubMed  Google Scholar 

  85. Kamaya A, Tahvildari AM, Patel BN, Willmann JK, Jeffrey RB, Desser TS. Sonographic detection of extracapsular extension in papillary thyroid cancer. J Ultrasound Med. 2015;34(12):2225–30.

    Article  PubMed  Google Scholar 

  86. Frasoldati A, Valcavi R. Challenges in neck ultrasounography: lymphadenopathy and parathyroid glands. Endocr Pract. 2004;10(3):261–8.

    Article  PubMed  Google Scholar 

  87. Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, et al. Society of radiologists in ultrasound. Management of thyroid nodules detected at US: society of radiologists in ultrasound consensus conference statement. Radiology. 2005;237(3):794–800.

    Article  PubMed  Google Scholar 

  88. Hong YJ, Son EJ, Kim EK, Kwak JY, Hong SW, Chang HS. Positive predictive values of sonographic features of solid thyorid nodule. Clin Imaging. 2010;34(2):127–33.

    Article  PubMed  Google Scholar 

  89. Tae HJ, Lim DJ, Baek KH, Lee YS, Choi JE, Lee JM, Kang MI, Cha BY, Son HY, Lee KW, Kang SK. Diagnostic value of ultrasonography to distinguish between benign and malignant lesions in the management of thyroid nodules. Thyroid. 2007;17(5):461–6.

    Article  PubMed  Google Scholar 

  90. Chan JM, Shin LK, Jeffrey RB. Ultrasonography of abnormal neck lymph nodes. Ultrasound Q. 2007;23(1):47–54.

    Article  PubMed  Google Scholar 

  91. Perros P, Boelaert K, Colley S, Evans C, Evans RM, Gerrard Ba G, et al. Guidelines for the management of thyroid cancer. Clin Endocrinol. 2014;81(1):1–122.

    Article  CAS  Google Scholar 

  92. Tian W, Hao S, Gao B, Jiang Y, Zhang S, Gu L, Luo D. Comparison of diagnostic accuracy of real-time elastography and shear wave elastography in differentiation malignant from benign thyroid nodules. Medicine (Baltimore). 2015;94(52):e2312.

    Article  Google Scholar 

  93. Zaleska-Dorobisz U, Kaczorowski K, Pawluś A, Puchalska A, Inglot M. Ultrasound elastography—review of techniques and its clinical applications. Adv Clin Exp Med. 2014;23(4):645–55.

    Article  PubMed  Google Scholar 

  94. Pawluś A, Sokołowska-Dąbek D, Szymańska K, Inglot MS, Zaleska-Dorobisz U. Ultrasound elastography--review of techniques and its clinical applications in pediatrics--part 1. Adv Clin Exp Med. 2015;24(3):537–43.

    Article  PubMed  Google Scholar 

  95. Sebag F, Vaillant-Lombard J, Berbis J, Griset V, Henry JF, Petit P, Oliver C. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95:5281–8.

    Article  CAS  PubMed  Google Scholar 

  96. Bhatia KS, Tong CS, Cho CC, Yuen EH, Lee YY, Ahuja AT. Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol. 2012;22(11):2397–406.

    Article  PubMed  Google Scholar 

  97. Kim H, Kim JA, Son EJ, Youk JH. Quantitative assessment of shear-wave ultrasound elastography in thyroid nodules: diagnostic performance for predicting malignancy. Eur Radiol. 2013;23(9):2532–7.

    Article  PubMed  Google Scholar 

  98. Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917–22.

    Article  CAS  PubMed  Google Scholar 

  99. Azizi G, Keller J, Lewis M, Puett D, Rivenbark K, Malchoff C. Performance of elastography for the evaluation of thyroid nodules: a prospective study. Thryoid. 2013;23(6):734–40.

    Article  Google Scholar 

  100. Lee SY, Rhee CM, Leung AM, Braveman LE, Brent GA, Pearce EN. A review: radiographic iodinated contrast media-induced thyroid dysfunction. J Clin Endocrinol Metab. 2015;100(2):376–83.

    Article  CAS  PubMed  Google Scholar 

  101. Deandreis D, Al Ghunzlan A, Auperin A, Vielh P, Caillou B, Chami L, Lumbroso J, Travahli JP, Hartl D, Baudin E, Schlumberger M, Leboulleux S. Is (18)F-fluorodeoxyglucose-PET/CT useful for the presurgical characterization of thyroid nodules with indeterminate fine needle aspiration cytology? Thyroid. 2012;22(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  102. Beech P, Lavender I, Jong I, Soo G, Ramdave S, Chong A, Nandurkar D. Ultrasound stratification of the FDG avid thyroid nodule. Clin Radiol. 2016;71(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  103. Lodewijk L, Vriens MR, Vorselaars WM, van der Meij NT, Kist JW, Barentsz MW, Verkooijen HM, Rinkes IH, Valk GD. Same-day fine needle aspiration cytology diagnosis for thyroid nodules achieves rapid anxiety decrease and high diagnostic accuracy. Endocr Pract. 2015. [Epub ahead of print].

    Google Scholar 

  104. Bongiovanni M, Trimboli P, Rossi ED, Fadda G, Nobile A, Giovanella L. Diagnosis of endocrine disease: high-yield thyroid fine-needle aspiration cytology: an update focused on ancillary techniques improving its accuracy. Eur J Endocrinol. 2015;174(2):R53–63.

    Article  PubMed  CAS  Google Scholar 

  105. Kim DW, Park JS, In HS, Choo HJ, Ryu JH, Jung SJ. Ultrasound based diagnostic classification for solid and partially cystic thyroid nodules. Am J Neuroradiol. 2012;33(6):1144–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gharib H. Fine-needle aspiration biopsy of thyroid nodules: advantages, limitations, and effect. Mayo Clin Proc. 1994;69(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  107. Goellner JR, Gharib H, Grant CS, et al. Fine needle aspiration cytology of the thyroid, 1980-1986. Acta Cytol. 1987;31(5):587–90.

    CAS  PubMed  Google Scholar 

  108. Cesur M, Corapcioalu D, Bulut S, Gursoy A, Yilmaz AE, Erdogan N, Kamel N. Comparison of palpation guided fine needle aspiration biopsy to ultrasound guided fine needle aspiration biopsy in the evalauation of thyroid nodules. Thyroid. 2006;16(6):555–61.

    Article  PubMed  Google Scholar 

  109. Gharib H, Goellner JR. Fine needle aspiration biopsy of the thyroid: an appraisal. Ann Intern Med. 1993;118(4):282–9.

    Article  CAS  PubMed  Google Scholar 

  110. Cibas ES, Ali SZ and Conference, NCI Thyroid FNA State of the Science. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol. 2009;132(5):658–65.

    Article  Google Scholar 

  111. Liu X, Medici M, Kwong N, Angell TE, Marqusee E, Kim MI, Larsen PR, Cho NL, Nehs MA, Ruan DT, Gawande A, Moore F Jr, Barletta J, Krane JF, Cibas ES, Yang T, Alexander EK. Bethesda categorization of thyroid nodule cytology and prediction of thyroid cancer type and prognosis. Thyroid. 2016;26(2):256–61.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cai XJ, Valiyaparambath N, Nixon P, Waghorn A, Giles T, Helliwell T. Ultrasound guided fine needle aspiration cytology in the diagnosis and management of thyroid nodules. Cytopathology. 2006;17:251–6.

    Article  CAS  PubMed  Google Scholar 

  113. Dincer N, Balci S, Yazgan A, Guney G, Ersoy R, Cakir B, Guler G. Follow-up of atypia and follicular lesions of undetermined significance in thyroid fine needle aspiration cytology. Cytopathology. 2013;24(6):385–90.

    Article  CAS  PubMed  Google Scholar 

  114. Yoo C, Choi HJ, Im S, Jung JH, Min K, Kang CS, Suh YJ. Fine needle aspiration cytology of thyroid follicular neoplasm: cytohistologic correlation and accuracy. Korean J Pathol. 2013;47(1):61–6.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Chehade JM, Silverberg AB, Kim J, Case C, Mooradian AD. Role of repeated fine needle aspiration of thyroid nodules with benign cytologic features. Endocr Pract. 2001;7(4):237–43.

    Article  CAS  PubMed  Google Scholar 

  116. Flanagan MB, Ohori NP, Carty SE, Hunt JL. Repeat thyroid nodule fine-needle aspiration in patients with initial benign cytologic results. Am J Clin Pathol. 2006;125(5):698–702.

    Article  PubMed  Google Scholar 

  117. Castro MR, Gharib H. Thyroid fine needle aspiration biopsy: progress, practice, and pitfalls. Endocr Pract. 2003;9(2):128–36.

    Article  PubMed  Google Scholar 

  118. Pacini F, Fugazzola I, Lippi F, et al. Detection of thyroglobulin in the needle aspirates of nonthyroidal neck masses: a clue to the diagnosis of metastatic differentiated thyroid cancer. J Clin Endocrinol Metab. 1992;74:1401–4.

    CAS  PubMed  Google Scholar 

  119. Kim MJ, Kim EK, Kim BM, Kwak JY, Lee EJ, Park CS, Cheong WY, Nam KH. Thyroglobulin measurement in fine needle aspirate wahsouts: the criteria for neck node dissection for patients with thyroid cancer. Clin Endocrinol. 2009;70(1):145–51.

    Article  CAS  Google Scholar 

  120. Torres MR, Nobrega-Neto SH, Rosas RJ, Martins AL, Ramos AL, da Cruz TR. Thyroglobulin in the washout fluid of lymph node biopsy: what is its role in the follow up of differentiated thyroid carcinoma? Thyroid. 2014;24(1):7–18.

    Article  CAS  PubMed  Google Scholar 

  121. Jo K, Kim MH, Lim Y, Jung SL, Bae JS, Jung CK, Kang MI, Cha BY, Lim DJ. Lowered cutoff of lymph node fine needle aspiration thyroglobulin in thyroid cancer patients with serum antithyroglobulin antibody. Eur J Endocrinol. 2015;173(4):489–97.

    Article  CAS  PubMed  Google Scholar 

  122. Duick DS. Overview of molecular biomarkers for enhancing the management of cytologically indeterminate thyroid nodules and thyroid cancer. Endocr Pract. 2012;18(4):611–5.

    Article  PubMed  Google Scholar 

  123. Fuzio P, Napoli A, Ciampolilo A, Lattarulo S, Pezzolla A, Nuzziello N, Liuni S, Giorgino F, Maiorano E, Perlino E. Clusterin trascript variants expression in thyroid tumor: a potential marker of malignancy? BMC Cancer. 2015;15:349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Chen YJ, Zhao RM, Li BY, Ma QY, Li X, Chen X. Diagnostic significance of elevated expression of HBME-1 in papilary thyroid carcinoma. Tumour Biol. 2016. [Epub ahead of print].

    Google Scholar 

  125. de Matos LL, Del Giglio AB, Matsubayashi CO, de Lima Farah M, Del Gigliio A, da Silva Pinhal MA. Expression of CK-19, galectin-3 and HBME-1 in the differentiation of thyroid lesions: systematic review and diagnostic meta-analysis. Diagn Pathol. 2012;13(7):97.

    Google Scholar 

  126. Sood P, Krek A, Zavolan M, Macino G, Rajewsky N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc Natl Acad Sci U S A. 2006;103(8):2746–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang R, Hardin H, Chen J, Guo Z, Lloyd RV. Non-coding RNAs in thyroid cancer. Endocr Pathol. 2016;27(1):12–20.

    Article  PubMed  CAS  Google Scholar 

  128. Mazeh H. MicroRNA as a diagnostic tool in fine needle aspiration biopsy of thyroid nodules. Oncologist. 2012;17(8):1032–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wójcicka A, Kolanowska M, Jażdżewski K. Mechanisms in endocrinology: MicroRNA in diagnostics and therapy of thyroid cancer. Eur J Endocrinol. 2016;174(3):R89–98.

    Article  PubMed  CAS  Google Scholar 

  130. Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, Nikiforova MN. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol. 2011;18(7):2035–41.

    Article  PubMed  Google Scholar 

  131. Erler P, Keutgen XM, Crowley MJ, Zetoune T, et al. Dicer expression and microRNA dysregulation associate with aggressive features in thyroid cancer. Surgery. 2014;156(6):1342–50.

    Article  PubMed  Google Scholar 

  132. Li L, Lv B, Chen B, Guan M, Sun Y, Li H, Zhang B, Ding C, He S, Zeng Q. Inhibition of miR-146b expression increases radioiodine-sensitivity in poorly differential thyroid carcinoma via positively regulating NIS expression. Biochem Biophys Res Commun. 2015;462(4):314–21.

    Article  CAS  PubMed  Google Scholar 

  133. Lakshmanan A, Wojcicka A, Kotlarek M, Zhang X, Jazdzewski K, Jhiang SM. microRNA-339-5p modulates Na+/I- symporter-mediated radioiodide uptake. Endocr Relat Cancer. 2015;22(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  134. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.

    Article  CAS  PubMed  Google Scholar 

  135. Yarchoan M, LiVolsi VA, Brose MS. BRAF mutation and thyroid cancer recurrence. J Clin Oncol. 2014;33(1):7–8.

    Article  PubMed  Google Scholar 

  136. Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90:6373–9.

    Article  CAS  PubMed  Google Scholar 

  137. Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;32:42–50.

    Article  Google Scholar 

  139. Fukahori M, Yoshida A, Hayashi H, Yoshihara M, Matsukuma S, Sakuma Y, Koizume S, Okamoto N, Kondo T, Masuda M, Miyagi Y. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort. Thyroid. 2012;22(7):683–9.

    Article  CAS  PubMed  Google Scholar 

  140. Jang EK, Song DE, Sim SY, Kwon H, Choi YM, Jeon MJ, Han JM, Kim WG, Kim TY, Shong YK, Kim WB. NRAS codon 61 mutation is associated with distant metastasis in patients with follicular thyroid carcinoma. Thyroid. 2014;24(8):1275–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chudova D, Wilde JI, Wang ET, Wang H, Rabbee N, Egidio CM, Reynolds J, Tom E, Pagan M, Rigl CT, Friedman L, Wang CC, Lanman RB, Zeiger M, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab. 2010;95(12):5296–304.

    Article  CAS  PubMed  Google Scholar 

  142. McIver B, Castro MR, Morris JC, Bernet V, Smallridge R, Henry M, Kosok L, Reddi H. An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2014;99(11):4069–77.

    Article  CAS  PubMed  Google Scholar 

  143. Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, Friedman L, Kloos RT, LiVolsi VA, Mandel SJ, Raab SS, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.

    Article  CAS  PubMed  Google Scholar 

  144. Pagan M, Kloos RT, Lin CF, Travers KJ, Matsuzaki H, Tom EY, Kim SY, Wong MG, Stewart AC, Huang J, Walsh PS, Monroe RJ, Kennedy GC. The diagnostic application of RNA sequencing in patients with thyroid cancer: an analysis of 851 variants and 133 fusions in 524 genes. BMC Bioinformatics. 2016;17(supp 1):6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, Gooding WE, Hodak SP, LeBeau SO, Ohori NP, Seethala RR, Tublin ME, Yip L, Nikiforova MN. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34.

    Article  CAS  PubMed  Google Scholar 

  146. Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, Gooding WE, LeBeau SO, Ohori NP, Seethala RR, Tublin ME, Yip L, Nikiforova MN. Impact of the multi-gene thyroseq next-generation sequencing assay on cancer diagnosis in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid. 2015;25(11):1217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Boelaert K, Horacek J, Holder RL, Watkinson JC, Sheppard MC, Franklyn JA. Serum thyrotropin concentration as a novel predictor of malignancy in thyroid nodules investigated by fine-needle aspiration. J Clin Endocrinol Metab. 2006;91(11):4295–301.

    Article  CAS  PubMed  Google Scholar 

  148. Polyzos SA, Kita M, Efstathiadou Z, Poulakos P, Slavakis A, Sofianou D, Flaris N, Leontsini M, Kourtis A, Avramidis A. Serum thyrotropin concentration as a biochemical predictor of thyroid malignancy in patients presenting with thyroid nodules. J Cancer Res Clin Oncol. 2008;134(9):953–60.

    Article  CAS  PubMed  Google Scholar 

  149. Haymart MR, Repplinger DJ, Leverson GE, Elson DF, Sippel RS, Jaume JC, Chen H. Higher serum thyroid stimulating hormone level in thyroid nodule patients is associated with greater risks of differentiated thyroid cancer and advanced tumor stage. J Clin Endocrinol Metab. 2008;93(3):809–14.

    Article  CAS  PubMed  Google Scholar 

  150. Mussa A, Salerno MC, Bona G, Wasniewska M, Segni M, Cassio A, Vigone MC, Gastaldi R, Iughetti L, Santanera A, Capalbo D, Matarazzo P, De Luca F, Weber G, Corrias A. Serum thyrotropin concentration in children with isolated thyroid nodules. J Pediatr. 2013;163(5):1465–70.

    Article  CAS  PubMed  Google Scholar 

  151. Repplinger D, Bargren A, Zhang YW, Adler JT, Haymart M, Chen H. Is Hashimoto’s thyroiditis a risk factor for papillary thyroid cancer? J Surg Res. 2008;150(1):49–52.

    Article  PubMed  Google Scholar 

  152. Jankovic B, Le KT, Hershman JM. Clinical review: Hashimoto’s thyroiditis and papillary thyroid carcinoma: is there a correlation? J Clin Endocrinol Metab. 2013;98(2):474–82.

    Article  CAS  PubMed  Google Scholar 

  153. Noureldine SI, Tufano RP. Association of Hashimoto’s thyroiditis and thyroid cancer. Curr Opin Oncol. 2015;27(1):21–5.

    Article  PubMed  Google Scholar 

  154. Wirtschafter A, Schmidt R, Rosen D, Kundu N, Santoro M, Fusco A, Multhaupt H, Atkins JP, Rosen MR, Keane WM, Rothstein JL. Expression of the RET/PTC fusion gene as a marker for papillary carcinoma in Hashimoto’s thyroiditis. Laryngoscope. 1997;107(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  155. Rhoden KJ, Unger K, Salvatore G, Yilmaz Y, Vovk V, Chiappetta G, Qumsiyeh MB, Rothstein JL, Fusco A, Santoro M, Zitzelsberger H, Tallini G. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab. 2006;91(6):2414–23.

    Article  CAS  PubMed  Google Scholar 

  156. Nikiforov YE. RET/PTC rearrangement--a link between Hashimoto’s thyroiditis and thyroid cancer...or not. J Clin Endocrinol Metab. 2006;91(6):2040–2.

    Article  CAS  PubMed  Google Scholar 

  157. Arif S, Blanes A, Diaz-Cano SJ. Hashimoto’s thyroiditis shares features with early papillary thyroid carcinoma. Histopathology. 2002;41(4):357–62.

    Article  CAS  PubMed  Google Scholar 

  158. Hegedüs L, Bonnema SJ, Bennedbaek FN. Management of simple nodular goiter: current status and future perspectives. Endocr Rev. 2003;24(1):102–32.

    Article  PubMed  Google Scholar 

  159. Griebeler ML, Gharib H, Thompson GB. Medullary thyroid carcinoma. Endocr Pract. 2013;19(4):703–11.

    Article  PubMed  Google Scholar 

  160. Elisei R, Bottici V, Luchetti F, Di Coscio G, Romei C, Grasso L, et al. Impact of routine measurement of serum calcitonin on the diagnosis and outcome of medullary thyroid cancer: expericen in 10,864 patients with nodular thyroid disease. J Clin Endocrinol Metab. 2004;89(1):163–8.

    Article  CAS  PubMed  Google Scholar 

  161. Costante G, Meringolo D, Durante C, Bianchi D, Nocera M, Tumino S, et al. Predictive value of serum calcitonin levels for preoperative diagnosis of medullary thyroid carcinoma in a cohort of 5817 consecutive patients with thyroid nodules. J Clin Endocrinol Metab. 2007;92(2):450–5.

    Article  CAS  PubMed  Google Scholar 

  162. Felsenfeld AJ, Levine BS. Calcitonin, the forgotten hormone: does it deserve to be forgotten? Clin Kidney. 2015;8(2):180–7.

    Article  CAS  Google Scholar 

  163. d’Herbomez M, Caron P, Bauters C, Do Cao C, Schlienger JL, Sapin R, Baldet L, Carnaille B, Wémeau JL, and Endocrines, French Group GTE (Groupe des Tumeurs). Reference range of serum calcitonin levels in humans: influence of calcitonin assays, sex, age, and cigarette smoking. Eur J Endocrinol. 2007;157(6):749–55.

    Article  PubMed  CAS  Google Scholar 

  164. Elisei R, Romei C. Calcitonin estimation in pateints with nodular goiter and its significance for early detection of MTC: European comments to the guidelines of the American Thyroid Association. Thyroid Res. 2013;6(1):Supp 2.

    Article  Google Scholar 

  165. Shulkin BL, Shapiro B. The role of imaging tests in the diagnosis of thyroid carcinoma. Endocrinol Metab Clin N Am. 1990;19(3):523–43.

    Article  CAS  Google Scholar 

  166. Meier DA, Kaplan MM. Radioiodine uptake and thyroid scintiscanning. Endocrinol Metab Clin N Am. 2001;30(2):291–313.

    Article  CAS  Google Scholar 

  167. Intenzo CM, dePapp AE, Jabbour S, Miller JL, Kim SM, Capuzzi DM. Scintigraphic manifestations of thyrotoxicosis. Radiographics. 2003;23(4):857–69.

    Article  PubMed  Google Scholar 

  168. Cases JA, Surks MI. The changing role of scintigraphy in the evaluation of thyroid nodules. Semin Nucl Med. 2000;30(2):81–7.

    Article  CAS  PubMed  Google Scholar 

  169. Cobin RH, Gharib H, Bergman DA, Clark OH, Cooper DS, Daniels GH, et al. Thyroid carcinoma task force. AACE/AAES medical/surgical guidelines for clinical practice: management of thyroid carcinoma. American Association of Clinical Endocrinologists. Endocr Pract. 2001;7(3):202–20.

    Article  CAS  PubMed  Google Scholar 

  170. Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W. European thyroid cancer taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154(6):787–803.

    Article  CAS  PubMed  Google Scholar 

  171. Calo PG, Pisano G, Medas F, Marcialis J, Gordini L, Erdas E, Nicolosi A. Total thyroidectomy without prophylactic central neck dissection in clinically node-negative papillary thyroid cancer: is it an adequate treatment? World J Surg Oncol. 2014;12.

    Article  PubMed  PubMed Central  Google Scholar 

  172. McHenry CR. Prophylactic central compartment node dissection for papillary thyroid cancer: the search for justification continues. Surgery. 2011;150:1058–60.

    Article  PubMed  Google Scholar 

  173. Caron NR, Clark OH. Papillary thyroid cancer: surgical management of lymph node metastasis. Curr Treat Options in Oncol. 2005;6:311–22.

    Article  Google Scholar 

  174. Sadowski BM, Snyder SK, Lairmore TC. Routine bilateral central lymph node clearance for papillary thyroid cancer. Surgery. 2009;146:696–705.

    Article  PubMed  Google Scholar 

  175. Hughes DT, White ML, Miller BS, Gauger PG, Burney RE, Doherty GM. Influence of prophylactic central lymph node dissection on postoperative thyroglobulin levels and radioiodine treatment in papillary thyroid cancer. Surgery. 2010;148:1100–6.

    Article  PubMed  Google Scholar 

  176. Bongiovanni M, Spitale A, Faquin WCm Mazzucchelli L, Baloch ZW. The Bethesda system for reporting thyroid cytopathology: a meta-analysis. Acta Cytol. 2012;56(4):333–9.

    Article  PubMed  Google Scholar 

  177. Orlandi A, Puscar A, Capriata E, Fideleff H. Repeated fine needle aspiration of the thyroid in benign nodular thyroid disease: critical evaluation of long term follow-up. Thyroid. 2005;15:274–8.

    Article  CAS  PubMed  Google Scholar 

  178. Burman KD, Wartofsky L. Clinical practice. Thyroid nodules. N Engl J Med. 2015;373(24):2347–56.

    Article  CAS  PubMed  Google Scholar 

  179. Durante C, Costante G, Lucisano G, Bruno R, Meringolo D, Paciaroni A, et al. The natural history of benign thyroid nodules. JAMA. 2015;313(9):926–35.

    Article  CAS  PubMed  Google Scholar 

  180. Ajmal S, Rapoport S, Ramirez Batlle H, Mazzaglia PJ. The natural history of the benign thyroid nodule: what is the appropriate follow-up strategy? J Am Coll Surg. 2015;220(6):987–92.

    Article  PubMed  Google Scholar 

  181. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    Article  CAS  PubMed  Google Scholar 

  182. Vermiglio F, Lo Presti VP, Violi MA, Moleti M, Catagna MG, Finocchiaro MD, Mattina F, Mandolfino M, Zimbaro G, Trimarchi F. Changes in both size and cytological features of thyroid nodule after levothyroxine treatment. Clin Endocrinol. 2003;59(3):347–53.

    Article  CAS  Google Scholar 

  183. Samuels M, Kolobova I, Smeraglio A, Peters D, Purnell J, Schuff KG. Effects of levothyroxine replacement or suppressive therapy on energy expenditure and body composition. Thyroid. 2015. [Epub ahead of print].

    Google Scholar 

  184. Samuels MH, Kolobova I, Smeraglio A, Peters D, Janowsky JS, Schuff KG. The effects of levothyroxine replacement or suppressive therapy on health status, mood, and cognition. J Clin Endocrinol Metab. 2014;99(3):843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Samuels MH, Schuff KG, Carlson NE, Carello P, Janowsky JS. Health status, mood, and cognition in experimentally induced subclinical hypothyroidism. J Clin Endocrinol Metab. 2007;92(7):2545–51.

    Article  CAS  PubMed  Google Scholar 

  186. Baqui L, Payer J, Killinger Z, Susienkoba K, Jackuliak P, Cierny D, Langer P. The level of TSH appeared favourable in maintaining bone mineral density in postmenopausal women. Endocr Requl. 2010;44(1):9–15.

    Google Scholar 

  187. Baqi L, Payer J, Killinger Z, Hruzikova P, Cierny D, Susienkova K, Langer P. Thyrotropin versus thyroid hormone in regulating bone density and turnover in premenopausal women. Endocr Regul. 2010;44(2):57–63.

    Article  CAS  PubMed  Google Scholar 

  188. Heeringa J, Hoogendoorn EH, van der Deure WM, Hofman A, Peeters RP, Hop WC, et al. High-normal thyroid function and risk of atrial fibrillation: the Rotterdam stud. Arch Intern Med. 2008;168(20):2219–24.

    Article  PubMed  Google Scholar 

  189. Gencer B, Collet TH, Virgini V, Auer R, Rodondi N. Subclinical thyroid dysfunction and cardiovascular outcomes among prospective cohort studies. Endocr Metab Immune Disord Drug Targets. 2013;13(1):4–12.

    Article  CAS  PubMed  Google Scholar 

  190. Nanchen D, Gussekloo J, Westendorp RG, Stott DJ, Jukema JW, Trompet S, Ford I, Welsh P, Sattar N, Macfarlane PW, Mooijaart SP, Rodondi N, de Craen AJ, and Group, PROSPER. Subclinical thyroid dysfunction and the risk of heart failure in older persons at high cardiovascular risk. J Clin Endocrinol Metab. 2012;97(3):852–61.

    Article  CAS  PubMed  Google Scholar 

  191. Baloch Z, LiVolsi VA, Jain P, Jain R, Aljada I, Mandel S, et al. Role of repeat fine-needle aspiration biopsy (FNAB) in the management of thyroid nodules. Diagn Cytopathol. 2003;29(4):203–6.

    Article  PubMed  Google Scholar 

  192. VanderLaan PA, Marqusee E, Krane JF. Clinical outcome for atypia of undetermined significance in thyroid fine-needle aspirations: should repeated fna be the preferred initial approach? Am J Clin Pathol. 2011;135(5):770–5.

    Article  PubMed  Google Scholar 

  193. Yip L. Molecular diagostic testing and the indeterminate thyroid nodule. Curr Opin Oncol. 2014;26(1):8–13.

    Article  CAS  PubMed  Google Scholar 

  194. Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, Yip L, Seethala RR, Tublin ME, Stang MT, Coyne C, Johnson JT, Stewart AF, Nikiforova MN. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96(11):3390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bhatia P, Deniwar A, Friedlander P, Aslam R, Kandil E. Diagnostic potential of ancillary molecular testing in differentiation of benign and malignant thyroid nodules. Anticancer Res. 2015;35(3):1237–41.

    CAS  PubMed  Google Scholar 

  196. Chow LS, Gharib H, Goellner JR, et al. Nondiagnostic thyroid fine needle aspiration cytology: management dilemmas. Thyroid. 2001;11(12):1147–51.

    Article  CAS  PubMed  Google Scholar 

  197. Giovanella L, Fasolini F, Suriano S, Mazzucchelli L. Hyperfunctioning solid/trabecular follicular carcinoma of the thyroid gland. J Oncol. 2010.

    Google Scholar 

  198. Majima T, Doi K, Komatsu Y, Itoh H, Fukao A, Shigemoto M, Takagi C, Corners J, Mizuta N, Kato R, Nakao K. Papillary thyroid carcinoma without metastases manifesting as an autonomously functioning thyroid nodule. Endocr J. 2005;52(3):309–16.

    Article  PubMed  Google Scholar 

  199. Niedziela M, Breborowicz D, Trejster E, Korman E. Hot nodules in children and adolescents in western Poland from 1996 to 2000: clinical analysis of 31 patients. J Pediatr Endocrinol Metab. 2002;15(6):823–30.

    Article  CAS  PubMed  Google Scholar 

  200. Bahn RS, Castro MR. Approach to the patient with nontoxic multinodular goiter. J Clin Endocrinol Metab. 2011;96(5):1202–12.

    Article  CAS  PubMed  Google Scholar 

  201. Mauriello C, Marte G, Canfora A, Napolitano S, Pezzolla A, Gambardella C, Tartaglia E, Lanza M, Candela G. Bilateral benign multinodular goiter: what is the adequate surgical therapy? A review of literature. Int J Surg. 2015. [Epub ahead of print].

    Google Scholar 

  202. Moalem J, Suh I, Duh QY. Treatment and prevention of recurrence of multinodular goiter: an evidence-based review of the literature. World J Surg. 2008;32(7):1301–12.

    Article  PubMed  Google Scholar 

  203. Röjdmark J, Järhult J. High long term recurrence rate after subtotal thyroidectomy for nodular goitre. Eur J Surg. 1995;161:725–7.

    PubMed  Google Scholar 

  204. Bistrup C, Nielsen JD, Gregersen G, Franch P. Preventive effect of levothyroxine in patients operated for non-toxic goitre: a randomized trial of one hundred patients with nine years follow-up. Clin Endocrinol. 1994;40(3):323–7.

    Article  CAS  Google Scholar 

  205. Miccoli P, Antonelli A, Iacconi P, Alberti B, Gambuzza C, Baschieri L. Prospective, randomized, double-blind study about effectiveness of levothyroxine suppressive therapy in prevention of recurrence after operation: result at the third year of follow-up. Surgery. 1993;114(6):1097–101.

    CAS  PubMed  Google Scholar 

  206. Agarwal G, Aggarwal V. Is total thyroidectomy the surgical procedure of choice for benign multinodular goiter? An evidence based review. World J Surg. 2008;32(7):1313–24.

    Article  PubMed  Google Scholar 

  207. Tezelman S, Borucu I, Senyurek Giles Y, Tunca F, Terzioglu T. The change in surgical practice from subtotal to near-total or total thyroidectomy in the treatment of patients with benign multinodular goiter. World J Surg. 2009;33(3):400–5.

    Article  PubMed  Google Scholar 

  208. Hurley DL, Gharib H. Evaluation and management of multinodular goiter. Otolaryngol Clin N Am. 1996;29(4):527–40.

    CAS  Google Scholar 

  209. Molinari AS, Treiguer A, Gava VG, Rojas JL, Evangelista PE, Gonçalves I, Golbert A. Thyroid surgery performed on an overnight basis: a 17 years of experience. Arch Endocrinol Metab. 2015;59(5):434–40.

    Article  PubMed  Google Scholar 

  210. Hänscheid H, Canzi C, Eschner W, Flux G, Luster M, Strigari L, Lassmann M. EANM dosimetry committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging. 2013;40(7):1126–34.

    Article  PubMed  CAS  Google Scholar 

  211. Wong FC. MIRD: radionuclide data and decay schemes. J Nucl Med. 2009;50:2091.

    Article  Google Scholar 

  212. Vaidya B, Pearce SH. Diagnosis and management of thyrotoxicosis. BMJ. 2014;349:g5128.

    Article  PubMed  CAS  Google Scholar 

  213. Holm LE, Lundell G, Dahlqvist I, Israelsson A. Cure rate after 131I therapy for hyperthyroidism. Acta Radiol Oncol. 1981;20(3):161–6.

    Article  CAS  PubMed  Google Scholar 

  214. Nygaard B, Hegedus L, Ulriksen P, Nielsen KG, Hansen JM. Radioiodine therapy for multinodular toxic goiter. Arch Intern Med. 1999;159(12):1364–8.

    Article  CAS  PubMed  Google Scholar 

  215. Metso S, Jaatinen P, Huhtala H, Luukkaala T, Oksala H, Salmi J. Long-term follow-up study of radioiodine treatment of hyperthyroidism. Clin Endocrinol. 2004;61(5):641–8.

    Article  CAS  Google Scholar 

  216. Pearce EN. Diagnosis and management of thyrotoxicosis. BJM. 2006;332(7554):1369–73.

    Article  Google Scholar 

  217. Kyrilli A, Tang BN, Huyge V, Blocklet D, Goldman S, Corvilain B, Moreno-Reyes R. Thiamazole pretreatment lowers the (131)I activity needed to cure hyperthyroidism in patients with nodular goiter. J Clin Endocrinol Metab. 2015;100(6):2261–7.

    Article  CAS  PubMed  Google Scholar 

  218. Bonnema SJ, Bennedbaek FN, Veje A, Marving J, Hegedüs L. Continuous methimazole therapy and its effect on the cure rate of hyperthyroidism using radioactive iodine: an evaluation by a randomized trial. J Clin Endocrinol Metab. 2006;91(8):2946–51.

    Article  CAS  PubMed  Google Scholar 

  219. Burch HB, Solomon BL, Cooper DS, Ferguson P, Walpert N, Howard R. The effect of antithyroid drug pretreatment on acute changes in thyroid hormone levels after 131I ablation for Graves’ disease. J Clin Endocrinol Metab. 2001;86:3016–21.

    CAS  PubMed  Google Scholar 

  220. Wallaschofski H, Muller D, Georgi P, Paschke R. Induction of TSH-receptor antibodies in patients with toxic multinodular goitre by radioiodine treatment. Horm Metab Res. 2002;34:36–9.

    Article  CAS  PubMed  Google Scholar 

  221. Nygaard B, Faber J, Veje A, Hegedus L, Hansen JM. Transition of nodular toxic goiter to autoimmune hyperthyroidism triggered by 131I therapy. Thyroid. 1999;9(5):477–81.

    Article  CAS  PubMed  Google Scholar 

  222. Meier DA, Brill DR, Becker DV, et al. Society of Nuclear Medicine. Procedure guideline for therapy of thyroid disease with (131)iodine. J Nucl Med. 2002;43(6):856–61.

    Google Scholar 

  223. Stokkel MP, Handkiewicz Junak D, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37(11):2218–28.

    Article  PubMed  Google Scholar 

  224. Verelst J, Bonnyns M, Glinoer D. Radioiodine therapy in voluminous multinodular non-toxic goitre. Acta Endocrinol. 1990;122(4):417–21.

    Article  CAS  Google Scholar 

  225. Huysmans DA, Nieuwlaat WA, Erdtsieck RJ, Schellekens AP, Bus JW, Bravenboer B, Hermus AR. Administration of a single low dose of recombinant human thyrotropin significantly enhances thyroid radioiodide uptake in nontoxic nodular goiter. J Clin Endocrinol Metab. 2000;85(10):3592–6.

    CAS  PubMed  Google Scholar 

  226. Ceccarelli C, Antonangeli L, Brozzi F, Bianchi F, Tonacchera M, Santini P, Mazzeo S, Bencivelli W, Pinchera A, Vitti P. Radioiodine 131I treatment for large nodular goiter: recombinant human thyrotropin allows the reduction of radioiodine 131I activity to be administered in patients with low uptake. Thyroid. 2011;21(7):759–64.

    Article  CAS  PubMed  Google Scholar 

  227. Silva MN, Rubió IG, Romão R, Gebrin EM, Buchpiguel C, Tomimori E, Camargo R, Cardia MS, Medeiros-Neto G. Administration of a single dose of recombinant human thyrotrophin enhances the efficacy of radioiodine treatment of large compressive multinodular goitres. Clin Endocrinol. 2004;60(3):300–8.

    Article  CAS  Google Scholar 

  228. Fast S, Nielsen VE, Bonnema SJ, Hegedüs L. Time to reconsider nonsurgical therapy of benign non-toxic multinodular goitre: focus on recombinant human TSH augmented radioiodine therapy. Eur J Endocrinol. 2009;160(4):517–28.

    Article  CAS  PubMed  Google Scholar 

  229. Medeiros-Neto G, Marui S, Knobel M. An outline concerning the potential use of recombinant human thyrotropin for improving radioiodine therapy of multinodular goiter. Endocrine. 2008;33(2):109–17.

    Article  CAS  PubMed  Google Scholar 

  230. Albino CC, Mesa CO Jr, Olandoski M, Ueda CE, Woellner LC, Goedert CA, Souza AM, Graf H. Recombinant human thyrotropin as adjuvant in the treatment of multinodular goiters with radioiodine. J Clin Endocrinol Metab. 2005;90(5):2775–80.

    Article  CAS  PubMed  Google Scholar 

  231. Nielsen VE, Bonnema SJ, Hegedüs L. Transient goiter enlargement after administration of 0.3 mg of recombinant human thyrotropin in patients with benign nontoxic nodular goiter: a randomized, double-blind, crossover trial. J Clin Endocrinol Metab. 2006;91(4):1317–22.

    Article  CAS  PubMed  Google Scholar 

  232. Reverter JL, Alonso N, Avila M, Lucas A, Mauricio D, Puig-Domingo M. Evaluation of efficacy, safety, pain perception and health-related quality of life of percutaneous ethanol injection as first-line treatment in symptomatic thyroid cysts. BMC Endocr Disord. 2015;15(1):73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Gharib H, Hegedüs L, Pacella CM, Baek JH, Papini E. Clinical review: nonsurgical, image-guided, minimally invasive therapy for thyroid nodules. J Clin Endocrinol Metab. 2013;98(10):3949–57.

    Article  CAS  PubMed  Google Scholar 

  234. Suh CH, Baek JH, Ha EJ, Choi YJ, Lee JH, Kim JK, Chung KW, Kim TY, Kim WB, Shong YK. Ethanol ablation of predominantly cystic thyroid nodules: evaluation of recurrence rate and factors related to recurrence. Clin Radiol. 2015;70(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  235. Guglielmi R, Pacella CM, Bianchini A, Bizzarri G, Rinaldi R, Graziano FM, Petrucci L, Toscano V, Palma E, Poggi M, Papini E. Percutaneous ethanol injection treatment in benign thyroid lesions: role and efficacy. Thyroid. 2004;14(2):125–31.

    Article  CAS  PubMed  Google Scholar 

  236. Sung JY, Baek JH, Kim KS, Lee D, Yoo H, Kim JK, Park SH. Single session treatment of benign cystic thyroid nodules with ethanol versus radiofrequency ablation: a prospective randomized study. Radiology. 2013;269(1):293–300.

    Article  PubMed  Google Scholar 

  237. Kim JH, Lee HK, Lee JH, Ahn IM, Choi CG. Efficacy of sonographically guided percutaneous ethanol injection for treatment of thyroid cysts versus solid thyroid nodules. AJR Am J Roentgenol. 2003;180(6):1723–6.

    Article  PubMed  Google Scholar 

  238. Park NH, Kim DW, Park HJ, Lee EJ, Park JS, Park SI, Bae JM, Lee JH. Thyroid cysts treated with ethanol ablation can mimic malignancy during sonographic follow-up. J Clin Ultrasound. 2011;39(8):441–6.

    Article  PubMed  Google Scholar 

  239. Del Prete S, Russo D, Caraglia M, Giuberti G, Marra M, Vitale G, Lupoli G, Abbruzzese A, Capasso E. Percutaneous ethanol injection of autonomous thyroid nodules with a volume larger than 40 ml: three years of follow-up. Clin Radiol. 2001;56(11):895–901.

    Article  PubMed  Google Scholar 

  240. Monzani F, Caraccio N, Goletti O, Lippolis PV, Casolaro A, Del Guerra P, Cavina E, Miccoli P. Five-year follow-up of percutaneous ethanol injection for the treatment of hyperfunctioning thyroid nodules: a study of 117 patients. Clin Endocrinol. 1997;46(1):9–15.

    Article  CAS  Google Scholar 

  241. Lippi F, Ferrari C, Manetti L, Rago T, Santini F, Monzani F, Bellitti P, Papini E, Busnardo B, Angelini F, Pinchera A. Treatment of solitary autonomous thyroid nodules by percutaneous ethanol injection: results of an Italian multicenter study. The Multicenter Study Group. J Clin Endocrinol Metab. 1996;81(9):3261–4.

    CAS  PubMed  Google Scholar 

  242. Tarantino L, Francica G, Sordelli I, Sperlongano P, Parmeggiani D, Ripa C, Parmeggiani U. Percutaneous ethanol injection of hyperfunctioning thyroid nodules: long-term follow-up in 125 patients. AJR Am J Roentgenol. 2008;190(3):800–8.

    Article  PubMed  Google Scholar 

  243. Lewis BD, Hay ID, Charboneau JW, McIver B, Reading CC, Goellner JR. Percutaneous ethanol injection for treatment of cervical lymph node metastases in patients with papillary thyroid carcinoma. AJR Am J Roentgenol. 2002;178(3):699–704.

    Article  CAS  PubMed  Google Scholar 

  244. Hay ID, Lee RA, Davidge-Pitts C, Reading CC, Charboneau JW. Long-term outcome of ultrasound-guided percutaneous ethanol ablation of selected “recurrent” neck nodal metastases in 25 patients with TNM stages III or IVA papillary thyroid carcinoma previously treated by surgery and 131I therapy. Surgery. 2013;154(6):1448–54.

    Article  PubMed  Google Scholar 

  245. Pacella CM, Mauri G, Achille G, Barbaro D, Bizzarri G, De Feo P, Di Stasio E, Esposito R, Gambelunghe G, Misischi I, Raggiunti B, et al. Outcomes and risk factors for complications of laser ablation for thyroid nodules: a multicenter study on 1531 patients. J Clin Endocrinol Metab. 2015;100(10):3903–10.

    Article  CAS  PubMed  Google Scholar 

  246. Valcavi R, Riganti F, Bertani A, Formisano D, Pacella CM. Percutaneous laser ablation of cold benign thyroid nodules: a 3-year follow-up study in 122 patients. Thyroid. 2010;20(11):1253–61.

    Article  CAS  PubMed  Google Scholar 

  247. Barbaro D, Orsini P, Lapi P, Pasquini C, Tuco A, Righini A, Lemmi P. Percutaneous laser ablation in the treatment of toxic and pretoxic nodular goiter. Endocr Pract. 2007;13(1):30–6.

    Article  PubMed  Google Scholar 

  248. Papini E, Bizzarri G, Pacella CM. Percutaneous laser ablation of benign and malignant thyroid nodules. Curr Opin Endocrinol Diabetes Obes. 2008;15(5):434–9.

    Article  PubMed  Google Scholar 

  249. Li XL, Xu HX, Lu F, Yue WW, Sun LP, Bo XW, Guo LH, Xu JM, Liu BJ, Li DD, Qu S. Treatment efficacy and safety of ultrasound-guided percutaneous bipolar radiofrequency ablation for benign thyroid nodules. Br J Radiol. 2016. [Epub ahead of print].

    Google Scholar 

  250. Suh CH, Baek JH, Choi YJ, Lee JH. Efficacy and safety of radiofrequency and ethanol ablation for treating locally recurrent thyroid cancer: a systematic review and meta-analysis. Thyroid. 2016;(22). [Epub ahead of print].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Gharib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parsa, A.A., Gharib, H. (2019). Thyroid Nodule: Current Evaluation and Management. In: Luster, M., Duntas, L., Wartofsky, L. (eds) The Thyroid and Its Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72102-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72102-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72100-2

  • Online ISBN: 978-3-319-72102-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics