Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 295 Accesses

Abstract

The Sakharov conditions were first implemented in the contest of GUTs where heavy scalar or gauge boson decays generate the imbalance between baryons and antibaryons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Fukugita, T. Yanagida, Baryogenesis without grand unification. Phys. Lett. B 174, 45 (1986)

    Article  ADS  Google Scholar 

  2. V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, On the anomalous electroweak baryon number nonconservation in the early universe. Phys. Lett. B 155, 36 (1985)

    Article  ADS  Google Scholar 

  3. Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998)

    Article  ADS  Google Scholar 

  4. B. Pontecorvo, Neutrino experiments and the problem of conservation of leptonic charge. Sov. Phys. JETP 26, 984–988 (1968); Zh. Eksp. Teor. Fiz. 53, 1717 (1967)

    Google Scholar 

  5. B. Pontecorvo, Mesonium and anti–mesonium. Sov. Phys. JETP 6, 429 (1957); Zh. Eksp. Teor. Fiz. 33, 549 (1957)

    Google Scholar 

  6. Z. Maki, M. Nakagawa, S. Sakata, Remarks on the unified model of elementary particles. Prog. Theor. Phys. 28, 870–880 (1962)

    Article  ADS  MATH  Google Scholar 

  7. S. Blanchet, P. Di Bari, The minimal scenario of leptogenesis. New J. Phys. 14, 125012 (2012)

    Article  ADS  Google Scholar 

  8. P. Di Bari, An introduction to leptogenesis and neutrino properties. Contemp. Phys. 53(4), 315–338 (2012)

    Article  ADS  Google Scholar 

  9. G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno, Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches. Phys. Rev. D 86, 013012 (2012)

    Article  ADS  Google Scholar 

  10. S.F. King, C. Luhn, Neutrino mass and mixing with discrete symmetry. Rept. Prog. Phys. 76, 056201 (2013)

    Article  ADS  Google Scholar 

  11. T. Schwetz, M. Tortola, J.W.F. Valle, Where we are on \(\theta _{13}\): addendum to ‘Global neutrino data and recent reactor fluxes: status of three-flavour oscillation parameters. New J. Phys. 13, 109401 (2011)

    Article  ADS  Google Scholar 

  12. C. Kraus et al., Final results from phase II of the Mainz neutrino mass search in tritium beta decay. Eur. Phys. J. C 40, 447–468 (2005)

    Article  ADS  Google Scholar 

  13. E. Andreotti et al., 130Te neutrinoless double-beta decay with cuoricino. Astropart. Phys. 34, 822–831 (2011)

    Article  ADS  Google Scholar 

  14. K.H. Ackermann et al., The GERDA experiment for the search of \(0\nu \beta \beta \) decay in \(^{76}\)Ge. Eur. Phys. J. C 73(3), 2330 (2013)

    Article  ADS  Google Scholar 

  15. C.E. Aalseth et al., The majorana demonstrator: an R and D project towards a tonne-scale germanium neutrinoless double-beta decay search. AIP Conf. Proc. 1182, 88–91 (2009)

    Article  ADS  Google Scholar 

  16. K.N. Abazajian et al., Cosmological and astrophysical neutrino mass measurements. Astropart. Phys. 35, 177–184 (2011)

    Article  ADS  Google Scholar 

  17. S. Hannestad, H. Tu, Y.Y.Y. Wong, Measuring neutrino masses and dark energy with weak lensing tomography. JCAP 0606, 025 (2006)

    Article  ADS  Google Scholar 

  18. P. Minkowski, \(\mu \rightarrow e\gamma \) at a rate of one out of \(10^{9}\) muon decays? Phys. Lett. B 67, 421–428 (1977)

    Article  ADS  Google Scholar 

  19. M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories. Conf. Proc. C 790927, 315–321 (1979)

    Google Scholar 

  20. T. Asaka, M. Laine, M. Shaposhnikov, On the hadronic contribution to sterile neutrino production. JHEP 06, 053 (2006)

    Article  ADS  Google Scholar 

  21. R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 44, 912 (1980)

    Article  ADS  Google Scholar 

  22. M. Magg, C. Wetterich, Neutrino mass problem and gauge hierarchy. Phys. Lett. B 94, 61 (1980)

    Article  ADS  Google Scholar 

  23. J. Schechter, J.W.F. Valle, Neutrino masses in SU(2) x U(1) theories. Phys. Rev. D 22, 2227 (1980)

    Article  ADS  Google Scholar 

  24. R. Foot, H. Lew, X.G. He, G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons. Z. Phys. C 44, 441 (1989)

    Article  Google Scholar 

  25. E. Ma, Pathways to naturally small neutrino masses. Phys. Rev. Lett. 81, 1171–1174 (1998)

    Article  ADS  Google Scholar 

  26. M. Drewes, The phenomenology of right handed neutrinos. Int. J. Mod. Phys. E 22, 1330019 (2013)

    Article  ADS  Google Scholar 

  27. H. Georgi, The state of the artgauge theories. AIP Conf. Proc. 23, 575–582 (1975)

    Article  ADS  Google Scholar 

  28. H. Fritzsch, P. Minkowski, Unified interactions of leptons and hadrons. Ann. Phys. 93, 193–266 (1975)

    Google Scholar 

  29. F. Maltoni, J.M. Niczyporuk, S. Willenbrock, Upper bound on the scale of Majorana neutrino mass generation. Phys. Rev. Lett. 86, 212–215 (2001)

    Article  ADS  Google Scholar 

  30. T. Asaka, M. Shaposhnikov, The nuMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 620, 17–26 (2005)

    Article  ADS  Google Scholar 

  31. A. Palazzo, Phenomenology of light sterile neutrinos: a brief review. Mod. Phys. Lett. A 28, 1330004 (2013)

    Article  ADS  Google Scholar 

  32. A.D. Dolgov, F.L. Villante, BBN bounds on active sterile neutrino mixing. Nucl. Phys. B 679, 261–298 (2004)

    Article  ADS  Google Scholar 

  33. M. Cirelli, G. Marandella, A. Strumia, F. Vissani, Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments. Nucl. Phys. B 708, 215–267 (2005)

    Article  ADS  Google Scholar 

  34. R. Adhikari et al., A white paper on keV sterile neutrino dark matter (2016)

    Google Scholar 

  35. G.F. Giudice, E.W. Kolb, A. Riotto, Largest temperature of the radiation era and its cosmological implications. Phys. Rev. D 64, 023508 (2001)

    Article  ADS  Google Scholar 

  36. E. Nardi, Y. Nir, J. Racker, E. Roulet, On Higgs and sphaleron effects during the leptogenesis era. JHEP 01, 068 (2006)

    Article  ADS  Google Scholar 

  37. E. Nardi, Y. Nir, E. Roulet, J. Racker, The importance of flavor in leptogenesis. JHEP 01, 164 (2006)

    Article  ADS  Google Scholar 

  38. L. Covi, E. Roulet, F. Vissani, CP violating decays in leptogenesis scenarios. Phys. Lett. B 384, 169–174 (1996)

    Article  ADS  Google Scholar 

  39. C.S. Fong, E. Nardi, A. Riotto, Leptogenesis in the Universe. Adv. High Energy Phys. 2012, 158303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Riotto, Baryogenesis and leptogenesis. J. Phys. Conf. Ser. 335, 012008 (2011)

    Article  Google Scholar 

  41. W. Buchmuller, P. Di Bari, M. Plumacher, Leptogenesis for pedestrians. Ann. Phys. 315, 305–351 (2005)

    Google Scholar 

  42. W. Buchmuller, R.D. Peccei, T. Yanagida, Leptogenesis as the origin of matter. Ann. Rev. Nucl. Part. Sci. 55, 311–355 (2005)

    Article  ADS  Google Scholar 

  43. W. Buchmuller, M. Plumacher, Baryon asymmetry and neutrino mixing. Phys. Lett. B 389, 73–77 (1996)

    Article  ADS  Google Scholar 

  44. M. Laine, Thermal right-handed neutrino production rate in the relativistic regime. JHEP 08, 138 (2013)

    Article  ADS  Google Scholar 

  45. E.W. Kolb, S. Wolfram, Baryon number generation in the early Universe. Nucl. Phys. B 172, 224 (1980). (Erratum: Nucl. Phys. B 195, 542 (1982))

    Google Scholar 

  46. A. Anisimov, W. Buchmller, M. Drewes, S. Mendizabal, Quantum leptogenesis I. Annals Phys. 326, 1998–2038 (2011)

    Article  ADS  MATH  Google Scholar 

  47. T. Frossard, M. Garny, A. Hohenegger, A. Kartavtsev, D. Mitrouskas, Systematic approach to thermal leptogenesis. Phys. Rev. D 87(8), 085009 (2013)

    Article  ADS  Google Scholar 

  48. M. Garny, A. Hohenegger, A. Kartavtsev, M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: vertex contribution to the CP-violating parameter. Phys. Rev. D 80, 125027 (2009)

    Article  ADS  Google Scholar 

  49. M. Garny, A. Hohenegger, A. Kartavtsev, M. Lindner, Systematic approach to leptogenesis in nonequilibrium QFT: self-energy contribution to the CP-violating parameter. Phys. Rev. D 81, 085027 (2010)

    Article  ADS  Google Scholar 

  50. M. Fujii, K. Hamaguchi, T. Yanagida, Leptogenesis with almost degenerate majorana neutrinos. Phys. Rev. D 65, 115012 (2002)

    Article  ADS  Google Scholar 

  51. W. Buchmuller, P. Di Bari, M. Plumacher, The Neutrino mass window for baryogenesis. Nucl. Phys. B 665, 445–468 (2003)

    Article  ADS  Google Scholar 

  52. E. Nardi, J. Racker, E. Roulet, CP violation in scatterings, three body processes and the Boltzmann equations for leptogenesis. JHEP 09, 090 (2007)

    Article  ADS  Google Scholar 

  53. G.F. Giudice, A. Notari, M. Raidal, A. Riotto, A. Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM. Nucl. Phys. B 685, 89–149 (2004)

    Article  ADS  Google Scholar 

  54. S. Davidson, E. Nardi, Y. Nir, Leptogenesis. Phys. Rept. 466, 105–177 (2008)

    Article  ADS  Google Scholar 

  55. J. Garayoa, S. Pastor, T. Pinto, N. Rius, O. Vives, On the full Boltzmann equations for leptogenesis. JCAP 0909, 035 (2009)

    Article  ADS  Google Scholar 

  56. A. Salvio, P. Lodone, A. Strumia, Towards leptogenesis at NLO: the right-handed neutrino interaction rate. JHEP 08, 116 (2011)

    Article  ADS  MATH  Google Scholar 

  57. I.S. Gradshteyn, I.M. Ryzhik’s, Table of Integrals, Series, and Products. Daniel Zwillinger editor (2014)

    Google Scholar 

  58. S. Davidson, A. Ibarra, A Lower bound on the right-handed neutrino mass from leptogenesis. Phys. Lett. B 535, 25–32 (2002)

    Article  ADS  Google Scholar 

  59. T.D. Lee, R. Oehme, C.-N. Yang, Remarks on possible noninvariance under time reversal and charge conjugation. Phys. Rev. 106, 340–345 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. M. Flanz, E.A. Paschos, U. Sarkar, J. Weiss, Baryogenesis through mixing of heavy Majorana neutrinos. Phys. Lett. B 389, 693–699 (1996)

    Article  ADS  Google Scholar 

  61. A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos. Phys. Rev. D 56, 5431–5451 (1997)

    Article  ADS  Google Scholar 

  62. A. Pilaftsis, T.E.J. Underwood, Resonant leptogenesis. Nucl. Phys. B 692, 303–345 (2004)

    Article  ADS  Google Scholar 

  63. G. Aad et al., Search for heavy neutrinos and right-handed \(W\) bosons in events with two leptons and jets in \(pp\) collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Eur. Phys. J. C 72, 2056 (2012)

    Article  ADS  Google Scholar 

  64. V. Khachatryan et al., Search for heavy neutrinos and \({{\rm W}}\) bosons with right-handed couplings in proton-proton collisions at \(\sqrt{s} = 8\,\text{TeV} \). Eur. Phys. J. C 74(11), 3149 (2014)

    Google Scholar 

  65. V. Khachatryan et al., Search for heavy Majorana neutrinos in \(\mu ^\pm \mu ^\pm +\) jets events in proton-proton collisions at \(\sqrt{s}\) = 8 TeV. Phys. Lett. B 748, 144–166 (2015)

    Article  ADS  Google Scholar 

  66. M. Drewes, B. Garbrecht, Experimental and cosmological constraints on heavy neutrinos. (2015)

    Google Scholar 

  67. A. Ibarra, E. Molinaro, S.T. Petcov, Low energy signatures of the TeV scale see-saw mechanism. Phys. Rev. D 84, 013005 (2011)

    Article  ADS  Google Scholar 

  68. A. Abada, M.E. Krauss, W. Porod, F. Staub, A. Vicente, C. Weiland, Lepton flavor violation in low-scale seesaw models: SUSY and non-SUSY contributions. JHEP 11, 048 (2014)

    Article  ADS  Google Scholar 

  69. A. De Simone, A. Riotto, Quantum boltzmann equations and leptogenesis. JCAP 0708, 002 (2007)

    Article  Google Scholar 

  70. V. Cirigliano, A. De Simone, G. Isidori, I. Masina, A. Riotto, Quantum resonant leptogenesis and minimal lepton flavour violation. JCAP 0801, 004 (2008)

    Article  ADS  Google Scholar 

  71. M. Garny, A. Kartavtsev, A. Hohenegger, Leptogenesis from first principles in the resonant regime. Annals Phys. 328, 26–63 (2013)

    Article  ADS  MATH  Google Scholar 

  72. B. Garbrecht, M. Herranen, Effective theory of resonant leptogenesis in the closed-time-path approach. Nucl. Phys. B 861, 17–52 (2012)

    Article  ADS  MATH  Google Scholar 

  73. W. Buchmuller, M. Plumacher, CP asymmetry in Majorana neutrino decays. Phys. Lett. B 431, 354–362 (1998)

    Article  ADS  Google Scholar 

  74. K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, Generic rules for high temperature dimensional reduction and their application to the standard model. Nucl. Phys. B 458, 90–136 (1996)

    Article  ADS  Google Scholar 

  75. D. Comelli, J.R. Espinosa, Bosonic thermal masses in supersymmetry. Phys. Rev. D 55, 6253–6263 (1997)

    Article  ADS  Google Scholar 

  76. H.A. Weldon, Effective fermion masses of order gT in high temperature gauge theories with exact chiral invariance. Phys. Rev. D 26, 2789 (1982)

    Article  ADS  Google Scholar 

  77. M. Laine, Y. Schroder, Thermal right-handed neutrino production rate in the non-relativistic regime. JHEP 02, 068 (2012)

    Article  ADS  MATH  Google Scholar 

  78. S. Biondini, N. Brambilla, M.A. Escobedo, A. Vairo, An effective field theory for non-relativistic Majorana neutrinos. JHEP 12, 028 (2013)

    Article  ADS  Google Scholar 

  79. D. Bdeker, M. Wrmann, Non-relativistic leptogenesis. JCAP 1402, 016 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  80. L. Covi, N. Rius, E. Roulet, F. Vissani, Finite temperature effects on CP violating asymmetries. Phys. Rev. D 57, 93–99 (1998)

    Article  ADS  Google Scholar 

  81. J.S. Schwinger, Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407–432 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. L.V. Keldysh, Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz. 47, 1515–1527 (1964). (Sov. Phys. JETP 20, 1018(1965))

    Google Scholar 

  83. E. Calzetta, B.L. Hu, Nonequilibrium quantum fields: closed time path effective action, wigner function and boltzmann equation. Phys. Rev. D 37, 2878 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  84. P. Danielewicz, Quantum theory of nonequilibrium processes. 1. Ann. Phys. 152, 239–304 (1984)

    Google Scholar 

  85. J. Knoll, YuB Ivanov, D.N. Voskresensky, Exact conservation laws of the gradient expanded Kadanoff–Baym equations. Ann. Phys. 293, 126–146 (2001)

    Google Scholar 

  86. YuB Ivanov, J. Knoll, D.N. Voskresensky, Selfconsistent approximations to nonequilibrium many body theory. Nucl. Phys. A 657, 413–445 (1999)

    Article  ADS  Google Scholar 

  87. S. Weinstock, Boltzmann collision term. Phys. Rev. D 73, 025005 (2006)

    Article  ADS  Google Scholar 

  88. M. Garny, A. Hohenegger, A. Kartavtsev, Medium corrections to the CP-violating parameter in leptogenesis. Phys. Rev. D 81, 085028 (2010)

    Article  ADS  Google Scholar 

  89. C. Kiessig, M. Plumacher, Hard-thermal-loop corrections in leptogenesis I: CP-asymmetries. JCAP 1207, 014 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Biondini .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Biondini, S. (2017). Baryogenesis via Leptogenesis. In: Effective Field Theories for Heavy Majorana Neutrinos in a Thermal Bath. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-63901-7_3

Download citation

Publish with us

Policies and ethics