Skip to main content

Topology Optimization of Viscoelastic Materials for Maximizing Damping and Natural Frequency of Macrostructures

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Included in the following conference series:

  • 6588 Accesses

Abstract

The topology optimization algorithm of viscoelastic material microstructure based on bi-directional evolutionary structural optimization (BESO) method is proposed for macroscopic damping characteristics of the structures. The optimization aims to obtain the optimal topologies of the material microstructures within given volume fraction so that the resulting structure has optimal damping characteristics. The design concept of this scheme is essentially a two-scale design which considers the effective properties of material microstructures and macroscopic performance. Viscoelastic material is used for the damping of the macrostructure and the frequency constraint is also applied so that the resulting macrostructure has the best damping performance with prescribed natural frequencies. The microstructures of the material are represented by periodic unit cells (PUCs) and the effective properties of the material microstructures are homogenized and integrated into the finite element analysis of the macroscopic structures. The sensitivity analysis is conducted for iteratively updating the topologies of material microstructures. Numerical examples are presented to demonstrate the effectiveness of the proposed optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christensen, R.: Theory of Viscoelasticity: An Introduction. Elsevier (2012)

    Google Scholar 

  2. Kerwin Jr., E.M.: Damping of flexural waves by a constrained viscoelastic layer. J. Acoust. Soc. Am. 31, 952–962 (1959)

    Article  Google Scholar 

  3. Shen, I.: Hybrid damping through intelligent constrained layer treatments. J. Vib. Acoust. 116, 341–349 (1994)

    Article  Google Scholar 

  4. Nashif, A.D., Jones, D.I., Henderson, J.P.: Vibration Damping. Wiley (1985)

    Google Scholar 

  5. Araújo, A.L., Mota Soares, C.M., Mota Soares, C.A.: A viscoelastic sandwich finite element model for the analysis of passive, active and hybrid structures. Appl. Compos. Mater. 17, 529–542 (2010)

    Article  Google Scholar 

  6. Lifshitz, J., Leibowitz, M.: Optimal sandwich beam design for maximum viscoelastic damping. Int. J. Solids Struct. 23, 1027–1034 (1987)

    Article  MATH  Google Scholar 

  7. Baz, A., Ro, J.: Optimum design and control of active constrained layer damping. J. Mech. Des. 117, 135–144 (1995)

    Article  Google Scholar 

  8. Plunkett, R., Lee, C.: Length optimization for constrained viscoelastic layer damping. J. Acoust. Soc. Am. 48, 150–161 (1970)

    Article  Google Scholar 

  9. Alam, N., Asnani, N.: Vibration and damping analysis of multilayered rectangular plates with constrained viscoelastic layers. J. Sound Vib. 97, 597–614 (1984)

    Article  Google Scholar 

  10. Lall, A., Nakra, B., Asnani, N.: Optimum design of viscoelastically damped sandwich panels. Eng. Optim. 6, 197–205 (1983)

    Article  Google Scholar 

  11. Zheng, H., Cai, C., Tan, X.: Optimization of partial constrained layer damping treatment for vibrational energy minimization of vibrating beams. Comput. Struct. 82, 2493–2507 (2004)

    Article  Google Scholar 

  12. Zheng, H., Cai, C., Pau, G., Liu, G.: Minimizing vibration response of cylindrical shells through layout optimization of passive constrained layer damping treatments. J. Sound Vib. 279, 739–756 (2005)

    Article  Google Scholar 

  13. Yamamoto, T., Yamada, T., Izui, K., Nishiwaki, S.: Optimal design of unconstrained damping material on a thin panel by using topology optimization. In: INTER-NOISE and NOISE-CON Congress and Conference Proceedings. Institute of Noise Control Engineering Melbourne (Australia) (2014)

    Google Scholar 

  14. El-Sabbagh, A., Baz, A.: Topology optimization of unconstrained damping treatments for plates. Eng. Optim. 46, 1153–1168 (2014)

    Article  MathSciNet  Google Scholar 

  15. James, K.A., Waisman, H.: Topology optimization of viscoelastic structures using a time-dependent adjoint method. Comput. Methods Appl. Mech. Eng. 285, 166–187 (2015)

    Article  MathSciNet  Google Scholar 

  16. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)

    Article  Google Scholar 

  18. Zhou, M., Rozvany, G.: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)

    Article  Google Scholar 

  19. Bensφe, M., Sigmund, O.: Topology Optimization Theory, Method and Applications. Springer, Heidelberg (2003)

    Google Scholar 

  20. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)

    Article  Google Scholar 

  21. Xie, Y.M., Steven, G.P.: Basic Evolutionary Structural Optimization. Springer (1997)

    Google Scholar 

  22. Huang, X., Xie, Y.M.: Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. Wiley (2010)

    Google Scholar 

  23. Huang, X., Xie, Y.M.: A further review of ESO type methods for topology optimization. Struct. Multi. Optim. 41, 671–683 (2010)

    Article  Google Scholar 

  24. Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sigmund, O.: Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368 (1995)

    Article  Google Scholar 

  27. Andreassen, E., Andreasen, C.S.: How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 83, 488–495 (2014)

    Article  Google Scholar 

  28. Yi, Y.-M., Park, S.-H., Youn, S.-K.: Design of microstructures of viscoelastic composites for optimal damping characteristics. Int. J. Solids Struct. 37, 4791–4810 (2000)

    Article  MATH  Google Scholar 

  29. Prasad, J., Diaz, A.: Viscoelastic material design with negative stiffness components using topology optimization. Struct. Multi. Optim. 38, 583–597 (2009)

    Article  Google Scholar 

  30. Chen, W., Liu, S.: Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus. Struct. Multi. Optim. 50, 287–296 (2014)

    Article  MathSciNet  Google Scholar 

  31. Andreasen, C.S., Andreassen, E., Jensen, J.S., Sigmund, O.: On the realization of the bulk modulus bounds for two-phase viscoelastic composites. J. Mech. Phys. Solids 63, 228–241 (2014)

    Article  MathSciNet  Google Scholar 

  32. Andreassen, E., Jensen, J.S.: Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials. Struct. Multi. Optim. 49, 695–705 (2014)

    Article  MathSciNet  Google Scholar 

  33. Huang, X., Zhou, S., Sun, G., Li, G., Xie, Y.M.: Topology optimization for microstructures of viscoelastic composite materials. Comput. Methods Appl. Mech. Eng. 283, 503–516 (2015)

    Article  Google Scholar 

  34. Chen, W., Liu, S.: Microstructural topology optimization of viscoelastic materials for maximum modal loss factor of macrostructures. Struct. Multi. Optim. 53, 1–14 (2016)

    Article  MathSciNet  Google Scholar 

  35. Tenek, L.H., Hagiwara, I.: Eigenfrequency maximization of plates by optimization of topology using homogenization and mathematical programming. JSME Int. J. Ser. C, Dyn. Control Robot. Des. Manuf. 37, 667–677 (1994)

    Google Scholar 

  36. Ma, Z.D., Kikuchi, N., Cheng, H.-C.: Topological design for vibrating structures. Comput. Methods Appl. Mech. Eng. 121, 259–280 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pedersen, N.L.: Maximization of eigenvalues using topology optimization. Struct. Multi. Optim. 20, 2–11 (2000)

    Article  Google Scholar 

  38. Du, J., Olhoff, N.: Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct. Multi. Optim. 34, 91–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xie, Y.M., Steven, G.P.: Evolutionary structural optimization for dynamic problems. Comput. Struct. 58, 1067–1073 (1996)

    Article  MATH  Google Scholar 

  40. Zhao, C., Steven, G.P., Xie, Y.M.: Evolutionary natural frequency optimization of two-dimensional structures with additional non-structural lumped masses. Eng. Comput. 14, 233–251 (1997)

    Article  MATH  Google Scholar 

  41. Yang, X., Xie, Y.M., Steven, G.P., Querin, O.: Topology optimization for frequencies using an evolutionary method. J. Struct. Eng. 125, 1432–1438 (1999)

    Article  Google Scholar 

  42. Huang, X., Zuo, Z., Xie, Y.M.: Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput. Struct. 88, 357–364 (2010)

    Article  Google Scholar 

  43. Cremer, L., Heckl, M.: Structure-borne sound: structural vibrations and sound radiation at audio frequencies. Springer (2013)

    Google Scholar 

  44. Daya, E., Potier-Ferry, M.: A numerical method for nonlinear eigenvalue problems application to vibrations of viscoelastic structures. Comput. Struct. 79, 533–541 (2001)

    Article  MathSciNet  Google Scholar 

  45. Duigou, L., Potier-Ferry, M.: Iterative algorithms for non-linear eigenvalue problems, Application to vibrations of viscoelastic shells. Comput. Methods Appl. Mech. Eng. 192, 1323–1335 (2003)

    Article  MATH  Google Scholar 

  46. Bendsøe, M.P., Sigmund, O.: Material interpolation schemes in topology optimization. Arch. Appl. Mech. 69, 635–654 (1999)

    Article  MATH  Google Scholar 

  47. Huang, X., Xie, Y.M.: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials. Comput. Mech. 43, 393–401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. Araújo, A., Martins, P., Soares, C.M., Soares, C.M., Herskovits, J.: Damping optimization of viscoelastic laminated sandwich composite structures. Struct. Multi. Optim. 39, 569–579 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Huang, X., Xie, Y.M.: Evolutionary topology optimization of continuum structures with an additional displacement constraint. Struct. Multi. Optim. 40, 409–416 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sigmund, O., Petersson, J.: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16, 68–75 (1998)

    Article  Google Scholar 

  51. Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support from the Australian Research Council (FT130101094) and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Huang, X. (2018). Topology Optimization of Viscoelastic Materials for Maximizing Damping and Natural Frequency of Macrostructures. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_131

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_131

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics