Skip to main content

Surface-Enhanced Raman Spectroscopy: Principles, Substrates, and Applications

  • Chapter
  • First Online:
Metal Nanoparticles and Clusters

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique that simultaneously combines fingerprint recognition capabilities, typical of vibrational spectroscopies, and very high sensitivity (down to single molecule), owing to the enhancement provided by plasmonic effects. Its discovery dates back to the 1970s, and since then, SERS has gained a lot of interest in the scientific community, as witnessed by the quick raise in the percentage of publications involving SERS, especially in the last two decades. In this book chapter, we would like to provide the reader with an overview of SERS, going from the illustration of its basic principles to the description of a wide selection of its applications. At first, the physical phenomena responsible for the electromagnetic and chemical SERS enhancements are described; thereafter, two key features of SERS, namely, its distance dependence and the concept of hot spot, are discussed, as well as the near- vs. far-field properties in plasmonic systems. Two sections are then dedicated to the materials that are more often used in SERS and to the strategies adopted to fabricate efficient SERS substrates. The last section illustrates the applications of SERS in several fields of sensing, like the detection of chemical warfare agents, environmental pollutants, food contaminants, and illicit drugs; the use of SERS in art preservation, forensic science, and medical diagnosis is also described, with specific and relevant examples from the most recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.L. Haynes, C.R. Yonzon, X. Zhang, R.P. Van Duyne, Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 36, 471–484 (2005). https://doi.org/10.1002/jrs.1376

    Article  Google Scholar 

  2. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). https://doi.org/10.1016/0009-2614(74)85388-1

    Article  Google Scholar 

  3. D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977). https://doi.org/10.1016/S0022-0728(77)80224-6

    Article  Google Scholar 

  4. Albrecht et al., Anomalously intense Raman spectra of pyridine at a silver electrode. JACS 99, 5215–5217 (1977). https://doi.org/10.1021/ja00457a071

    Google Scholar 

  5. P. Hendra, M. Fleischmann, P. Hendra, J. McQuillan, A.J. Mcquillan, THE DISCOVERY OF SERS: An idiosyncratic account from a vibrational spectroscopist. Analyst 141, 4996–4999 (2016). https://doi.org/10.1039/C6AN90055K

    Article  Google Scholar 

  6. J.R. Lakowicz, Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem. 298, 1–24 (2001). https://doi.org/10.1006/abio.2001.5377

    Article  Google Scholar 

  7. F. Neubrech, C. Huck, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem. Rev. 117(7), 5110–5145 (2017)

    Google Scholar 

  8. M. Gühlke, Z. Heiner, J. Kneipp, Surface-enhanced Raman and surface-enhanced hyper-Raman scattering of thiol-functionalized carotene. J. Phys. Chem. C (2016). https://doi.org/10.1021/acs.jpcc.6b01895

    Google Scholar 

  9. C. Steuwe, C.F. Kaminski, J.J. Baumberg, S. Mahajan, Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano Lett. 11, 5339–5343 (2011). https://doi.org/10.1021/nl202875w

    Article  Google Scholar 

  10. T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles. J. Raman Spectrosc. 34, 651–654 (2003). https://doi.org/10.1002/jrs.1047

    Article  Google Scholar 

  11. G.F. Walsh, L. Dal Negro, Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. Nano Lett. 13, 3111–3117 (2013). https://doi.org/10.1021/nl401037n

    Article  Google Scholar 

  12. E.C. Le Ru, P.G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy (Elsevier, Amsterdam, 2009)

    Google Scholar 

  13. J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42, 734–742 (2009). https://doi.org/10.1021/ar800249y

    Article  Google Scholar 

  14. M. Moskovits, Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 15, 5301 (2013). https://doi.org/10.1039/c2cp44030j

    Article  Google Scholar 

  15. A. Otto, The “chemical” (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 36, 497–509 (2005). https://doi.org/10.1002/jrs.1355

    Article  Google Scholar 

  16. M. Moskovits, Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005). https://doi.org/10.1002/jrs.1362

    Article  Google Scholar 

  17. S.L. Kleinman, B. Sharma, M.G. Blaber, A.I. Henry, N. Valley, R.G. Freeman, M.J. Natan, G.C. Schatz, R.P. Van Duyne, Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J. Am. Chem. Soc. 135, 301–308 (2013). https://doi.org/10.1021/ja309300d

    Article  Google Scholar 

  18. E.C. Le Ru, M. Meyer, E. Blackie, P.G. Etchegoin, Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. J. Raman Spectrosc. 39, 1127–1134 (2008). https://doi.org/10.1002/jrs

    Article  Google Scholar 

  19. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102

    Article  Google Scholar 

  20. P.G. Etchegoin, E.C. Le Ru, A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079 (2008). https://doi.org/10.1039/b809196j

    Google Scholar 

  21. M. Fan, G.F.S. Andrade, A.G. Brolo, A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 693, 7–25 (2011). https://doi.org/10.1016/j.aca.2011.03.002

    Article  Google Scholar 

  22. M. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008). https://doi.org/10.1021/cr068126n

    Article  Google Scholar 

  23. L. Polavarapu, L.M. Liz-Marzán, Towards low-cost flexible substrates for nanoplasmonic sensing. Phys. Chem. Chem. Phys. 15, 5288 (2013). https://doi.org/10.1039/c2cp43642f

    Article  Google Scholar 

  24. B. Sharma, R.R. Frontiera, A.-I. Henry, E. Ringe, R.P. Van Duyne, SERS: Materials, applications, and the future. Mater. Today 15, 16–25 (2012). https://doi.org/10.1016/S1369-7021(12)70017-2

    Article  Google Scholar 

  25. K.C. Bantz, A.F. Meyer, N.J. Wittenberg, H. Im, O. Kurtuluş, S.H. Lee, N.C. Lindquist, O. S-H, C.L. Haynes, Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 13, 11551 (2011). https://doi.org/10.1039/c0cp01841d

    Article  Google Scholar 

  26. R. Petry, M. Schmitt, J. Popp, Raman spectroscopy-a prospective tool in the life sciences. Chem. Phys. Chem. 4, 14–30 (2003). https://doi.org/10.1002/cphc.200390004

    Article  Google Scholar 

  27. X.-M. Qian, S.M. Nie, Single-molecule and single-nanoparticle SERS: From fundamental mechanisms to biomedical applications. Chem. Soc. Rev. 37, 912 (2008). https://doi.org/10.1039/b708839f

    Article  Google Scholar 

  28. X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008). https://doi.org/10.1038/nbt1377

    Article  Google Scholar 

  29. S. Schlücker, Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756–4795 (2014). https://doi.org/10.1002/anie.201205748

    Article  Google Scholar 

  30. F. Romanato, R. Pilot, M. Massari, T. Ongarello, G. Pirruccio, P. Zilio, G. Ruffato, M. Carli, D. Sammito, V. Giorgis, D. Garoli, R. Signorini, P. Schiavuta, R. Bozio, Design, fabrication and characterization of plasmonic gratings for SERS. Microelectron. Eng. 88, 2717–2720 (2011). https://doi.org/10.1016/j.mee.2011.02.052

    Article  Google Scholar 

  31. I. Ros, T. Placido, V. Amendola, C. Marinzi, N. Manfredi, R. Comparelli, M. Striccoli, A. Agostiano, A. Abbotto, D. Pedron, R. Pilot, R. Bozio, SERS properties of gold Nanorods at resonance with molecular, transverse, and longitudinal plasmon excitations. Plasmonics, 1–13 (2014). https://doi.org/10.1007/s11468-014-9669-4

  32. R.A. Tripp, R.A. Dluhy, Y. Zhao, Novel nanostructures for SERS biosensing. Nano Today 3, 31–37 (2008). https://doi.org/10.1016/S1748-0132(08)70042-2

    Article  Google Scholar 

  33. S.D. Hudson, G. Chumanov, Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal. Bioanal. Chem. 394, 679–686 (2009). https://doi.org/10.1007/s00216-009-2756-2

    Article  Google Scholar 

  34. L. Litti, V. Amendola, G. Toffoli, M. Meneghetti, Detection of low-quantity anticancer drugs by surface-enhanced Raman scattering. Anal. Bioanal. Chem. 408, 1–9 (2016). https://doi.org/10.1007/s00216-016-9315-4

    Article  Google Scholar 

  35. D.A. Stuart, K.B. Biggs, R.P. Van Duyne, Surface-enhanced Raman spectroscopy of half-mustard agent. Analyst 131, 568 (2006). https://doi.org/10.1039/b513326b

    Article  Google Scholar 

  36. J.M. Sylvia, J.A. Janni, J.D. Klein, K.M. Spencer, Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal. Chem. 72, 5834–5840 (2000). https://doi.org/10.1021/ac0006573

    Article  Google Scholar 

  37. R.S. Golightly, W.E. Doering, M.J. Natan, Surface-enhanced Raman spectroscopy and homeland security: A perfect match? ACS Nano 3, 2859–2869 (2009). https://doi.org/10.1021/nn9013593

    Article  Google Scholar 

  38. J. Kubackova, G. Fabriciova, P. Miskovsky, D. Jancura, S. Sanchez-Cortes, Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Anal. Chem. 87, 663–669 (2015). https://doi.org/10.1021/ac503672f

    Article  Google Scholar 

  39. S. Sánchez-Cortés, C. Domingo, J.V. García-Ramos, J.A. Aznárez, Surface-enhanced vibrational study (SEIR and SERS) of Dithiocarbamate pesticides on gold films. Langmuir 17, 1157–1162 (2001). https://doi.org/10.1021/la001269z

    Article  Google Scholar 

  40. D. Lee, S. Lee, G.H. Seong, J. Choo, E.K. Lee, D.-G. Gweon, S. Lee, Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy. Appl. Spectrosc. 60, 373–377 (2006). https://doi.org/10.1366/000370206776593762

    Article  Google Scholar 

  41. X. Li, G. Chen, L. Yang, Z. Jin, J. Liu, Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 20, 2815–2824 (2010). https://doi.org/10.1002/adfm.201000792

    Article  Google Scholar 

  42. J. Zheng, L. He, Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr. Rev. Food Sci. Food Saf. 13, 317–328 (2014). https://doi.org/10.1111/1541-4337.12062

    Article  Google Scholar 

  43. K. Chen, M. Leona, T. Vo-Dinh, Surface-enhanced Raman scattering for identification of organic pigments and dyes in works of art and cultural heritage material. Sens. Rev. 27, 109–120 (2007). https://doi.org/10.1108/02602280710731678

    Article  Google Scholar 

  44. F. Casadio, M. Leona, J.R. Lombardi, R.P. Van Duyne, Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc. Chem. Res. 43, 782–791 (2010). https://doi.org/10.1021/ar100019q

    Article  Google Scholar 

  45. Y. Yang, Z.-Y. Li, K. Yamaguchi, M. Tanemura, Z. Huang, D. Jiang, Y. Chen, F. Zhou, M. Nogami, Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4, 2663–2669 (2012). https://doi.org/10.1039/c2nr12110g

    Article  Google Scholar 

  46. B. Sägmüller, B. Schwarze, G. Brehm, S. Schneider, Application of SERS spectroscopy to the identification of (3,4-methylenedioxy) amphetamine in forensic samples utilizing matrix stabilized silver halides. Analyst 126, 2066–2071 (2001). https://doi.org/10.1039/b105321n

    Article  Google Scholar 

  47. V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng, G.A. Rizzi, A. Martucci, G. Granozzi, A. Gennaro, Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in situ production of hydrogen peroxide. Carbon 95, 949–963 (2015). https://doi.org/10.1016/j.carbon.2015.09.002

    Article  Google Scholar 

  48. V. Perazzolo, E. Gradzka, C. Durante, R. Pilot, N. Vicentini, G.A. Rizzi, G. Granozzi, A. Gennaro, Chemical and electrochemical stability of nitrogen and sulphur doped mesoporous carbons. Electrochim. Acta 197, 251–262 (2016). https://doi.org/10.1016/j.electacta.2016.02.025

    Article  Google Scholar 

  49. Y.F. Huang, D.Y. Wu, A. Wang, B. Ren, S. Rondinini, Z.Q. Tian, C. Amatore, Bridging the gap between electrochemical and organometallic activation: Benzyl chloride reduction at silver cathodes. J. Am. Chem. Soc. 132, 17199–17210 (2010). https://doi.org/10.1021/ja106049c

    Article  Google Scholar 

  50. N.L. Gruenke, M.F. Cardinal, M.O. McAnally, R.R. Frontiera, G.C. Schatz, R.P. Van Duyne, Ultrafast and nonlinear surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 45, 2263 (2016). https://doi.org/10.1039/c5cs00763a

    Article  Google Scholar 

  51. L. Orian, R. Pilot, R. Bozio, In silico stark effect: Determination of excited state polarizabilities of squaraine dyes. J. Phys. Chem. A 121, 1587–1596 (2017). https://doi.org/10.1021/acs.jpca.6b12090

    Article  Google Scholar 

  52. D.A. Long, The Raman Effect a Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, Chichester, 2002)

    Google Scholar 

  53. R. Aroca, Surface-Enhanced Vibrational Spectroscopy (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  54. R.L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000)

    Book  Google Scholar 

  55. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  56. V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, A.M. Iatì, Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter (2017). https://doi.org/10.1088/1361-648X/aa60f3

  57. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. (2005). https://doi.org/10.1021/cr030063a

  58. S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006). https://doi.org/10.1039/b514191e

    Article  Google Scholar 

  59. A. Poletti, G. Fracasso, G. Conti, R. Pilot, V. Amendola, Laser generated gold nanocorals with broadband plasmon absorption for photothermal applications. Nanoscale 7, 13702–13714 (2015). https://doi.org/10.1039/c5nr03442f

    Article  Google Scholar 

  60. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  61. M. Pelton, Modified spontaneous emission in nanophotonic structures. Nat. Photonics 9, 427–435 (2015). https://doi.org/10.1038/nphoton.2015.103

    Article  Google Scholar 

  62. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681

    Google Scholar 

  63. K.H. Drexhage, H. Kuhn, F.P. Schafer, W. Sperling, Variation of the fluorescence decay time of a molecule in front of a mirror. Ber. Bunsenges. Phys. Chem. 20, 1179 (1966)

    Google Scholar 

  64. K.H. Drexhage, Progress in Optics XII, Edited (North-Holland, Amsterdam, 1974)

    Google Scholar 

  65. K.H. Drexhage, Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1(2), 693–701 (1970)

    Article  Google Scholar 

  66. P. Goy, J.M. Raimond, M. Gross, S. Haroche, Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983). https://doi.org/10.1103/PhysRevLett.50.1903

    Article  Google Scholar 

  67. P. Andrew, W.L. Barnes, Förster energy transfer in an optical microcavity. Science 290, 785–788 (2000). https://doi.org/10.1126/science.290.5492.785

    Article  Google Scholar 

  68. J.D. Jackson, Classical Electrodynamics (Wiley, Estados Unidos, 1998)

    Google Scholar 

  69. E.C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J.R. Krenn, E. Blackie, P.G. Etchegoin, Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects. J. Phys. Chem. C. Lett. 112, 8117–8121 (2008). https://doi.org/10.1021/jp802219c

  70. B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P.G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, F. Buatier De Mongeot, Re-radiation enhancement in polarized surface-enhanced resonant raman scattering of randomly oriented molecules on self-organized gold nanowires. ACS Nano 5, 5945–5956 (2011). https://doi.org/10.1021/nn201730k

    Article  Google Scholar 

  71. M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783 (1985). https://doi.org/10.1103/RevModPhys.57.783

    Article  Google Scholar 

  72. P.W. Atkins, Physical Chemistry (Oxford Univeristy Press, Oxford, 1994)

    Google Scholar 

  73. A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne, Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 109, 11279–11285 (2005). https://doi.org/10.1021/jp050508u

    Article  Google Scholar 

  74. N. Michieli, R. Pilot, V. Russo, C. Scian, F. Todescato, R. Signorini, S. Agnoli, T. Cesca, R. Bozio, G. Mattei, Oxidation effects on the SERS response of silver nanoprism arrays. RSC Adv. 7, 369–378 (2017). https://doi.org/10.1039/C6RA26307K

    Article  Google Scholar 

  75. R. Pilot, A. Zoppi, S. Trigari, F.L. Deepak, E. Giorgetti, R. Bozio, Wavelength dispersion of the local field intensity in silver-gold nanocages. Phys. Chem. Chem. Phys. 17, 7355–7365 (2015). https://doi.org/10.1039/C4CP04453C

    Article  Google Scholar 

  76. M.V. Cañamares, C. Chenal, R.L. Birke, J.R. Lombardi, DFT, SERS, and single-molecule SERS of crystal violet. J. Phys. Chem. C 112, 20295–20300 (2008). https://doi.org/10.1021/jp807807j

    Article  Google Scholar 

  77. J.D. Jiang, E. Burstein, H. Kobayashi, Resonant Raman scattering by crystal-violet molecules adsorbed on a smooth gold surface: Evidence for a charge transfer excitation. Phys. Rev. Lett. 57, 1793–1796 (1986)

    Article  Google Scholar 

  78. J.R. Lombardi, R.L. Birke, A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 112, 5605–5617 (2008)

    Article  Google Scholar 

  79. J.R. Lombardi, R.L. Birke, Theory of surface-enhanced Raman scattering in semiconductors. J. Phys. Chem. C 118, 11120–11130 (2014). https://doi.org/10.1063/1.3698292

    Article  Google Scholar 

  80. L.A. Dick, A.D. McFarland, C.L. Haynes, R.P. Van Duyne, Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106, 853–860 (2002). https://doi.org/10.1021/jp013638l

    Article  Google Scholar 

  81. E.C. Le Ru, C. Galloway, P.G. Etchegoin, On the connection between optical absorption/extinction and SERS enhancements. Phys. Chem. Chem. Phys. 8, 3083–3087 (2006). https://doi.org/10.1039/b605292d

    Article  Google Scholar 

  82. P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008). https://doi.org/10.1146/annurev.anchem.1.031207.112814

    Article  Google Scholar 

  83. G. Compagnini, C. Galati, S. Pignataro, Distance dependence of surface enhanced Raman scattering probed by alkanethiol self-assembled monolayers. Phys. Chem. Chem. Phys. 1, 2351–2353 (1999). https://doi.org/10.1039/a901034c

    Article  Google Scholar 

  84. B.J. Kennedy, S. Spaeth, M. Dickey, K.T. Carron, Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using Alkanethiols. J. Phys. Chem. B 103, 3640–3646 (1999). https://doi.org/10.1021/jp984454i

    Article  Google Scholar 

  85. G.J. Kovacs, R.O. Loutfy, P.S. Vincett, C. Jennings, R. Aroca, Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: Evidence for the electromagnetic mechanism. Langmuir 2, 689–694 (1986). https://doi.org/10.1021/la00072a001

    Article  Google Scholar 

  86. S.S. Masango, R.A. Hackler, N. Large, A.I. Henry, M.O. McAnally, G.C. Schatz, P.C. Stair, R.P. Van Duyne, High-resolution distance dependence study of surface-enhanced Raman scattering enabled by atomic layer deposition. Nano Lett. 16, 4251–4259 (2016). https://doi.org/10.1021/acs.nanolett.6b01276

    Article  Google Scholar 

  87. N.E. Marotta, K.R. Beavers, L.A. Bottomley, Limitations of surface enhanced Raman scattering in sensing DNA hybridization demonstrated by label-free DNA oligos as molecular rulers of distance-dependent enhancement. Anal. Chem. 85, 1440–1446 (2013). https://doi.org/10.1021/ac302454j

    Article  Google Scholar 

  88. C.A. Murray, D.L. Allara, Measurement of the molecule–silver separation dependence of surface enhanced Raman scattering in multilayered structures. J. Chem. Phys. 76, 1290 (1982). https://doi.org/10.1063/1.443101

    Article  Google Scholar 

  89. S.L. Kleinman, R.R. Frontiera, A.-I. Henry, J.A. Dieringer, R.P. Van Duyne, Creating, characterizing, and controlling chemistry with SERS hot spots. Phys. Chem. Chem. Phys. 15, 21–36 (2013). https://doi.org/10.1039/c2cp42598j

    Article  Google Scholar 

  90. E.C. Le Ru, J. Grand, I. Sow, W.R.C. Somerville, P.G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, J. Aubard, A scheme for detecting every single target molecule with surface-enhanced raman spectroscopy. Nano Lett. 11, 5013–5019 (2011). https://doi.org/10.1021/nl2030344

    Article  Google Scholar 

  91. M.A. Mahmoud, M.A. El-Sayed, Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields. Nano Lett. 9, 3025–3031 (2009). https://doi.org/10.1021/nl901501x

    Article  Google Scholar 

  92. W. Zhu, K.B. Crozier, Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering. Nat. Commun. 5, 5228 (2014). https://doi.org/10.1038/ncomms6228

    Article  Google Scholar 

  93. Y. Fang, N.-H. Seong, D.D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 321, 388–392 (2008). https://doi.org/10.1126/science.1159499

    Article  Google Scholar 

  94. B.J. Messinger, K.U. Von Raben, R.K. Chang, P.W. Barber, Local fields at the surface of noble-metal microspheres. Phys. Rev. B 24, 649–657 (1981). https://doi.org/10.1103/PhysRevB.24.649

    Article  Google Scholar 

  95. N. Félidj, J. Aubard, G. Levi, J.R. Krenn, A. Hohenau, G. Schider, A. Leitner, F.R. Aussenegg, Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Appl. Phys. Lett. 82, 3095–3097 (2003). https://doi.org/10.1063/1.1571979

    Article  Google Scholar 

  96. N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, M.L. de la Chapelle, Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength. Appl. Phys. Lett. 97, 23113 (2010). https://doi.org/10.1063/1.3462068

    Article  Google Scholar 

  97. C. D’Andrea, A. Irrera, B. Fazio, A. Foti, E. Messina, O.M. Maragò, S. Kessentini, P. Artoni, C. David, P.G. Gucciardi, Red shifted spectral dependence of the SERS enhancement in a random array of gold nanoparticles covered with a silica shell: Extinction versus scattering. J. Opt. 17, 114016 (2015). https://doi.org/10.1088/2040-8978/17/11/114016

    Article  Google Scholar 

  98. K.U. Von Raben, R.K. Chang, B.L. Laube, P.W. Barber, Wavelength dependence of surface-enhanced Raman scattering from Ag colloids with adsorbed CN- complexes, SO3, and pyridine. J. Phys. Chem. 88, 5290–5296 (1984)

    Article  Google Scholar 

  99. D. Fornasiero, F. Grieser, Analysis of the visible absorption and SERS excitation spectra of silver sols. J. Chem. Phys. 87, 3213 (1987). https://doi.org/10.1063/1.453009

    Article  Google Scholar 

  100. H. Feilchenfeld, O. Siiman, Surface Raman excitation and enhancement profiles for chromate, molybdate, and tungstate on colloidal silver. J. Phys. Chem. 90, 2163–2168 (1986)

    Article  Google Scholar 

  101. M. Kerker, O. Siiman, O.S. Wang, Effect of aggregates on extinction and surface-enhanced Raman scattering spectra of colloidal silver. J. Phys. Chem. 88, 3168–3170 (1984). https://doi.org/10.1021/j150659a003

    Article  Google Scholar 

  102. E.C. Le Ru, M. Dalley, P.G. Etchegoin, Plasmon resonances of silver colloids studied by surface enhanced Raman spectroscopy. Curr. Appl. Phys. 6, 411–414 (2006). https://doi.org/10.1016/j.cap.2005.11.030

    Article  Google Scholar 

  103. V. Weber, A. Feis, C. Gellini, R. Pilot, P.R. Salvi, R. Signorini, Far- and nearfield properties of gold nanoshells studied by photoacoustic and surface-enhanced Raman spectroscopies. Phys. Chem. Chem. Phys. 17, 21190–21197 (2015). https://doi.org/10.1039/C4CP05054A

    Article  Google Scholar 

  104. F. Colas, M. Cottat, R. Gillibert, N. Guillot, N. Djaker, N. Lidgi-Guigui, T. Toury, D. Barchiesi, A. Toma, E. Di Fabrizio, P.G. Gucciardi, M.L. de la Chapelle, Red-shift effects in surface enhanced Raman spectroscopy: Spectral or intensity dependence of the near-field? J. Phys. Chem. C (2016). https://doi.org/10.1021/acs.jpcc.6b01492

  105. J. Zuloaga, P. Nordlander, On the energy shift between near-field and far-field peak intensities in localized plasmon systems. Nano Lett. 11, 1280–1283 (2011). https://doi.org/10.1021/nl1043242

    Article  Google Scholar 

  106. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010). https://doi.org/10.1002/lpor.200900055

    Article  Google Scholar 

  107. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, Orlando, 1976)

    Google Scholar 

  108. E. Cottancin, G. Celep, J. Lermé, M. Pellarin, J.R. Huntzinger, J.L. Vialle, M. Broyer, Optical properties of noble metal clusters as a function of the size: Comparison between experiments and a semi-quantal theory. Theor. Chem. Accounts 116, 514–523 (2006). https://doi.org/10.1007/s00214-006-0089-1

    Article  Google Scholar 

  109. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  Google Scholar 

  110. E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1985)

    Google Scholar 

  111. G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007). https://doi.org/10.1021/nl070648a

    Article  Google Scholar 

  112. M. Muniz-Miranda, C. Gellini, E. Giorgetti, Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation. J. Phys. Chem. C 115, 5021–5027 (2011). https://doi.org/10.1021/jp1086027

    Article  Google Scholar 

  113. T. Dörfer, M. Schmitt, J. Popp, Deep-UV surface-enhanced Raman scattering. J. Raman Spectrosc. 38, 1379–1382 (2007). https://doi.org/10.1002/jrs

    Article  Google Scholar 

  114. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, S. Kawata, Deep-UV tip-enhanced Raman scattering. J. Raman Spectrosc. 40, 1324–1330 (2009). https://doi.org/10.1002/jrs.2287

    Article  Google Scholar 

  115. Z.-L. Yang, Q.-H. Li, B. Ren, Z.-Q. Tian, M. Fleischmann, Tunable SERS from aluminium nanohole arrays in the ultraviolet region. Chem. Commun. 47, 3909–3911 (2011). https://doi.org/10.1039/c0cc05311b

    Article  Google Scholar 

  116. G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. 25, 3264–3294 (2013). https://doi.org/10.1002/adma.201205076

    Article  Google Scholar 

  117. I. Alessandri, J.R. Lombardi, Enhanced Raman scattering with dielectrics. Chem. Rev. (2016). https://doi.org/10.1021/acs.chemrev.6b00365

  118. M.J. Natan, Concluding Remarks: Surface enhanced Raman scattering. Faraday Discuss. 132, 321 (2006). https://doi.org/10.1039/b601494c

    Article  Google Scholar 

  119. E.C. Le Ru, E.J. Blackie, M. Meyer, P.G. Etchegoin, Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 111, 13794–13803 (2007). https://doi.org/10.1021/jp0687908

    Article  Google Scholar 

  120. R.J.C. Brown, M.J.T. Milton, Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J. Raman Spectrosc. 39, 1313–1326 (2008). https://doi.org/10.1002/jrs.2030

    Article  Google Scholar 

  121. H. Ko, S. Singamaneni, V.V. Tsukruk, Nanostructured surfaces and assemblies as SERS media. Small 4, 1576–1599 (2008). https://doi.org/10.1002/smll.200800337

    Article  Google Scholar 

  122. S. Fateixa, H.I.S. Nogueira, T. Trindade, Hybrid nanostructures for SERS: Materials development and chemical detection. Phys. Chem. Chem. Phys. 17, 21046–21071 (2015). https://doi.org/10.1039/C5CP01032B

    Article  Google Scholar 

  123. J.F. Betz, Y. WW, Y. Cheng, I.M. White, G.W. Rubloff, Simple SERS substrates: Powerful, portable, and full of potential. Phys. Chem. Chem. Phys. 16, 2224–2239 (2014). https://doi.org/10.1039/C3CP53560F

    Article  Google Scholar 

  124. H. Liu, L. Yang, J. Liu, Three-dimensional SERS hot spots for chemical sensing: Towards developing a practical analyzer. Trends Anal. Chem. 80, 364–372 (2016). https://doi.org/10.1016/j.trac.2015.08.012

    Article  Google Scholar 

  125. X. Sun, H. Li, A review: Nanofabrication of surface-enhanced raman spectroscopy (SERS) substrates. Curr. Nanosci. 12, 175–183 (2016). https://doi.org/10.2174/1573413711666150523001519

    Article  Google Scholar 

  126. L. Guerrini, D. Graham, Molecularly-mediated assemblies of plasmonic nanoparticles for surface-enhanced Raman spectroscopy applications. Chem. Soc. Rev. 41, 7085–7107 (2012). https://doi.org/10.1039/c2cs35118h

    Article  Google Scholar 

  127. D. Graham, The next generation of advanced spectroscopy: Surface enhanced Raman scattering from metal nanoparticles. Angew. Chem. Int. Ed. 49, 9325–9327 (2010). https://doi.org/10.1002/anie.201002838

    Article  Google Scholar 

  128. D. Cialla, A. März, R. Böhme, F. Theil, K. Weber, M. Schmitt, J. Popp, Surface-enhanced Raman spectroscopy (SERS): Progress and trends. Anal. Bioanal. Chem. 403, 27–54 (2012). https://doi.org/10.1007/s00216-011-5631-x

    Article  Google Scholar 

  129. Y. Cao, D. Li, F. Jiang, Y. Yang, Z. Huang, Engineering metal nanostructure for SERS application. J. Nanomater. (2013). https://doi.org/10.1155/2013/123812

  130. M. Jahn, S. Patze, I.J. Hidi, R. Knipper, A.I. Radu, A. Mühlig, S. Yüksel, V. Peksa, K. Weber, T. Mayerhöfer, D. Cialla-May, J. Popp, Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst 141, 756–793 (2015). https://doi.org/10.1039/C5AN02057C

    Article  Google Scholar 

  131. P. Gao, D. Gosztola, L.W.H. Leung, M.J. Weaver, Surface-enhanced Raman scattering at gold electrodes: Dependence on electrochemical pretreatment conditions and comparisons with silver. J. Electroanal. Chem. 233, 211–222 (1987). https://doi.org/10.1016/0022-0728(87)85017-9

    Article  Google Scholar 

  132. G. Giallongo, R. Pilot, C. Durante, G.A. Rizzi, R. Signorini, R. Bozio, A. Gennaro, G. Granozzi, Silver nanoparticle arrays on a DVD-derived template: An easy&cheap SERS substrate. Plasmonics 6, 725–733 (2011). https://doi.org/10.1007/s11468-011-9256-x

    Article  Google Scholar 

  133. X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, Z.-Q. Tian, Surface-enhanced raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 394, 1729–1745 (2009). https://doi.org/10.1007/s00216-009-2761-5

    Article  Google Scholar 

  134. K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan, Preparation and characterization of Au colloid monolayers. Anal. Chem. 67, 735–743 (1995). https://doi.org/10.1021/ac00100a008

    Article  Google Scholar 

  135. R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Self-assembled metal colloid monolayers: An approach to SERS substrates. Science 267, 1629–1632 (1995)

    Article  Google Scholar 

  136. K.C. Grabar, P.C. Smith, M.D. Musick, J.A. Davis, D.G. Walter, M.A. Jackson, A.P. Guthrie, M.J. Natan, Kinetic control of interparticle spacing in Au colloid-based surfaces: Rational nanometer-scale architecture. J. Am. Chem. Soc. 118, 1148–1153 (1996). https://doi.org/10.1021/ja952233+

    Article  Google Scholar 

  137. K.R. Brown, M.J. Natan, Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14, 726–728 (1998). https://doi.org/10.1021/la970982u

    Article  Google Scholar 

  138. B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, H.-B. Sun, Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels. Lab Chip 11, 3347 (2011). https://doi.org/10.1039/c1lc20397e

    Article  Google Scholar 

  139. I. Izquierdo-Lorenzo, S. Jradi, P.-M. Adam, Direct laser writing of random Au nanoparticle three-dimensional structures for highly reproducible micro-SERS measurements. RSC Adv. 4, 4128–4133 (2014). https://doi.org/10.1039/C3RA46220J

    Article  Google Scholar 

  140. M.L. Tseng, Y.W. Huang, M.K. Hsiao, H.W. Huang, H.M. Chen, Y.L. Chen, C.H. Chu, N.N. Chu, Y.J. He, C.M. Chang, W.C. Lin, D.W. Huang, H.P. Chiang, R.S. Liu, G. Sun, D.P. Tsai, Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement. ACS Nano 6, 5190–5197 (2012). https://doi.org/10.1021/nn300947n

    Article  Google Scholar 

  141. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466

    Article  Google Scholar 

  142. H.H. Wang, C.Y. Liu, W.S. Bin, N.W. Liu, C.Y. Peng, T.H. Chan, C.F. Hsu, J.K. Wang, Y.L. Wang, Highly raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps. Adv. Mater. 18, 491–495 (2006). https://doi.org/10.1002/adma.200501875

    Article  Google Scholar 

  143. G. Giallongo, C. Durante, R. Pilot, D. Garoli, R. Bozio, F. Romanato, A. Gennaro, G.A. Rizzi, G. Granozzi, Growth and optical properties of silver nanostructures obtained on connected anodic aluminum oxide templates. Nanotechnology 23, 325604 (2012). https://doi.org/10.1088/0957-4484/23/32/325604

    Article  Google Scholar 

  144. D.H. Jeong, Y.X. Zhang, M. Moskovits, Polarized surface enhanced Raman scattering from aligned silver nanowire rafts. J. Phys. Chem. B 108, 12724–12728 (2004). https://doi.org/10.1021/jp037973g

    Article  Google Scholar 

  145. G. Das, N. Patra, A. Gopalakrishnan, R.P. Zaccaria, A. Toma, S. Thorat, E. Di Fabrizio, A. Diaspro, M. Salerno, Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application. Analyst 137, 1785 (2012). https://doi.org/10.1039/c2an16022f

    Article  Google Scholar 

  146. C. Toccafondi, R.P. Zaccaria, S. Dante, M. Salerno, Fabrication of gold-coated ultra-thin anodic porous alumina substrates for augmented SERS. Materials (Basel) 9, 403 (2016). https://doi.org/10.3390/ma9060403

    Article  Google Scholar 

  147. C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001). https://doi.org/10.1021/jp010657m

    Article  Google Scholar 

  148. X. Zhang, J. Zhao, A.V. Whitney, J.W. Elam, R.P. Van Duyne, Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 128, 10304–10309 (2006). https://doi.org/10.1021/JA0638760

    Article  Google Scholar 

  149. C.R. Yonzon, D.A. Stuart, X. Zhang, A.D. McFarland, C.L. Haynes, R.P. Van Duyne, Towards advanced chemical and biological nanosensors – An overview. Talanta 67, 438–448 (2005). https://doi.org/10.1016/j.talanta.2005.06.039

    Article  Google Scholar 

  150. L. Baia, M. Baia, J. Popp, S. Astilean, Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR. J. Phys. Chem. B 110, 23982–23986 (2006). https://doi.org/10.1021/jp064458k

    Article  Google Scholar 

  151. C. Forestiere, A.J. Pasquale, A. Capretti, G. Miano, A. Tamburrino, S.Y. Lee, B.M. Reinhard, L. Dal Negro, Genetically engineered plasmonic nanoarrays. Nano Lett. 12, 2037–2044 (2012). https://doi.org/10.1021/nl300140g

    Article  Google Scholar 

  152. Y. Chu, M.G. Banaee, K.B. Crozier, Double-resonance plasmon substrates for surface-enhanced raman scattering with enhancement at excitation and Stokes frequencies. ACS Nano 4, 2804–2810 (2010). https://doi.org/10.1021/nn901826q

    Article  Google Scholar 

  153. B. Yan, A. Thubagere, W.R. Premasiri, L.D. Ziegler, L.D. Negro, B.M. Reinhard, Engineered SERS substrates with multiscale signal enhancement: Nanoparticle cluster arrays. ACS Nano 3, 1190–1202 (2009). https://doi.org/10.1021/nn800836f

    Article  Google Scholar 

  154. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio, Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682–687 (2011). https://doi.org/10.1038/nphoton.2011.222

    Article  Google Scholar 

  155. T. Siegfried, Y. Ekinci, H.H. Solak, O.J.F. Martin, H. Sigg, Fabrication of sub-10 nm gap arrays over large areas for plasmonic sensors. Appl. Phys. Lett. 99, 263302 (2011). https://doi.org/10.1063/1.3672045

    Article  Google Scholar 

  156. Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998). https://doi.org/10.1146/annurev.matsci.28.1.153

    Article  Google Scholar 

  157. D. Qin, Y. Xia, G.M. Whitesides, Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 5, 491–502 (2010). https://doi.org/10.1038/nprot.2009.234

    Article  Google Scholar 

  158. J.A. Rogers, R.G. Nuzzo, Recent progress in soft lithography. Mater. Today 8, 50–56 (2005). https://doi.org/10.1016/S1369-7021(05)00702-9

    Article  Google Scholar 

  159. G.L. Liu, L.P. Lee, Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Appl. Phys. Lett. 87, 74101 (2005). https://doi.org/10.1063/1.2031935

    Article  Google Scholar 

  160. M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, M.L. de la Chapelle, Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection. Nanoscale Res. Lett. 9, 623 (2014). https://doi.org/10.1186/1556-276X-9-623

    Article  Google Scholar 

  161. S. Picciolini, D. Mehn, C. Morasso, R. Vanna, M. Bedoni, P. Pellacani, G. Marchesini, A. Valsesia, D. Prosperi, C. Tresoldi, F. Ciceri, F. Gramatica, Polymer nanopillar – Gold arrays as surface-enhanced Raman spectroscopy substrate for the simultaneous detection of multiple genes. ACS Nano 8, 10496–10506 (2014). https://doi.org/10.1021/nn503873d

    Article  Google Scholar 

  162. M. Kahraman, P. Daggumati, O. Kurtulus, E. Seker, S. Wachsmann-Hogiu, Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci. Rep. 3, 3396 (2013). https://doi.org/10.1038/srep03396

    Article  Google Scholar 

  163. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    Article  Google Scholar 

  164. B.S. Yeo, T. Schmid, W. Zhang, R. Zenobi, A strategy to prevent signal losses, analyte decomposition, and fluctuating carbon contamination bands in surface-enhanced Raman spectroscopy. Appl. Spectrosc. 62, 708–713 (2008). https://doi.org/10.1366/000370208784658165

    Article  Google Scholar 

  165. J. Ramsey, S. Ranganathan, R.L. McCreery, J. Zhao, Performance comparisons of conventional and line-focused surface Raman spectrometers. Appl. Spectrosc. 55, 767–773 (2001). https://doi.org/10.1366/0003702011952460

    Article  Google Scholar 

  166. D. Cialla, S. Pollok, C. Steinbrücker, K. Weber, J. Popp, SERS-based detection of biomolecules. Nano 3, 383–411 (2014). https://doi.org/10.1515/nanoph-2013-0024

    Google Scholar 

  167. J.A. Huang, Y.L. Zhang, H. Ding, H.B. Sun, SERS-enabled lab-on-a-chip systems. Adv. Opt. Mater. 3, 618–633 (2015). https://doi.org/10.1002/adom.201400534

    Article  Google Scholar 

  168. A. Bonifacio, S. Cervo, V. Sergo, Label-free surface-enhanced Raman spectroscopy of biofluids: Fundamental aspects and diagnostic applications. Anal. Bioanal. Chem. 407, 8265–8277 (2015). https://doi.org/10.1007/s00216-015-8697-z

    Article  Google Scholar 

  169. A.S.D.S. Indrasekara, S. Meyers, S. Shubeita, L.C. Feldman, T. Gustafsson, L. Fabris, Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime. Nanoscale 6, 8891–8899 (2014). https://doi.org/10.1039/c4nr02513j

    Article  Google Scholar 

  170. L. Fabris, M. Schierhorn, M. Moskovits, G.C. Bazan, Aptatag-based multiplexed assay for protein detection by surface-enhanced Raman spectroscopy. Small 6, 1550–1557 (2010). https://doi.org/10.1002/smll.201000262

    Article  Google Scholar 

  171. L. Fabris, SERS tags: The next promising tool for personalized cancer detection? Chem. Nano. Mat. 2, 249–258 (2016). https://doi.org/10.1002/cnma.201500221

    Google Scholar 

  172. N.H. Kim, S.J. Lee, M. Moskovits, Reversible tuning of SERS hot spots with aptamers. Adv. Mater. 23, 4152–4156 (2011). https://doi.org/10.1002/adma.201101847

    Article  Google Scholar 

  173. A. Hakonen, T. Rindzevicius, M.S. Schmidt, P.O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, M. Käll, Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Nanoscale 8, 1305–1308 (2016). https://doi.org/10.1039/c5nr06524k

    Article  Google Scholar 

  174. J.Y. Xu, J. Wang, L.T. Kong, G.C. Zheng, Z. Guo, J.H. Liu, SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms. J. Raman Spectrosc. 42, 1728–1735 (2011). https://doi.org/10.1002/jrs.2932

    Article  Google Scholar 

  175. A. Hakonen, P.O. Andersson, M. Stenbæk Schmidt, T. Rindzevicius, M. Käll, Explosive and chemical threat detection by surface-enhanced Raman scattering: A review. Anal. Chim. Acta 893, 1–13 (2015). https://doi.org/10.1016/j.aca.2015.04.010

    Article  Google Scholar 

  176. M. Yilmaz, E. Senlik, E. Biskin, M.S. Yavuz, U. Tamer, G. Demirel, Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS. Phys. Chem. Chem. Phys. 16, 5563–5570 (2014). https://doi.org/10.1039/c3cp55087g

    Article  Google Scholar 

  177. D.-W. Li, W.-L. Zhai, Y.-T. Li, Y.-T. Long, Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchim. Acta 181, 23–43 (2014). https://doi.org/10.1007/s00604-013-1115-3

    Article  Google Scholar 

  178. P.A. Mosier-Boss, S.H. Lieberman, Detection of nitrate and sulfate anions by normal Raman spectroscopy and SERS of cationic-coated, silver substrates. Appl. Spectrosc. 54, 1126–1135 (2000). https://doi.org/10.1366/0003702001950922

    Article  Google Scholar 

  179. P.A. Mosier-Boss, S.H. Lieberman, Detection of anions by normal Raman spectroscopy and surface-enhanced Raman spectroscopy of cationic-coated substrates. Appl. Spectrosc. 57, 1129–1137 (2003). https://doi.org/10.1366/00037020360695991

    Article  Google Scholar 

  180. B. Gu, J. Tio, W. Wang, Y.-K. Ku, S. Dai, Raman spectroscopic detection for perchlorate at low concentrations. Appl. Spectrosc. 58, 741–744 (2004). https://doi.org/10.1366/000370204872890

    Article  Google Scholar 

  181. A. Eshkeiti, B.B. Narakathu, A.S.G. Reddy, A. Moorthi, M.Z. Atashbar, E. Rebrosova, M. Rebros, M. Joyce, Detection of heavy metal compounds using a novel inkjet printed surface enhanced Raman spectroscopy (SERS) substrate. Sensors Actuators B 171–172, 705–711 (2012). https://doi.org/10.1016/j.snb.2012.05.060

    Article  Google Scholar 

  182. J. Du, J. Cui, C. Jing, Rapid in situ identification of arsenic species using a portable Fe3O4@Ag SERS sensor. Chem. Commun. 50, 347–349 (2014). https://doi.org/10.1039/c3cc46920d

    Article  Google Scholar 

  183. W. Ji, Y. Wang, I. Tanabe, X. Han, B. Zhao, Y. Ozaki, Semiconductor-driven “turn-off” surface-enhanced Raman scattering spectroscopy: Application in selective determination of chromium( vi ) in water. Chem. Sci. 6, 342–348 (2015). https://doi.org/10.1039/C4SC02618G

    Article  Google Scholar 

  184. S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, T. Pal, Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: A platform for SERS based low-level detection of uranyl ion. ACS Appl. Mater. Interfaces 5, 8724–8732 (2013). https://doi.org/10.1021/am4025017

    Article  Google Scholar 

  185. O. Péron, E. Rinnert, T. Toury, M.L. de la Chapelle, C. Compère, Quantitative SERS sensors for environmental analysis of naphthalene. Analyst 136, 1018–1022 (2011). https://doi.org/10.1039/c0an00797h

    Article  Google Scholar 

  186. M. Mueller, M. Tebbe, D.V. Andreeva, M. Karg, R.A.A. Puebla, N.P. Perez, A. Fery, Platforms for polycyclic aromatic hydrocarbons sensing in gas. Langmuir 28, 9168–9173 (2012)

    Article  Google Scholar 

  187. X. Gu, J.P. Camden, Surface-enhanced Raman spectroscopy-based approach for ultrasensitive and selective detection of hydrazine. Anal. Chem. 87, 6460–6464 (2015). https://doi.org/10.1021/acs.analchem.5b01566

    Article  Google Scholar 

  188. M. Leona, J. Stenger, E. Ferloni, Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J. Raman Spectrosc. 37, 981–992 (2007). https://doi.org/10.1002/jrs.1582

    Article  Google Scholar 

  189. D. Kurouski, S. Zaleski, F. Casadio, R.P. Van Duyne, N.C. Shah, Tip-enhanced Raman spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper. J. Am. Chem. Soc. 136, 8677–8684 (2014). https://doi.org/10.1021/ja5027612

    Article  Google Scholar 

  190. F. Pozzi, M. Leona, Surface-enhanced Raman spectroscopy in art and archaeology. J. Raman Spectrosc. 47, 67–77 (2016). https://doi.org/10.1002/jrs.4827

    Article  Google Scholar 

  191. F. Casadio, C. Daher, L. Bellot-Gurlet, Raman spectroscopy of cultural heritage materials: Overview of applications and new Frontiers in instrumentation, sampling modalities, and data processing. Top. Curr. Chem. 374, 62 (2016). https://doi.org/10.1007/s41061-016-0061-z

    Article  Google Scholar 

  192. S. Feng, F. Gao, Z. Chen, E. Grant, D.D. Kitts, S. Wang, X. Lu, Determination of α-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor. J. Agric. Food Chem. 61, 10467–10475 (2013). https://doi.org/10.1021/jf4038858

    Article  Google Scholar 

  193. B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y.H. Lee, H.V. Demir, X. Yi Ling, Q. Xiong, Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants. ACS Nano 7, 5993–6000 (2013). https://doi.org/10.1021/nn401685p

    Article  Google Scholar 

  194. X. Zhou, F. Zhou, H. Liu, L. Yang, J. Liu, Assembly of polymer-gold nanostructures with high reproducibility into a monolayer film SERS substrate with 5 nm gaps for pesticide trace detection. Analyst 138, 5832 (2013). https://doi.org/10.1039/c3an00914a

    Article  Google Scholar 

  195. X. Wang, Y. Du, H. Zhang, Y. Xu, Y. Pan, T. Wu, H. Hu, Fast enrichment and ultrasensitive in-situ detection of pesticide residues on oranges with surface-enhanced Raman spectroscopy based on Au nanoparticles decorated glycidyl methacrylate-ethylene dimethacrylate material. Food Control 46, 108–114 (2014). https://doi.org/10.1016/j.foodcont.2014.04.035

    Article  Google Scholar 

  196. Y. Zhu, L. Zhang, L. Yang, Designing of the functional paper-based surface-enhanced Raman spectroscopy substrates for colorants detection. Mater. Res. Bull. 63, 199–204 (2015). https://doi.org/10.1016/j.materresbull.2014.12.004

    Article  Google Scholar 

  197. P. Li, R. Dong, Y. Wu, H. Liu, L. Kong, L. Yang, Polystyrene/Ag nanoparticles as dynamic surface-enhanced Raman spectroscopy substrates for sensitive detection of organophosphorus pesticides. Talanta 127, 269–275 (2014). https://doi.org/10.1016/j.talanta.2014.03.075

    Article  Google Scholar 

  198. Y. Zhu, M. Li, D. Yu, L. Yang, A novel paper rag as “D-SERS” substrate for detection of pesticide residues at various peels. Talanta 128, 117–124 (2014). https://doi.org/10.1016/j.talanta.2014.04.066

    Article  Google Scholar 

  199. X. Hu, P. Zheng, G. Meng, Q. Huang, C. Zhu, F. Han, Z. Huang, Z. Li, Z. Wang, N. Wu, An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide. Nanotechnology 27, 384001 (2016). https://doi.org/10.1088/0957-4484/27/38/384001

    Article  Google Scholar 

  200. A.S. De Silva Indrasekara, L. Fabris, SERS-based approaches toward genetic profiling. Bioanalysis 7, 263–278 (2015). https://doi.org/10.4155/bio.14.295

    Article  Google Scholar 

  201. L. Fabris, M. Dante, G. Braun, S.J. Lee, M. Moskovits, T.-Q. Nguyen, G.C. Bazan, N.O. Reich, Communication a heterogeneous PNA-based SERS method for DNA detection a heterogeneous PNA-based SERS method for DNA detection. Society 129, 6086–6087 (2007). https://doi.org/10.1021/ja0705184

    Google Scholar 

  202. G. Braun, J.L. Seung, M. Dante, T.Q. Nguyen, M. Moskovits, N. Reich, Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films Gary. J. Am. Chem. Soc. 129, 6378–6379 (2007). https://doi.org/10.1021/ja070514z

    Article  Google Scholar 

  203. S. He, K.K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.J. Li, S. Song, C. Fan, Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal. Chem. 84, 4622–4627 (2012). https://doi.org/10.1021/ac300577d

    Article  Google Scholar 

  204. R. Huang, H.T. Yang, L. Cui, W. DY, B. Ren, Z.Q. Tian, Structural and charge sensitivity of surface-enhanced Raman spectroscopy of adenine on silver surface: A quantum chemical study. J. Phys. Chem. C 117, 23730–23737 (2013). https://doi.org/10.1021/jp407615r

    Article  Google Scholar 

  205. J.L. Abell, J.M. Garren, J.D. Driskell, R.A. Tripp, Y. Zhao, Label-free detection of micro-RNA hybridization using surface-enhanced Raman spectroscopy and least-squares analysis. J. Am. Chem. Soc. 134, 12889–12892 (2012). https://doi.org/10.1021/ja3043432

    Article  Google Scholar 

  206. L. Bi, Y. Rao, Q. Tao, J. Dong, T. Su, F. Liu, W. Qian, Fabrication of large-scale gold nanoplate films as highly active SERS substrates for label-free DNA detection. Biosens. Bioelectron. 43, 193–199 (2013). https://doi.org/10.1016/j.bios.2012.11.029

    Article  Google Scholar 

  207. S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, H. Qiu, Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine. ACS Appl. Mater. Interfaces 7, 10977–10987 (2015). https://doi.org/10.1021/acsami.5b02303

    Article  Google Scholar 

  208. N. Guarrotxena, B. Liu, L. Fabris, G.C. Bazan, Antitags: Nanostructured tools for developing SERS-based ELISA analogs. Adv. Mater. 22, 4954–4958 (2010). https://doi.org/10.1002/adma.201002369

    Article  Google Scholar 

  209. L. Wu, Z. Wang, K. Fan, S. Zong, Y. Cui, A SERS-assisted 3D barcode Chip for high-throughput biosensing. Small 11, 2798–2806 (2015). https://doi.org/10.1002/smll.201403474

    Article  Google Scholar 

  210. A. Kamińska, E. Witkowska, K. Winkler, I. Dzięcielewski, J.L. Weyher, J. Waluk, Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens. Bioelectron. 66, 461–467 (2015). https://doi.org/10.1016/j.bios.2014.10.082

    Article  Google Scholar 

  211. F. Sun, J.R. Ella-Menye, D.D. Galvan, T. Bai, H.C. Hung, Y.N. Chou, P. Zhang, S. Jiang, Q. Yu, Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions. ACS Nano 9, 2668–2676 (2015). https://doi.org/10.1021/nn506447k

    Article  Google Scholar 

  212. J. Yan, S. Su, S. He, Y. He, B. Zhao, D. Wang, H. Zhang, Q. Huang, S. Song, C. Fan, Nano rolling-circle amplification for enhanced SERS hot spots in protein microarray analysis. Anal. Chem. 84, 9139–9145 (2012). https://doi.org/10.1021/ac301809e

    Article  Google Scholar 

  213. P. Negri, Z.D. Schultz, Online SERS detection of the 20 proteinogenic l-amino acids separated by capillary zone electrophoresis. Analyst 139, 5989 (2014). https://doi.org/10.1039/c4an01177e

    Article  Google Scholar 

  214. M.L. Cheng, B.C. Tsai, J. Yang, Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal. Chim. Acta 708, 89–96 (2011). https://doi.org/10.1016/j.aca.2011.10.013

    Article  Google Scholar 

  215. A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, F. Giorgis, SERS active Ag nanoparticles in mesoporous silicon: Detection of organic molecules and peptide-antibody assays. J. Raman Spectrosc. 43, 730–736 (2012). https://doi.org/10.1002/jrs.3086

    Article  Google Scholar 

  216. P. Negri, G. Chen, A. Kage, A. Nitsche, D. Naumann, B. Xu, R.A. Dluhy, Direct optical detection of viral nucleoprotein binding to an anti-influenza aptamer. Anal. Chem. 84, 5501 (2012)

    Article  Google Scholar 

  217. Z. Fan, R. Kanchanapally, P.C. Ray, Hybrid graphene oxide based ultrasensitive SERS probe for label-free biosensing. J. Phys. Chem. Lett. 4, 3813–3818 (2013). https://doi.org/10.1021/jz4020597

    Article  Google Scholar 

  218. Y.-Y. Lin, J.-D. Liao, Y.-H. Ju, C.-W. Chang, A.-L. Shiau, Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnology 22(18), 185308 (2011). https://doi.org/10.1088/0957-4484/22/18/185308

    Article  Google Scholar 

  219. F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, J. Chen, Hierarchical Nanogaps within bioscaffold arrays as a high- performance SERS substrate for animal virus biosensing. ACS Appl. Mater. Interfaces 6, 6281–6289 (2014). https://doi.org/10.1021/am4045212

    Article  Google Scholar 

  220. K. Chen, H. Han, Z. Luo, Streptococcus suis II immunoassay based on thorny gold nanoparticles and surface enhanced Raman scattering. Analyst 137, 1259 (2012). https://doi.org/10.1039/c2an15997j

    Article  Google Scholar 

  221. T.-Y. Liu, K.-T. Tsai, H.-H. Wang, Y. Chen, Y.-H. Chen, Y.-C. Chao, H.-H. Chang, C.-H. Lin, J.-K. Wang, Y.-L. Wang, Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2, 538 (2011). https://doi.org/10.1038/ncomms1546

    Article  Google Scholar 

  222. A. Sivanesan, E. Witkowska, W. Adamkiewicz, Ł. Dziewit, A. Kamińska, J. Waluk, Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst 139, 1037–1043 (2014). https://doi.org/10.1039/c3an01924a

    Article  Google Scholar 

  223. X. Wu, C. Xu, R.A. Tripp, Y. Huang, Y. Zhao, Detection and differentiation of foodborne pathogenic bacteria in mung bean sprouts using field deployable label-free SERS devices. Analyst 138, 3005 (2013). https://doi.org/10.1039/c3an00186e

    Article  Google Scholar 

  224. J. Chen, X. Wu, Y.W. Huang, Y. Zhao, Detection of E. coli using SERS active filters with silver nanorod array. Sensors Actuators B 191, 485–490 (2014). https://doi.org/10.1016/j.snb.2013.10.038

    Article  Google Scholar 

  225. C. Fan, Z. Hu, A. Mustapha, M. Lin, Rapid detection of food- and waterborne bacteria using surface-enhanced Raman spectroscopy coupled with silver nanosubstrates. Appl. Microbiol. Biotechnol. 92, 1053–1061 (2011). https://doi.org/10.1007/s00253-011-3634-3

    Article  Google Scholar 

  226. W.R. Premasiri, J.C. Lee, L.D. Ziegler, Surface-enhanced Raman scattering of whole human blood, blood plasma, and red blood cells: Cellular processes and bioanalytical sensing. J. Phys. Chem. B 116, 9376–9386 (2012). https://doi.org/10.1021/jp304932g

    Article  Google Scholar 

  227. F. Gentile, M.L. Coluccio, N. Coppede, F. Mecarini, G. Das, C. Liberale, L. Tirinato, M. Leoncini, G. Perozziello, P. Candeloro, F. De Angelis, E. Di Fabrizio, Superhydrophobic surfaces as smart platforms for the analysis of diluted biological solutions. ACS Appl. Mater. Interfaces 4, 3213–3224 (2012). https://doi.org/10.1021/am300556w

    Article  Google Scholar 

  228. R. Stosch, F. Yaghobian, T. Weimann, R.J. Brown, M.J. Milton, B. Güttler, Lithographical gap-size engineered nanoarrays for surface-enhanced Raman probing of biomarkers. Nanotechnology 22, 105303 (2011). https://doi.org/10.1088/0957-4484/22/10/105303

    Article  Google Scholar 

  229. L. Zhao, J. Blackburn, C.L. Brosseau, Quantitative detection of uric acid by electrochemical-surface enhanced Raman spectroscopy using a multilayered Au/Ag substrate. Anal. Chem. 87, 441–447 (2015). https://doi.org/10.1021/ac503967s

    Article  Google Scholar 

  230. H.-Y. Wu, B.T. Cunningham, Point-of-care detection and real-time monitoring of intravenously delivered drugs via tubing with an integrated SERS sensor. Nanoscale 6, 5162–5171 (2014). https://doi.org/10.1039/c4nr00027g

    Article  Google Scholar 

  231. M. Lee, S. Lee, J.H. Lee, H.W. Lim, G.H. Seong, E.K. Lee, S.I. Chang, C.H. Oh, J. Choo, Highly reproducible immunoassay of cancer markers on a gold-patterned microarray chip using surface-enhanced Raman scattering imaging. Biosens. Bioelectron. 26, 2135–2141 (2011). https://doi.org/10.1016/j.bios.2010.09.021

    Article  Google Scholar 

  232. H.-N. Wang, A. Dhawan, Y. Du, D. Batchelor, D.N. Leonard, V. Misra, T. Vo-Dinh, Molecular sentinel-on-chip for SERS-based biosensing. Phys. Chem. Chem. Phys. 15, 6008 (2013). https://doi.org/10.1039/c3cp00076a

    Article  Google Scholar 

  233. J.H. Granger, M.C. Granger, M.A. Firpo, S.J. Mulvihill, M.D. Porter, Toward development of a surface-enhanced Raman scattering (SERS)-based cancer diagnostic immunoassay panel. Analyst 138, 410–416 (2013). https://doi.org/10.1039/c2an36128k

    Article  Google Scholar 

  234. C. Toccafondi, R. La Rocca, A. Scarpellini, M. Salerno, G. Das, S. Dante, Thin nanoporous alumina-based SERS platform for single cell sensing. Appl. Surf. Sci. 351, 738–745 (2015). https://doi.org/10.1016/j.apsusc.2015.05.169

    Article  Google Scholar 

  235. M. Manikandan, H. Nasser Abdelhamid, A. Talib, H.F. Wu, Facile synthesis of gold nanohexagons on graphene templates in Raman spectroscopy for biosensing cancer and cancer stem cells. Biosens. Bioelectron. 55, 180–186 (2014). https://doi.org/10.1016/j.bios.2013.11.037

    Article  Google Scholar 

  236. G. Zito, G. Rusciano, G. Pesce, A. Dochshanov, A. Sasso, Surface-enhanced Raman imaging of cell membrane by a highly homogeneous and isotropic silver nanostructure. Nanoscale 7, 8593–8606 (2015). https://doi.org/10.1039/c5nr01341k

    Article  Google Scholar 

  237. P. Zhang, R. Zhang, M. Gao, X. Zhang, Novel nitrocellulose membrane substrate for efficient analysis of circulating tumor cells coupled with surface-enhanced Raman scattering imaging. ACS Appl. Mater. Interfaces 6, 370–376 (2014)

    Article  Google Scholar 

  238. C. Lee, R.P. Carney, S. Hazari, Z.J. Smith, A. Knudson, C.S. Robertson, K.S. Lam, S. Wachsmann-Hogiu, 3D plasmonic nanobowl platform for the study of exosomes in solution. Nanoscale 7, 9290–9297 (2015). https://doi.org/10.1039/c5nr01333j

    Article  Google Scholar 

  239. X. Jiang, Z. Jiang, T. Xu, S. Su, Y. Zhong, F. Peng, Y. Su, Y. He, Surface-enhanced Raman scattering-based sensing in vitro: Facile and label-free detection of apoptotic cells at the single-cell level. Anal. Chem. 85, 2809–2816 (2013). https://doi.org/10.1021/ac303337b

    Article  Google Scholar 

  240. S. Yamazoe, M. Naya, M. Shiota, T. Morikawa, A. Kubo, T. Tani, T. Hishiki, T. Horiuchi, M. Suematsu, M. Kajimura, Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite. ACS Nano 8, 5622–5632 (2014). https://doi.org/10.1021/nn4065692

    Article  Google Scholar 

  241. A. Lorén, C. Eliasson, M. Josefson, K.V.G.K. Murty, M. Käll, J. Abrahamsson, K. Abrahamsson, Feasibility of quantitative determination of doxorubicin with surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 32, 971–974 (2001). https://doi.org/10.1002/jrs.783

    Article  Google Scholar 

  242. C. Yuen, W. Zheng, Z. Huang, Low-level detection of anti-cancer drug in blood plasma using microwave-treated gold-polystyrene beads as surface-enhanced Raman scattering substrates. Biosens. Bioelectron. 26, 580–584 (2010). https://doi.org/10.1016/j.bios.2010.07.030

    Article  Google Scholar 

  243. C. Eliasson, A. Lorén, K.V.G.K. Murty, M. Josefson, M. Käll, J. Abrahamsson, K. Abrahamsson, Multivariate evaluation of doxorubicin surface-enhanced Raman spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57, 1907–1915 (2001). https://doi.org/10.1016/S1386-1425(01)00453-X

    Article  Google Scholar 

  244. K.R. Ackermann, T. Henkel, J. Popp, Quantitative online detection of low- concentrated drugs via a SERS microfluidic system. Chem. Phys. Chem. 8, 2665–2670 (2007). https://doi.org/10.1002/cphc.200700554

    Article  Google Scholar 

  245. C. Mc Laughlin, D. Mac Millan, C. Mc Cardle, W.E. Smith, Quantitative analysis of mitoxantrone by surface-enhanced resonance Raman scattering. Anal. Chem. 74, 3160–3167 (2002)

    Article  Google Scholar 

  246. A. Vicario, V. Sergo, G. Toffoli, A. Bonifacio, Surface-enhanced Raman spectroscopy of the anti-cancer drug irinotecan in presence of human serum albumin. Colloids Surf. B Biointerfaces 127, 41–46 (2015). https://doi.org/10.1016/j.colsurfb.2015.01.023

    Article  Google Scholar 

  247. L.F. Sallum, F.L.F. Soares, J.A. Ardila, R.L. Carneiro, Determination of acetylsalicylic acid in commercial tablets by SERS using silver nanoparticle-coated filter paper. Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 107–111 (2014). https://doi.org/10.1016/j.saa.2014.04.198

    Article  Google Scholar 

  248. R.Y. Mirsafavi, K. Lai, N.D. Kline, A.W. Fountain, C.D. Meinhart, M. Moskovits, Detection of papaverine for the possible identification of illicit opium cultivation. Anal. Chem. (2017). https://doi.org/10.1021/acs.analchem.6b03797

  249. W.W. Yu, I.M. White, Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 138, 1020–1025 (2013). https://doi.org/10.1039/c2an36116g

    Article  Google Scholar 

  250. Z. Han, H. Liu, J. Meng, L. Yang, J. Liu, J. Liu, Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy. Anal. Chem. 87, 9500–9506 (2015). https://doi.org/10.1021/acs.analchem.5b02899

    Article  Google Scholar 

  251. K.J. Si, P. Guo, Q. Shi, W. Cheng, Self-assembled nanocube-based plasmene nanosheets as soft surface-enhanced Raman scattering substrates toward direct quantitative drug identification on surfaces. Anal. Chem. 87, 5263–5269 (2015). https://doi.org/10.1021/acs.analchem.5b00328

    Article  Google Scholar 

  252. S. Mabbott, A. Eckmann, C. Casiraghi, R. Goodacre, 2p or not 2p: Tuppence-based SERS for the detection of illicit materials. Analyst 138, 118–122 (2013). https://doi.org/10.1039/c2an35974j

    Article  Google Scholar 

  253. Z. Xu, J. Jiang, X. Wang, K. Han, A. Ameen, I. Khan, T.-W. Chang, G.L. Liu, Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer. Nanoscale 8, 6162–6172 (2016). https://doi.org/10.1039/C5NR08357E

    Article  Google Scholar 

  254. D. Kurouski, R.P. Van Duyne, In situ detection and identification of hair dyes using surface- enhanced Raman spectroscopy (SERS). Anal. Chem. 87, 2901–2906 (2015). https://doi.org/10.1021/ac504405u

    Article  Google Scholar 

  255. A.G. Ryder, Surface enhanced Raman scattering for narcotic detection and applications to chemical biology. Curr. Opin. Chem. Biol. 9, 489–493 (2005). https://doi.org/10.1016/j.cbpa.2005.07.001

    Article  Google Scholar 

  256. C. Muehlethaler, M. Leona, J.R. Lombardi, Review of surface enhanced Raman scattering applications in forensic science. Anal. Chem. 88, 152–169 (2015). https://doi.org/10.1021/acs.analchem.5b04131

    Article  Google Scholar 

  257. R. Dong, S. Weng, L. Yang, J. Liu, Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines. Anal. Chem. 87, 2937–2944 (2015). https://doi.org/10.1021/acs.analchem.5b00137

    Article  Google Scholar 

  258. N.G. Greeneltch, A.S. Davis, N.A. Valley, F. Casadio, G.C. Schatz, R.P. Van Duyne, N.C. Shah, Near-infrared surface-enhanced raman spectroscopy (NIR-SERS) for the identification of eosin Y: Theoretical calculations and evaluation of two different nanoplasmonic substrates. J. Phys. Chem. A 116, 11863–11869 (2012). https://doi.org/10.1021/jp3081035

    Article  Google Scholar 

  259. M. Gühlke, Z. Heiner, J. Kneipp, Combined near-infrared excited SEHRS and SERS spectra of pH sensors using silver nanostructures. Phys. Chem. Chem. Phys. 17, 26093–26100 (2015). https://doi.org/10.1039/C5CP03844H

    Article  Google Scholar 

  260. N.G. Greeneltch, M.G. Blaber, G.C. Schatz, R.P. Van Duyne, Plasmon-sampled surface-enhanced raman excitation spectroscopy on silver immobilized nanorod assemblies and optimization for near infrared (ex = 1064 nm) studies. J. Phys. Chem. C 117, 2554–2558 (2013). https://doi.org/10.1021/jp310846j

    Article  Google Scholar 

  261. X.Y. Ling, R. Yan, S. Lo, D.T. Hoang, C. Liu, M.A. Fardy, S.B. Khan, A.M. Asiri, S.M. Bawaked, P. Yang, Alumina-coated Ag nanocrystal monolayers as surface enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 7, 132–143 (2014). https://doi.org/10.1007/s12274-013-0380-0

    Article  Google Scholar 

  262. Z.Y. Bao, X. Liu, J. Dai, Y. Wu, Y.H. Tsang, D.Y. Lei, In situ SERS monitoring of photocatalytic organic decomposition using recyclable TiO2-coated Ag nanowire arrays. Appl. Surf. Sci. 301, 351–357 (2014). https://doi.org/10.1016/j.apsusc.2014.02.078

    Article  Google Scholar 

  263. Q. Cao, R. Che, N. Chen, Facile and rapid growth of Ag2S microrod arrays as efficient substrates for both SERS detection and photocatalytic degradation of organic dyes. Chem. Commun. 50, 4931–4933 (2014). https://doi.org/10.1039/c4cc00107a

    Article  Google Scholar 

  264. Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y.F. Cheng, Q. Li, M. Wang, R. Che, Porous Au-Ag alloy particles inlaid AgCl membranes as versatile Plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring. ACS Appl. Mater. Interfaces 7, 18491–18500 (2015). https://doi.org/10.1021/acsami.5b04769

    Article  Google Scholar 

  265. R. Liu, J.F. Liu, Z.M. Zhang, L.Q. Zhang, J.F. Sun, M.T. Sun, G.B. Jiang, Submonolayer-Pt-coated ultrathin Au nanowires and their self-organized nanoporous film: SERS and catalysis active substrates for operando SERS monitoring of catalytic reactions. J. Phys. Chem. Lett. 5, 969–975 (2014). https://doi.org/10.1021/jz500238z

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully thank the Italian Ministero dell’Università e della Ricerca (MIUR) for financial support through the PRIN project “New aspects of resonance energy transfer in organized media: dynamical effects and optical control” (Prot. 2012T9XHH7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pilot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pilot, R., Signorini, R., Fabris, L. (2018). Surface-Enhanced Raman Spectroscopy: Principles, Substrates, and Applications. In: Deepak, F. (eds) Metal Nanoparticles and Clusters. Springer, Cham. https://doi.org/10.1007/978-3-319-68053-8_4

Download citation

Publish with us

Policies and ethics