Skip to main content

Endocrine Resistance and Breast Cancer Stem Cells: The Inflammatory Connection that Could Lead to New and Improved Therapy Outcomes

  • Chapter
  • First Online:
Resistance to Targeted Therapies in Breast Cancer

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 16))

  • 479 Accesses

Abstract

Breast cancer is the most commonly diagnosed cancer among American women and claims over 40,000 lives each year. Nearly 75% of breast tumors express estrogen receptor (ER) and will be treated with endocrine therapy, such as tamoxifen or aromatase inhibitors. Interfering with ER action via endocrine therapies has been a mainstay of breast cancer treatment for more than a century. But despite its proven success, the onset of endocrine resistance limits its usefulness. It is estimated that up to 50% of ER+ tumors fail to respond to endocrine therapy and eventually recur as aggressive, metastatic cancers. Therapy failure and aggressive tumor phenotypes have been attributed to the presence of a therapy-resistant population of cells within the tumor called breast cancer stem cells (CSCs). Breast CSCs are a small subpopulation of highly tumorigenic cells with stem-like features that sit at the apex of the hierarchy to drive tumor initiation, growth, and progression. Like their normal counterparts, being able to self-renew and differentiate are two hallmarks of CSCs, which in turn drive tumorigenesis, contribute to heterogeneity, and are the seeds of recurrent tumors and distant metastasis. Thereby, targeting breast CSCs will sensitize resistant, aggressive tumors to therapy, and prevent future recurrence and metastasis. Given that the inflammatory nuclear factor κB (NFκB) pathway plays an essential role in regulating breast CSCs, NFκB pathway inhibition can be exploited to eradicate CSCs and potentially overcome endocrine resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AF1, 2:

Function domain 1 and 2

AI:

Aromatase inhibitor

ALDH1:

Aldehyde dehydrogenase 1

AP-1:

Activator protein 1

CSC:

Cancer stem cell

EGFR:

Epidermal growth factor receptor

ER:

Estrogen receptor

ERE:

Estrogen response element

HER2:

Human epidermal growth factor receptor 2

IGF1R:

Insulin-like growth factor receptor

LBD:

Ligand-binding domain

NFκB:

Nuclear factor kappa B

SERD:

Selective estrogen receptor downregulator

SERM:

Selective estrogen receptor modulator

SP-1:

Specificity protein 1

References

  1. Perou CM, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  2. Sorlie T, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Creighton CJ. The molecular profile of luminal B breast cancer. Biologics Targets Ther. 2012;6:289–97.

    Article  CAS  Google Scholar 

  4. Jensen EV, Jacobson HI. Fate of steroid estrogens in target tissues. In: Pincus G, Vollmer EP, editors. Biological activities of steroids in relation to cancer. Academic Press; New York: 1960. pp. 161–74.

    Google Scholar 

  5. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A. 1996;93:5925–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grober OM, et al. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation. BMC Genomics. 2011;12:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar V, et al. Functional domains of the human estrogen receptor. Cell. 1987;51:941–51.

    Article  CAS  PubMed  Google Scholar 

  8. Klinge CM. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res. 2001;29:2905–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frasor J, et al. Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology. 2003;144:4562–74.

    Article  CAS  PubMed  Google Scholar 

  10. Smith CL, O'Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev. 2004;25:45–71.

    Article  CAS  PubMed  Google Scholar 

  11. Kushner PJ, et al. Estrogen receptor pathways to AP-1. J Steroid Biochem Mol Biol. 2000;74:311–7.

    Article  CAS  PubMed  Google Scholar 

  12. Arpino G, Wiechmann L, Osborne CK, Schiff R. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev. 2008;29:217–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee AV, Cui X, Oesterreich S. Cross-talk among estrogen receptor, epidermal growth factor, and insulin-like growth factor signaling in breast cancer. Clin Cancer Res. 2001;7:4429s–35s;discussion 4411s-4412s.

    CAS  PubMed  Google Scholar 

  14. Schiff R, et al. Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res. 2004;10:331S–6S.

    Article  CAS  PubMed  Google Scholar 

  15. RC W, Smith CL, O'Malley BW. Transcriptional regulation by steroid receptor coactivator phosphorylation. Endocr Rev. 2005;26:393–9.

    Article  Google Scholar 

  16. Levin ER, Pietras RJ. Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat. 2008;108:351–61.

    Article  CAS  PubMed  Google Scholar 

  17. Jordan VC. Tamoxifen as the first targeted long-term adjuvant therapy for breast cancer. Endocr Relat Cancer. 2014;21:R235–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wardell SE, Nelson ER, McDonnell DP. From empirical to mechanism-based discovery of clinically useful selective estrogen receptor modulators (SERMs). Steroids. 2014;90:30–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Howell A. Pure oestrogen antagonists for the treatment of advanced breast cancer. Endocr Relat Cancer. 2006;13:689–706.

    Article  CAS  PubMed  Google Scholar 

  20. Osborne CK, Wakeling A, Nicholson RI. Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer. 2004;90(Suppl 1):S2–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brueggemeier RW. Update on the use of aromatase inhibitors in breast cancer. Expert Opin Pharmacother. 2006;7:1919–30.

    Article  CAS  PubMed  Google Scholar 

  22. Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nature reviews. Cancer. 2002;2:101–12.

    PubMed  Google Scholar 

  23. Hoefnagel LD, et al. Prognostic value of estrogen receptor alpha and progesterone receptor conversion in distant breast cancer metastases. Cancer. 2012;118:4929–35.

    Article  CAS  PubMed  Google Scholar 

  24. Hoskins JM, Carey LA, McLeod HL. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nature reviews. Cancer. 2009;9:576–86.

    CAS  PubMed  Google Scholar 

  25. Clarke R, Tyson JJ, Dixon JM. Endocrine resistance in breast cancer – an overview and update. Mol Cell Endocrinol. 2015;418 Pt 3:220–34.

    Article  PubMed  Google Scholar 

  26. Gutierrez MC, et al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol. 2005;23:2469–76.

    Article  CAS  PubMed  Google Scholar 

  27. Schiff R, Massarweh S, Shou J, Osborne CK. Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res. 2003;9:447S–54S.

    CAS  PubMed  Google Scholar 

  28. Le Romancer M, et al. Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocr Rev. 2011;32:597–622.

    Article  PubMed  Google Scholar 

  29. Murphy LC, Seekallu SV, Watson PH. Clinical significance of estrogen receptor phosphorylation. Endocr Relat Cancer. 2011;18:R1–14.

    Article  CAS  PubMed  Google Scholar 

  30. Santen RJ, et al. Estrogen signals via an extra-nuclear pathway involving IGF-1R and EGFR in tamoxifen-sensitive and -resistant breast cancer cells. Steroids. 2009;74:586–94.

    Article  CAS  PubMed  Google Scholar 

  31. Jeselsohn R, Buchwalter G, De Angelis C, Brown M, Schiff R. ESR1 mutations-a mechanism for acquired endocrine resistance in breast cancer. Nature reviews. Clin Oncol. 2015;12:573–83.

    CAS  Google Scholar 

  32. Sharma SV, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 2010;141:69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramirez M, et al. Diverse drug-resistance mechanisms can emerge from drug-tolerant cancer persister cells. Nat Commun. 2016;7:10690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu Z, et al. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics. 2006;7:96.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dontu G, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17:1253–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Charafe-Jauffret E, et al. Cancer stem cells in breast: current opinion and future challenges. Pathobiology. 2008;75:75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li X, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100:672–9.

    Article  CAS  PubMed  Google Scholar 

  39. Diehn M, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458:780–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Croker AK, Allan AL. Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med. 2008;12:374–90.

    Article  CAS  PubMed  Google Scholar 

  41. Velasco-Velazquez MA, Popov VM, Lisanti MP, Pestell RG. The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol. 2011;179:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hollier BG, Evans K, Mani SA. The epithelial-to-mesenchymal transition and cancer stem cells: a coalition against cancer therapies. J Mammary Gland Biol Neoplasia. 2009;14:29–43.

    Article  PubMed  Google Scholar 

  43. Luo M, et al. Breast cancer stem cells: current advances and clinical implications. Methods Mol Biol. 2015;1293:1–49.

    Article  PubMed  Google Scholar 

  44. Clayton H, Titley I, Vivanco M. Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp Cell Res. 2004;297:444–60.

    Article  CAS  PubMed  Google Scholar 

  45. Ginestier C, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1:555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Granit RZ, Slyper M, Ben-Porath I. Axes of differentiation in breast cancer: untangling stemness, lineage identity, and the epithelial to mesenchymal transition. Wiley Interdiscip Rev Syst Biol Med. 2014;6:93–106.

    Article  CAS  PubMed  Google Scholar 

  47. Asselin-Labat ML, et al. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst. 2006;98:1011–4.

    Article  CAS  PubMed  Google Scholar 

  48. Sleeman KE, et al. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol. 2007;176:19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fillmore CM, et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci U S A. 2010;107:21737–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Shipitsin M, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11:259–73.

    Article  CAS  PubMed  Google Scholar 

  51. Horwitz KB, Dye WW, Harrell JC, Kabos P, Sartorius CA. Rare steroid receptor-negative basal-like tumorigenic cells in luminal subtype human breast cancer xenografts. Proc Natl Acad Sci U S A. 2008;105:5774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haughian JM, et al. Maintenance of hormone responsiveness in luminal breast cancers by suppression of Notch. Proc Natl Acad Sci U S A. 2012;109:2742–7.

    Article  CAS  PubMed  Google Scholar 

  53. Raffo D, et al. Tamoxifen selects for breast cancer cells with mammosphere forming capacity and increased growth rate. Breast Cancer Res Treat. 2013;142:537–48.

    Article  CAS  PubMed  Google Scholar 

  54. Kabos P, et al. Cytokeratin 5 positive cells represent a steroid receptor negative and therapy resistant subpopulation in luminal breast cancers. Breast Cancer Res Treat. 2011;128:45–55.

    Article  CAS  PubMed  Google Scholar 

  55. Akrap N, et al. Identification of distinct breast cancer stem cell populations based on single-cell analyses of functionally enriched stem and progenitor pools. Stem Cell Rep. 2016;6:121–36.

    Article  CAS  Google Scholar 

  56. Liu H, et al. Tamoxifen-resistant breast cancer cells possess cancer stem-like cell properties. Chin Med J. 2013;126:3030–4.

    CAS  PubMed  Google Scholar 

  57. Piva M, et al. Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med. 2014;6:66–79.

    Article  CAS  PubMed  Google Scholar 

  58. Sansone P, et al. Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer. Nat Commun. 2016;7:10442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brooks MD, Burness ML, Wicha MS. Therapeutic implications of cellular heterogeneity and plasticity in breast cancer. Cell Stem Cell. 2015;17:260–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22:396–403.

    Article  CAS  PubMed  Google Scholar 

  61. Garofalo M, Croce CM. Role of microRNAs in maintaining cancer stem cells. Adv Drug Deliv Rev. 2015;81:53–61.

    Article  CAS  PubMed  Google Scholar 

  62. Korkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots. Clin Cancer Res. 2011;17:6125–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cao Y, Luo JL, Karin M. IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci U S A. 2007;104:15852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iliopoulos D, Hirsch HA, Struh K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139:693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hinohara K, et al. ErbB receptor tyrosine kinase/NF-kappaB signaling controls mammosphere formation in human breast cancer. Proc Natl Acad Sci U S A. 2012;109:6584–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhou Y, et al. Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int J Biochem Cell Biol. 2005;37:1130–44.

    Article  CAS  PubMed  Google Scholar 

  67. Jones RL, et al. Nuclear NF-kappaB/p65 expression and response to neoadjuvant chemotherapy in breast cancer. J Clin Pathol. 2011;64:130–5.

    Article  PubMed  Google Scholar 

  68. Kubo M, et al. Inhibition of the proliferation of acquired aromatase inhibitor-resistant breast cancer cells by histone deacetylase inhibitor LBH589 (panobinostat). Breast Cancer Res Treat. 2013;137:93–107.

    Article  CAS  PubMed  Google Scholar 

  69. Liu H, et al. Apoptotic action of 17beta-estradiol in raloxifene-resistant MCF-7 cells in vitro and in vivo. J Natl Cancer Inst. 2003;95:1586–97.

    Article  CAS  PubMed  Google Scholar 

  70. Riggins RB, Zwart A, Nehra R, Clarke R. The nuclear factor kappa B inhibitor parthenolide restores ICI 182,780 (Faslodex; fulvestrant)-induced apoptosis in antiestrogen-resistant breast cancer cells. Mol Cancer Ther. 2005;4:33–41.

    Article  CAS  PubMed  Google Scholar 

  71. deGraffenried LA, et al. NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol. 2004;15:885–90.

    Article  CAS  PubMed  Google Scholar 

  72. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69:7507–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou J, et al. NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat. 2008;111:419–27.

    Article  CAS  PubMed  Google Scholar 

  74. Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci U S A. 2013;110:972–7.

    Article  CAS  PubMed  Google Scholar 

  75. Kakarala M, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat. 2010;122:777–85.

    Article  CAS  PubMed  Google Scholar 

  76. Li Y, et al. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res. 2010;16:2580–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sen GS, et al. Curcumin enhances the efficacy of chemotherapy by tailoring p65NFkappaB-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem. 2011;286:42232–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kastrati I, et al. Dimethyl fumarate inhibits the nuclear factor kappaB pathway in breast cancer cells by covalent modification of p65 protein. J Biol Chem. 2016;291:3639–47.

    Article  CAS  PubMed  Google Scholar 

  79. Kastrati I, et al. A novel aspirin prodrug inhibits NFkappaB activity and breast cancer stem cell properties. BMC Cancer. 2015;15:845.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

No Conflict Statement

“No potential conflicts of interest were disclosed.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irida Kastrati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kastrati, I. (2017). Endocrine Resistance and Breast Cancer Stem Cells: The Inflammatory Connection that Could Lead to New and Improved Therapy Outcomes. In: Prosperi, J. (eds) Resistance to Targeted Therapies in Breast Cancer. Resistance to Targeted Anti-Cancer Therapeutics, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-70142-4_3

Download citation

Publish with us

Policies and ethics