Skip to main content

Advertisement

Log in

Damping optimization of viscoelastic laminated sandwich composite structures

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Recent developments on the optimization of passive damping for vibration reduction in sandwich structures are presented in this paper, showing the importance of appropriate finite element models associated with gradient based optimizers for computationally efficient damping maximization programs. A new finite element model for anisotropic laminated plate structures with viscoelastic core and laminated anisotropic face layers has been formulated, using a mixed layerwise approach. The complex modulus approach is used for the viscoelastic material behavior, and the dynamic problem is solved in the frequency domain. Constrained optimization is conducted for the maximization of modal loss factors, using gradient based optimization associated with the developed model, and single and multiobjective optimization based on genetic algorithms using an alternative ABAQUS finite element model. The model has been applied successfully and comparative optimal design applications in sandwich structures are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABAQUS (2005) Analysis user’s manual version 6.5. Hibbit, Karlsson and Sorensen, Pawtucket

    Google Scholar 

  • Alvelid M (2008) Optimal position and shape of applied damping material. J Sound Vib 310:947–965

    Article  Google Scholar 

  • Araújo AL, Mota Soares CM, Herskovits J, Pedersen P (2002) Development of a finite element model for the identification of mechanical and piezoelectric properties through gradient optimisation and experimental vibration data. Compos Struct 58:307–318

    Article  Google Scholar 

  • Araújo AL, Lopes HMR, Vaz MAP, Mota Soares CM, Herskovits J, Pedersen P (2006) Parameter estimation in active plate structures. Comput Struct 84:1471–1479

    Article  Google Scholar 

  • Araújo AL, Mota Soares CM, Mota Soares CA (2008) Optimal design of active, passive, and hybrid sandwich structures. In: Lindner DK (ed) Modeling, signal processing, and control for smart structures, proc. of SPIE, vol 6926. SPIE, Bellingham, p 69260T

    Google Scholar 

  • Araújo AL, Mota Soares CM, Mota Soares CA (2009) Finite element model for hybrid active-passive damping analysis of anisotropic laminated sandwich structures. J Sandw Struct Mater doi:10.1177/1099636208104534

    Google Scholar 

  • Baz A, Ro J (1995) Optimum design and control of active constrained layer damping. J Mech Eng Des 117:135–144

    Google Scholar 

  • Boudaoud H, Belouettar S, Daya EM, Potier-Ferry M (2008) A shell finite element for active-passive vibration control of composite structures with piezoelectric and viscoelastic layers. Mech Adv Mater Struct 15:208–219

    Article  Google Scholar 

  • Canelas A, Roche JR, Herskovits J (2009) The inverse electromagnetic shaping problem. Struct Multidiscipl Optim doi:10.1007/s00158-008-0285-9

    MathSciNet  Google Scholar 

  • DiTaranto RA (1965) Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. ASME J Appl Mech 32:881–886

    Google Scholar 

  • Douglas BE, Yang JCS (1978) Transverse compressional damping in the vibratory response of elastic-viscoelastic beams. AIAA J 16:925–930

    Article  Google Scholar 

  • Goel T, Vaidyanathan R, Haftka RT, Shyy W, Queipo NV, Tucker K (2007) Response surface approximation of pareto optimal front in a multi-objective optimization. Comput Methods Appl Mech Eng 196:879–893

    Article  MATH  Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  • Haftka RT, Gurdal Z (1992) Elements of structural optimization. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Herskovits J (1986) A two-stage feasible directions algorithm for nonlinear constrained optimization. Math Program 36:19–38

    Article  MATH  MathSciNet  Google Scholar 

  • Herskovits J (1998) A feasible directions interior point technique for nonlinear optimization. J Optim Theory Appl 99:121–146

    Article  MATH  MathSciNet  Google Scholar 

  • Herskovits J, Mazorche JR (2009) A feasible directions algorithm for nonlinear complementarity problems and applications in mechanics. Struct Multidiscipl Optim 37:435–446

    Article  MathSciNet  Google Scholar 

  • Herskovits J, Mappa P, Goulart E, Mota Soares CM (2005) Mathematical programming models and algorithms for engineering design optimization. Comput Methods Appl Mech Eng 194:3244–3268

    Article  MATH  MathSciNet  Google Scholar 

  • Lifshitz JM, Leibowitz M (1987) Optimal sandwich beam design for maximum viscoelastic damping. Int J Solids Struct 23:1027–1034

    Article  MATH  Google Scholar 

  • Marcelin JL, Trompette P, Smati A (1992) Optimal constrained layer damping with partial coverage. Finite Elem Anal Des 12:273–280

    Article  MATH  Google Scholar 

  • Marcelin JL, Shakhesi S, Pourroy F (1995) Optimal constrained layer damping of beams: experimental numerical studies. Shock Vib 2:445–450

    Google Scholar 

  • Mead DJ, Markus S (1969) The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. AIAA J 10:163–175

    MATH  Google Scholar 

  • Moreira RAS, Rodrigues JD (2006) A layerwise model for thin soft core sandwich plates. Comput Struct 84:1256–1263

    Article  Google Scholar 

  • Moreira RAS, Rodrigues JD, Ferreira AJM (2006) A generalized layerwise finite element for multi-layer damping treatments. Comput Mech 37:426–444

    Article  MATH  Google Scholar 

  • Nagendra S, Justin D, Gurdal Z, Haftka RT, Watson LT (1996) Improved genetic algorithm for the design of stiffened composite panels. Comput Struct 58:543–555

    Article  MATH  Google Scholar 

  • Nashif AD, Jones DIG, Henderson JP (1985) Vibration damping. Wiley, New York

    Google Scholar 

  • Nokes DS, Nelson FC (1968) Constrained layer damping with partial coverage. Shock Vib Bull 38:5–10

    Google Scholar 

  • Rao DK (1978) Frequency and loss factors of sandwich beams under various boundary conditions. Int J Mech Eng Sci 20:271–278

    Article  Google Scholar 

  • Rao MD, He S (1993) Dynamic analysis and design of laminated composite beams with multiple damping layers. AIAA J 31:736–745

    Article  Google Scholar 

  • Sorensen DC (1995) Implicitly restarted arnoldi/lanczos methods for large scale eigenvalue calculations. Tech. Rep. Technical Report TR95-13, Department of Computational and Applied Mathematics, Rice University, Houston, Texas

  • Sun CT, Lu YP (1995) Vibration damping of structural elements. Prentice Hall PTR, Englewood Cliffs

    MATH  Google Scholar 

  • Yan MJ, Dowell EH (1972) Governing equations of vibrating constrained-layer damping sandwich plates and beams. ASME J Appl Mech 39:1041–1046

    Google Scholar 

  • Yang G, Reinstein LE, Pai S, Carroll DL (1998) A new genetic algorithm technique in optimization of permanent 125-i prostate implants. Med Phys 25:2308–2315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Araújo.

Additional information

Some parts of this paper were presented at EngOpt 2008, International Conference on Engineering Optimization, held at Rio de Janeiro, Brazil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araújo, A.L., Martins, P., Mota Soares, C.M. et al. Damping optimization of viscoelastic laminated sandwich composite structures. Struct Multidisc Optim 39, 569 (2009). https://doi.org/10.1007/s00158-009-0390-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-009-0390-4

Keywords

Navigation