Skip to main content

Coordination of Dynamic Software Components with JavaBIP

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10487))

Included in the following conference series:

Abstract

JavaBIP allows the coordination of software components by clearly separating the functional and coordination aspects of the system behavior. JavaBIP implements the principles of the BIP component framework rooted in rigorous operational semantics. Recent work both on BIP and JavaBIP allows the coordination of static components defined prior to system deployment, i.e., the architecture of the coordinated system is fixed in terms of its component instances. Nevertheless, modern systems, often make use of components that can register and deregister dynamically during system execution. In this paper, we present an extension of JavaBIP that can handle this type of dynamicity. We use first-order interaction logic to define synchronization constraints based on component types. Additionally, we use directed graphs with edge coloring to model dependencies among components that determine the validity of an online system. We present the software architecture of our implementation, provide and discuss performance evaluation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/projectara/greybus-spec.

  2. 2.

    https://github.com/anmavrid/webgme-bip.

  3. 3.

    The complete validity graph of the case study can be found in [31].

  4. 4.

    We have used the JavaBDD package, available at http://javabdd.sourceforge.net.

  5. 5.

    https://github.com/sbliudze/javabip-itest.

  6. 6.

    github.com/sbliudze/javabip-core, github.com/sbliudze/javabip-engine.

References

  1. Agha, G.: Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cambridge (1986)

    Google Scholar 

  2. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C-27(6), 509–516 (1978)

    Google Scholar 

  3. Allen, R., Douence, R., Garlan, D.: Specifying and analyzing dynamic software architectures. In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp. 21–37. Springer, Heidelberg (1998). doi:10.1007/BFb0053581

    Chapter  Google Scholar 

  4. Arnold, A.: Synchronized behaviours of processes and rational relations. Acta Informatica 17, 21–29 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis, J.: Rigorous component-based system design using the BIP framework. IEEE Softw. 28(3), 41–48 (2011)

    Article  Google Scholar 

  6. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: 4th IEEE International Conference on Software Engineering and Formal Methods (SEFM 2006), pp. 3–12, September 2006, Invited talk

    Google Scholar 

  7. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-Finder: a tool for compositional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4_45

    Chapter  Google Scholar 

  8. Bliudze, S., Cimatti, A., Jaber, M., Mover, S., Roveri, M., Saab, W., Wang, Q.: Formal verification of infinite-state BIP models. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 326–343. Springer, Cham (2015). doi:10.1007/978-3-319-24953-7_25

    Chapter  Google Scholar 

  9. Bliudze, S., Mavridou, A., Szymanek, R., Zolotukhina, A.: Coordination of software components with BIP: application to OSGi. In: Proceedings of the 6th International Workshop on Modeling in Software Engineering, MiSE 2014, pp. 25–30. ACM, New York (2014)

    Google Scholar 

  10. Bliudze, S., Mavridou, A., Szymanek, R., Zolotukhina, A.: Exogenous coordination of concurrent software components with JavaBIP. Software: Practice and Experience (2017). Early view: http://dx.doi.org/10.1002/spe.2495

  11. Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J.: From high-level component-based models to distributed implementations. In: Proceedings of the Tenth ACM International Conference on Embedded Software, EMSOFT 2010, pp. 209–218. ACM, New York (2010)

    Google Scholar 

  12. Bozga, M., Jaber, M., Maris, N., Sifakis, J.: Modeling dynamic architectures using Dy-BIP. In: Gschwind, T., De Paoli, F., Gruhn, V., Book, M. (eds.) SC 2012. LNCS, vol. 7306, pp. 1–16. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30564-1_1

    Chapter  Google Scholar 

  13. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-management in dynamic software architecture specifications. In: Proceedings of the 1st ACM SIGSOFT Workshop on Self-Managed Systems, WOSS 2004, pp. 28–33. ACM, New York (2004)

    Google Scholar 

  14. Bruni, R., Bucchiarone, A., Gnesi, S., Melgratti, H.: Modelling dynamic software architectures using typed graph grammars. Electron. Notes Theoret. Comput. Sci. 213(1), 39–53 (2008)

    Article  MATH  Google Scholar 

  15. Bruni, R., Melgratti, H., Montanari, U.: Behaviour, interaction and dynamics. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 382–401. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54624-2_19

    Chapter  Google Scholar 

  16. Cámara, J., Salaün, G., Canal, C.: Composition and run-time adaptation of mismatching behavioural interfaces. J. Univ. Comput. Sci. 14(13), 2182–2211 (2008)

    MATH  Google Scholar 

  17. Canal, C., Pimentel, E., Troya, J.M.: Specification and refinement of dynamic software architectures. In: Donohoe, P. (ed.) Software Architecture. ITIFIP, vol. 12, pp. 107–125. Springer, Boston (1999). doi:10.1007/978-0-387-35563-4_7

    Chapter  Google Scholar 

  18. Clarke, D.: A basic logic for reasoning about connector reconfiguration. Fundamenta Informaticae 82(4), 361–390 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Cuesta, C.E., de la Fuente, P., Barrio-Solárzano, M.: Dynamic coordination architecture through the use of reflection. In: Proceedings of the 2001 ACM Symposium on Applied Computing, pp. 134–140. ACM (2001)

    Google Scholar 

  20. Di Giusto, C., Stefani, J.-B.: Revisiting glue expressiveness in component-based systems. In: De Meuter, W., Roman, G.-C. (eds.) COORDINATION 2011. LNCS, vol. 6721, pp. 16–30. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21464-6_2

    Chapter  Google Scholar 

  21. Edelmann, R., Bliudze, S., Sifakis, J., Functional, B.I.P.: Embedding connectors in functional programming languages. J. Logical Algebraic Methods Program. (2017) (Under review)

    Google Scholar 

  22. Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architectures for distributed systems. In: Proceedings of the First Workshop on Self-Healing Systems, pp. 33–38. ACM (2002)

    Google Scholar 

  23. Henrio, L., Madelaine, E., Zhang, M.: A theory for the composition of concurrent processes. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 175–194. Springer, Cham (2016). doi:10.1007/978-3-319-39570-8_12

    Chapter  Google Scholar 

  24. Hirsch, D., Inverardi, P., Montanari, U.: Graph grammars and constraint solving for software architecture styles. In: Proceedings of the Third International Workshop on Software Architecture, pp. 69–72. ACM (1998)

    Google Scholar 

  25. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng. Methodol. (TOSEM) 11(2), 256–290 (2002)

    Article  Google Scholar 

  26. Koehler, C., Costa, D., Proença, J., Arbab, F.: Reconfiguration of Reo connectors triggered by dataflow. ECEASST 10 (2008)

    Google Scholar 

  27. Krause, C., Maraikar, Z., Lazovik, A., Arbab, F.: Modeling dynamic reconfigurations in Reo using high-level replacement systems. Sci. Comput. Program. 76(1), 23–36 (2011)

    Article  MATH  Google Scholar 

  28. Le Métayer, D.: Describing software architecture styles using graph grammars. IEEE Trans. Softw. Eng. 24(7), 521–533 (1998)

    Article  Google Scholar 

  29. Magee, J., Kramer, J.: Dynamic structure in software architectures. ACM SIGSOFT Softw. Eng. Notes 21(6), 3–14 (1996)

    Article  Google Scholar 

  30. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration logics: modeling architecture styles. J. Logical Algebraic Methods Program. 86(1), 2–29 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mavridou, A., Rutz, V., Bliudze, S.: Coordination of dynamic software components with JavaBIP. Technical report (2017), https://arxiv.org/abs/1707.09716

  32. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I. Inf. Comput. 100(1), 1–40 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Papadopoulos, G.A., Arbab, F.: Configuration and dynamic reconfiguration of components using the coordination paradigm. Future Gener. Comput. Syst. 17(8), 1023–1038 (2001)

    Article  MATH  Google Scholar 

  34. Poizat, P., Salaün, G.: Adaptation of open component-based systems. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 141–156. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72952-5_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia Mavridou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mavridou, A., Rutz, V., Bliudze, S. (2017). Coordination of Dynamic Software Components with JavaBIP. In: Proença, J., Lumpe, M. (eds) Formal Aspects of Component Software. FACS 2017. Lecture Notes in Computer Science(), vol 10487. Springer, Cham. https://doi.org/10.1007/978-3-319-68034-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68034-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68033-0

  • Online ISBN: 978-3-319-68034-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics