Skip to main content

Abstract

Ultrasonication is often used to disperse nanoparticles in aqueous solution. However, a good dispersion of nanoparticles in aqueous solution is not always achieved, due to the fact that incoming ultrasonic waves in liquid are usually reflected and damped at the gas/liquid interface. For the case of carbon nanotubes, this is a classic debundling method: the MWCNTs can be effectively ultrasonically dispersed in the water solution [1]. Under the ultrasound action, the cavitation process produces the strong shear force, leading to the exfoliation of carbon nanotube bundles, bubble formation, and collapse, providing homogeneity of nanosuspension [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Yang, M. Li, S. Luo, et al., Real-time monitoring of carbon nanotube dispersion using dynamic light scattering and UV-Vis spectroscopy. Int. J. Adv. Manuf. Technol. 82(1), 361–367 (2016)

    Article  Google Scholar 

  2. V.A. Tarasov, M.A. Komkov, N.A. Stepanishchev, V.A. Romanenkov, R.V. Boyarskaya, Modification of polyester resin binder by carbon nanotubes using ultrasonic dispersion. Polym. Sci. Ser. D 8(1), 9–16 (2015)

    Article  Google Scholar 

  3. K. Yang, Z.L. Yi, Q.F. Jing, R.L. Yue, W. Jiang, D.H. Lin, Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS: The role of sonication energy. Chin. Sci. Bull. 58(17), 2082–2090 (2013)

    Article  Google Scholar 

  4. A. Sesis, M. Hodnett, G. Memoli, A.J. Wain, I. Jurewicz, A.B. Dalton, J. David Carey, G. Hinds, Influence of acoustic cavitation on the controlled ultrasonic dispersion of carbon nanotubes. J. Phys. Chem. B 117, 15141 (2013)

    Google Scholar 

  5. K.L. Lu, R.M. Lago, Y.K. Chen, M.L.H. Green, P.J.F. Harris, S.C. Tsang, Mechanical damage of carbon nanotubes by ultrasound. Carbon 34, 814–816 (1996)

    Article  Google Scholar 

  6. A.D. Willey, J.M. Holt, B.A. Larsen, J.L. Blackburn, S. Liddiard, J. Abbott, M. Coffin, R.R. Vanfleet, R.C. Davis, Thin films of carbon nanotubes via ultrasonic spraying of suspensions in N-methyl-2-pyrrolidone and N-cyclohexyl-2-pyrrolidone. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom 32, 011218 (2014.) http://avs.scitation.org/doi/abs/10.1116/1.4861370?journalCode=jvb.

  7. K. Urbanski, B. Platek, T. Falat, J. Felba, F. Marcq. Novel Method for CNTs Dispersion in Fluids. 34th International Microelectronics and Packaging IMAPSCPMT Poland Conference, (Wrocław, 2010), p. 22–25

    Google Scholar 

  8. G.T. Caneba, C. Dutta, V. Agrawal, M. Rao, Novel ultrasonic dispersion of carbon nanotubes. J. Miner. Mater. Charact. Eng. 9(3), 165–181 (2010)

    Google Scholar 

  9. T. Yasumitsu, G. Liu, J.-M. Leveque, S. Aonuma, L. Duclaux, T. Kimura, N. Komatsu, A rosette cooling cell: More effective container for solubilization of single-walled carbon nanotubes under probe-type ultrasonic irradiation. Ultrason. Sonochem. 20(1), 37–39 (2013)

    Article  Google Scholar 

  10. Q. Zaib, I.A. Khan, Y. Yoon, J.R.V. Flora, Y.-G. Park, N.B. Saleh, Ultrasonication study for suspending single-walled carbon nanotubes in water. J. Nanosci. Nanotechnol. 12(5), 3909–3917 (2012)

    Article  Google Scholar 

  11. X. Yang, J. Lee, L. Yuan, S.-R. Chae, V.K. Peterson, A.I. Minett, Y. Yin, A.T. Harris, Removal of natural organic matter in water using functionalised carbon nanotube buckypaper. Carbon 59, 160–166 (2013)

    Article  Google Scholar 

  12. B. Koh, W. Cheng, The impact of sonication on the surface quality of single-walled carbon nanotubes. J. Pharm. Sci. 104, 2594–2599 (2015)

    Article  Google Scholar 

  13. H. Yu, S. Hermann, S.E. Schulz, T. Gessner, Z. Dong, W.J. Li, Optimizing sonication parameters for dispersion of single-walled carbon nanotubes. Chem. Phys. 408, 11–16 (2012)

    Article  Google Scholar 

  14. Y. Shi, L. Ren, D. Li, H. Gao, B. Yang, Optimization conditions for single-walled carbon nanotubes dispersion. J. Surf. Eng. Mater. Adv. Technol 3, 6–12 (2013)

    Google Scholar 

  15. M. Mahfuzur Rahman, H. Younes, N. Subramanian, A. Al Ghaferi, Optimizing the dispersion conditions of SWCNTs in aqueous solution of surfactants and organic solvents. J. Nanomater. 2014, 11 (2014.) Article ID 102621

    Google Scholar 

  16. L. Reinert, M. Zeiger, S. Suarez, V. Presser, F. Mucklich, Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Adv. 5, 95149–95159 (2015)

    Article  Google Scholar 

  17. Y.Y. Yan Yan Huang, E.M. Terentjev, Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymer 4, 275–295 (2012)

    Article  Google Scholar 

  18. L. David, A. Feldman, E. Mansfield, J. Lehman, G. Singh, Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings. Sci Rep 4, Article No. 4311 (2014)

    Article  Google Scholar 

  19. B. He, W. Chen, Carboxyl multiwalled carbon nanotubes through ultrasonic dispersing in dimethylfomamide modified electrode as a sensitive amperometric sensor for detection of sulfonamide. Int. J. Electrochem. Sci. 10, 4335–4345 (2015)

    Google Scholar 

  20. V. Oxana, O.V. Kharissova, L.M. Torres Martínez, B.I. Kharisov, Recent trends of reinforcement of cement with carbon nanotubes and fibers, in Advances in Carbon Nanostructures, ed. by A. M. Tavares da Silva, S. A. C. Carabineiro (Eds), (INTECH, Amsterdam, The Netherlands, 2016.) http://www.intechopen.com/books/advances-in-carbon-nanostructures.

  21. J. Foldyna, V. Foldyna, M. Zelenák, Dispersion of carbon nanotubes for application in cement composites. Procedia Eng 149, 94–99 (2016)

    Article  Google Scholar 

  22. S. Parveen, S. Rana, R.A. Fangueiro, Review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J. Nanomater. 2013, 19 (2013.) Article ID 710175

    Article  Google Scholar 

  23. S. Alrekabi, A. Cundy, A. Lampropoulos, I. Savina, Experimental investigation on the effect of ultrasonication on dispersion and mechanical performance of multi-wall carbon nanotube-cement mortar composites. Int. J. Civ. Environ. Struct. Constr. Archit. Eng 10(3), 268–274 (2016)

    Google Scholar 

  24. L. Cui, Incorporation of multiwalled carbon nanotubes to ordinary Portland cement (OPC): Effects on mechanical properties. Adv. Mater. Res. 641-642(1), 436–439 (2013)

    Article  Google Scholar 

  25. C.S. Davis, J.W. Woodcock, J.W. Gilman, Preparation of multi-walled carbon nanotube dispersions in a polyetheramine epoxy for eco-toxicological assessment. NIST Spec. Publ 1200(9), 13 (2015.) http://dx.doi.org/10.6028/NIST.SP.1200-9

  26. Shahshahan, M., Keinanen, P., Vuorinen, J. The Effect of Ultrasonic Dispersion on the Surface Chemistry of Carbon Nanotubes in the Jeffamine D-230 Polyetheramine Medium. 2016 I.E. Nanotechnology Materials and Devices Conference (NMDC), 978–1–5090-4352-1, (Toulouse, France, 2016), p. 2.

    Google Scholar 

  27. A. Samuel Afolabi, O. Oluwafolakemi Sadare, M. Olawale Daramola, Effect of dispersion method and CNT loading on the quality and performance of nanocomposite soy protein/CNTs adhesive for wood application. Adv. Nat. Sci. Nanosci. Nanotechnol. 7(035005), 8 (2016)

    Google Scholar 

  28. http://www.iptonline.com/articles/public/Ultrasonic%20Treatment%20of%20Nanoparticles%20for%20Pharmaceuticals.pdf. Accessed on 6 Jan 2017

  29. B. Yonas, G. Tesfaye, Production, purification and functionalization of carbon nanotubes for medical applications. Int. Res. J. Pharm. 7(7), 19–27 (2016)

    Article  Google Scholar 

  30. X. Chang, W.M. Henderson, D.C. Bouchard, Multiwalled carbon nanotube dispersion methods affect their aggregation, deposition, and biomarker response. Environ. Sci. Technol. 49(11), 6645–6653 (2015)

    Article  Google Scholar 

  31. S. Park, H. Kang, Y. Kim, D. Lee, C. Jin, Catalyst-related dispersion of multiwalled carbon nanotubes by simple ultrasonication. Bull. Kor. Chem. Soc. 37, 174–178 (2016)

    Article  Google Scholar 

  32. W. Chen, X. Liu, Y. Liu, H.-I. Kim, Novel synthesis of self-assembled CNT microcapsules by O/W Pickering emulsions. Mater. Lett. 64(23), 2589–2592 (2010)

    Article  Google Scholar 

  33. M. Jellur Rahman, T. Mieno, Water-dispersible multiwalled carbon nanotubes obtained from citric-acid-assisted oxygen plasma functionalization. J. Nanomater. 2014, 9 (2014.) Article ID 508192

    Google Scholar 

  34. N. Hordy, S. Coulombe, J.-L. Meunier, Plasma functionalization of carbon nanotubes for the synthesis of stable aqueous nanofluids and poly(vinyl alcohol) nanocomposites. Plasma Process. Polym. 10(2), 110–118 (2013)

    Article  Google Scholar 

  35. Y.J. Kim, H. Ma, Q. Yu, Plasma nanocoated carbon nanotubes for heat transfer nanofluids. Nanotechnology 21(29), art. no. 295703 (2010)

    Article  Google Scholar 

  36. C. Chen, A. Ogino, X. Wang, M. Nagatsu, Plasma treatment of multiwall carbon nanotubes for dispersion improvement in water. Appl. Phys. Lett. 96(13), art. no. 131504 (2010)

    Article  Google Scholar 

  37. Y. Jiang, Y.-F. Zhu, F.-Y. Wang, W.-J. Chen, Effects of plasma and acid treatment on the dispersion of carbon nanotubes in liquids. Plasma Chem. Plasma Process. 31(3), 441–448 (2011)

    Article  Google Scholar 

  38. Y. Ishibashi, R. Hanaoka, N. Osawa, S. Takata, Y. Kanamaru, H. Anzai, Effect of barrier discharge on homogeneous dispersion of carbon nanotubes in octylalcohols. Int. J. Plasma Environ. Sci. Tech. 5(1), 62–67 (2011)

    Google Scholar 

  39. M. Vesali-Naseh, A.A. Khodadadi, Y. Mortazavi, A.A. Moosavi-Movahedi, K. Ostrikov, H2O/air plasma-functionalized carbon nanotubes decorated with MnO2 for glucose sensing. RSC Adv. 6, 31807–31815 (2016)

    Article  Google Scholar 

  40. R. Chetty, K. Kumar Maniam, W. Schuhmann, M. Muhler, Oxygen-plasma-functionalized carbon nanotubes as supports for platinum–ruthenium catalysts applied in electrochemical methanol oxidation. ChemPlusChem 80(1), 130–135 (2015)

    Article  Google Scholar 

  41. A. Merenda, E. des Ligneris, K. Sears, T. Chaffraix, K. Magniez, D. Cornu, J.A. Schütz, L.F. Dumée, Assessing the temporal stability of surface functional groups introduced by plasma treatments on the outer shells of carbon nanotubes. Sci Rep 6(31565), 12 (2016)

    Google Scholar 

  42. Z. Lin, T. Iijima, P. Selvam Karthik, M. Yoshida, M. Hada, T. Nishikawa, Y. Hayashi, Surface modification of carbon nanohorns by helium plasma and ozone treatments. Jpn. J. Appl. Phys. 56, 6 (2017.) 01AB08

    Google Scholar 

  43. B.I. Kharisov, O.V. Kharissova, U. Ortiz Mendez, Radiation Synthesis of Materials and Compounds (CRC Press, Boca Raton, 2013), p. 586

    Book  Google Scholar 

  44. R. Gorthy. Effects of neutron and gamma radiation on carbon nanotubes and three-dimensional graphene sheets. MS Thesis, University of Cincinnati, 2016. https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ETD_SUBID:112490.

  45. J. Guo, Y. Li, S. Wu, W. Li, The effects of γ-irradiation dose on chemical modification of multi-walled carbon nanotubes. Nanotechnology 16(10), 2385–2388 (2005)

    Article  Google Scholar 

  46. S.P. Jovanović, Z.M. Marković, D.N. Kleut, N.Z. Romević, V.S. Trajković, M.D. Dramićanin, B.M. Todorović Marković, A novel method for the functionalization of γ-irradiated single wall carbon nanotubes with DNA. Nanotechnology 20(44), art. no. 445602 (2009)

    Article  Google Scholar 

  47. A. A Alanazi, M. Alkhorayef, K. Alzimami, I. Jurewicz, N. Abuhadi, A. Dalton, D.A. Bradley, Carbon nanotubes buckypaper radiation studies for medical physics applications. Appl. Radiat. Isot. 117, 106–110 (2016)

    Article  Google Scholar 

  48. I. Karbovnyk, I. Olenych, O. Aksimentyeva, H. Klym, O. Dzendzelyuk, Y. Olenych, O. Hrushetska, Effect of radiation on the electrical properties of PEDOT-based nanocomposites. Nanoscale Res. Lett. 11(84), 5 (2016)

    Google Scholar 

  49. T.S. Williams, N.D. Orloff, J.S. Baker, S.G. Miller, B. Natarajan, J. Obrzut, L.S. McCorkle, M. Lebron-Colón, J. Gaier, M.A. Meador, J.A. Liddle, Trade-off between the mechanical strength and microwave electrical properties of functionalized and irradiated carbon nanotube sheets. ACS Appl. Mater. Interfaces 8(14), 9327–9334 (2016)

    Article  Google Scholar 

  50. K. Mølhave, S. Bjarke Gudnason, A. Tegtmeier Pedersen, C. Hyttel Clausen, A. Horsewell, P. Bøggild, Electron irradiation-induced destruction of carbon nanotubes in electron microscopes. Ultramicroscopy 108(1), 52–57 (2007)

    Article  Google Scholar 

  51. J.A. Fagan, N.J. Lin, R. Zeisler, A.R. Hight Walker, Effects of gamma irradiation for sterilization on aqueous dispersions of length sorted carbon nanotubes. Nano Res. 4(4), 393–404 (2011)

    Article  Google Scholar 

  52. R.E. Hurd. Magnetic resonance imaging (MRI) agents: water soluble carbon-13 enriched fullerene and carbon nanotubes for use with dynamic nuclear polarization. US20070025918 (2007)

    Google Scholar 

  53. R.E. Hurd. Magnetic resonance imaging (MRI) agents: water soluble carbon-13 enriched fullerene and carbon nanotubes for use with dynamic nuclear polarization. WO08008075, 2008

    Google Scholar 

  54. M.R. McDevitt, D. Chattopadhyay, J.S. Jaggi, R.D. Finn, P.B. Zanzonico, C. Villa, D. Rey, M. Juana, B.A. Carl, et al., PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice. PLoS One 2(9), e907 (2007)

    Article  Google Scholar 

  55. M.A. Méndez-Rojas, B.I. Kharisov, A.Y. Tsivadze, Recent advances on technetium complexes: Coordination chemistry and medical applications. J. Coord. Chem. 59(1), 1–63 (2006)

    Article  Google Scholar 

  56. J. Guo, X. Zhang, Q. Li, W. Li, Biodistribution of functionalized multiwall carbon nanotubes in mice. Nucl. Med. Biol. 34(5), 579–583 (2007)

    Article  Google Scholar 

  57. H. Wang, J. Wang, X. Deng, H. Sun, Z. Shi, Z. Gu, Y. Liu, Y. Zhao, Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol. 4(8), 1019–1024 (2004)

    Article  Google Scholar 

  58. H. Zhao, Y. Chao, J. Liu, J. Huang, J. Pan, W. Guo, J. Wu, M. Sheng, K. Yang, J. Wang, Z. Liu, Polydopamine coated single-walled carbon nanotubes as a versatile platform with radionuclide labeling for multimodal tumor imaging and therapy. Theranostics 6(11), 1833–1843 (2016.) http://www.thno.org/v06p1833.htm#coraddress

  59. B. Munkhbayar, M.J. Nine, J. Jeoun, M. Bat-Erdene, H. Chung, H. Jeong, Influence of dry and wet ball milling on dispersion characteristics of the multi-walled carbon nanotubes in aqueous solution with and without surfactant. Powder Technol. 234, 132–140 (2013)

    Article  Google Scholar 

  60. J.-H. Lee, K.-Y.A. Rhee, Study on the dispersion characteristics of carbon nanotubes using cryogenic ball milling process. J. Korean Soc. Precis. Eng. 27(7), 49–54 (2010)

    Google Scholar 

  61. T. He, X. He, P. Tang, D. Chu, X. Wang, P. Li, The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes. Mater. Des. 114, 373–382 (2017)

    Article  Google Scholar 

  62. X. Li, J. Shi, Y. Qin, Q. Wang, H. Luo, P. Zhang, Z.X. Guo, D.K. Park, Alkylation and arylation of single-walled carbon nanotubes by mechanochemical method. Chem. Phys. Lett. 444(4), 258–262 (2007)

    Article  Google Scholar 

  63. H. Yoon, M. Yamashita, S. Ata, D.N. Futaba, T. Yamada, K. Hata, Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Sci Rep 4, Article number: 3907 (2014)

    Article  Google Scholar 

  64. A. Graf, Y. Zakharko, S.P. Schießl, C. Backes, M. Pfohl, B.S. Flavel, J. Zaumseil, Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon 105, 593–599 (2016)

    Article  Google Scholar 

  65. J. Zhang, B. Li, Universal dispersion of single-walled carbon nanotubes in the liquid phase inspired by Maya blue. J. Mater. Chem. A 1, 10626–10630 (2013)

    Article  Google Scholar 

  66. S. Prakash Yadav, S. Singh, Carbon nanotube dispersion in nematic liquid crystals: An overview. Prog. Mater. Sci. 80, 38–76 (2016)

    Article  Google Scholar 

  67. O. Yaroshchuk, S. Tomylko, O. Kovalchuk, N. Lebovka, Liquid crystal suspensions of carbon nanotubes assisted by organically modified Laponite nanoplatelets. Carbon 68, 389–398 (2014)

    Article  Google Scholar 

  68. C. Tang, T. Zhou, J. Yang, Q. Zhang, F. Chen, Q. Fu, L. Yang, Wet-grinding assisted ultrasonic dispersion of pristine multi-walled carbon nanotubes (MWCNTs) in chitosan solution. Colloids Surf. B Biointerfaces 86(1), 189–197 (2011)

    Article  Google Scholar 

  69. M.A. Kabbani, C. Sekhar Tiwary, P.A.S. Autreto, et al., Ambient solid-state mechano-chemical reactions between functionalized carbon nanotubes. Nat. Commun. 6(7291), 8 (2015)

    Google Scholar 

  70. J. Hilding, A. Eric, E.A. Grulke, Z.G. Zhang, F. Lockwood, Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 24(1), 1–41 (2003)

    Article  Google Scholar 

  71. K. Imasaka, J. Suehiro, Y. Kanatake, Y. Kato, M. Hara, Preparation of water-soluble carbon nanotubes using a pulsed streamer discharge in water. Nanotechnology 17(14), 3421–3427 (2006)

    Article  Google Scholar 

  72. K. Imasaka, Y. Kato, J. Suehiro, Enhancement of microplasma-based water-solubilization of single-walled carbon nanotubes using gas bubbling in water. Nanotechnology 18(33), 335602 (2007)

    Article  Google Scholar 

  73. Y. Ishibashi, R. Hanaoka, N. Osawa, S. Takata, Y. Kanamaru, H. Anzai, Effect of barrier discharge on homogeneous dispersion of carbon nanotubes in octylalcohols. Int J. Plasma Environ. Sci. Technol. 5(1), 62–67 (2011)

    Google Scholar 

  74. Y. Wang, Z. Iqbal, S. Mitra, Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 43(5), 1015–1020 (2005)

    Article  Google Scholar 

  75. S. Mitra, Z. Iqbal. Microwave induced functionalization of single wall carbon nanotubes and composites prepared therefrom. WO06099392, 2006

    Google Scholar 

  76. H.X. Wu, X.Q. Qiu, W.M. Cao, Y.H. Lin, R.F. Cai, S.X. Qian, Polymer-wrapped multiwalled carbon nanotubes synthesized via microwave-assisted in situ emulsion polymerization and their optical limiting properties. Carbon 45(15), 2866–2872 (2007)

    Article  Google Scholar 

  77. J. Li, H. Grennberg, Microwave-assisted covalent sidewall functionalization of multiwalled carbon nanotubes. Chemistry 12(14), 3869–3875 (2006)

    Article  Google Scholar 

  78. S.-J. Cho, S. Prasad Shrestha, S.-B. Lee, J.-H. Boo, Electrical characteristics of carbon nanotubes by plasma and microwave surface treatments. Bull. Kor. Chem. Soc. 35(3), 905–907 (2014)

    Article  Google Scholar 

  79. F. Hof, K. Kampioti, K. Huang, C. Jaillet, et al., Conductive inks of graphitic nanoparticles from a sustainable carbon feedstock. Carbon 111, 142–149 (2017)

    Article  Google Scholar 

  80. K. Jagadish, S. Srikantaswamy, K. Byrappa, L. Shruthi, M. Ramesh Abhilash, Dispersion of multiwall carbon nanotubes in organic solvents through hydrothermal supercritical condition. J. Nanomater. 2015, 6 (2015.) Article ID 381275

    Article  Google Scholar 

  81. K. Naoi, T. Kurita, M. Abe, et al., Ultrafast nanocrystalline-TiO2(B)/carbon nanotube hyperdispersion prepared via combined ultracentrifugation and hydrothermal treatments for hybrid supercapacitors. Adv. Mater. 28(31), 6751–6757 (2016)

    Article  Google Scholar 

  82. M. Lung Sham, J. Li, P. Ma, J.K. Kim, Cleaning and functionalization of polymer surfaces and nanoscale carbon fillers by UV/ozone treatment: A review. J. Compos. Mater. 43(14), 1537–1564 (2009)

    Article  Google Scholar 

  83. C. Fan, W. Li, X. Li, et al., Efficient photo-assisted Fenton oxidation treatment of multi-walled carbon nanotubes. Chin. Sci. Bull. 52(15), 2054–2062 (2007)

    Article  Google Scholar 

  84. C.-Y. Chen, C.T. Jafvert, Photoreactivity of carboxylated single-walled carbon nanotubes in sunlight: Reactive oxygen species production in water. Environ. Sci. Technol. 44(17), 6674–6679 (2010)

    Article  Google Scholar 

  85. M.N. Ahmad, J.-Y. Xie, Y.-H. Ma, W.-T. Yang, Surface functionalization of single-walled carbon nanotubes using photolysis for enhanced dispersion in an organic solvent. New Carbon Mater 25(2), 134–140 (2010.) Xinxing Tan Cailiao

    Article  Google Scholar 

  86. T. Takada, T. Baba, S. Abe, Simple process for sidewall modification of multi-walled carbon nanotubes with polymer side chain radicals generated by ultraviolet-induced C–cl bond dissociation of polystyrene derivatives. Carbon Res. 2, 20 (2016.) 11 pp

    Article  Google Scholar 

  87. J. Lee, T. Jeong, J. Heo, S.H. Park, D. Lee, J.B. Park, H. Han, S.M. Yoon, Short carbon nanotubes produced by cryogenic crushing. Carbon 44(14), 2984–2989 (2006)

    Article  Google Scholar 

  88. Y. Yan, J. Miao, Z. Yang, et al., Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 44, 3295–3346 (2015)

    Article  Google Scholar 

  89. A. Pérez del Pino, E. György, L. Cabana, B. Ballesteros, G. Tobias, Ultraviolet pulsed laser irradiation of multi-walled carbon nanotubes in nitrogen atmosphere. J. Appl. Phys. 115(9), 093501 (2014). doi:10.1063/1.4864776

    Article  Google Scholar 

  90. K. Narimatsu, Y. Niidome, N. Nakashima, Pulsed-laser induced flocculation of carbon nanotubes solubilized by an anthracene-carrying polymer. Chem. Phys. Lett. 429, 488–491 (2006)

    Article  Google Scholar 

  91. M. Ilčíková, M. Danko, M. Doroshenko, Visualization of carbon nanotubes dispersion in composite by using confocal laser scanning microscopy. Eur. Polym. J. 79, 187–197 (2016)

    Article  Google Scholar 

  92. K.J. Ziegler, D.J. Schmidt, U. Rauwald, K.N. Shah, E.L. Flor, R.H. Hauge, R.E. Smalley, Length-dependent extraction of single-walled carbon nanotubes. Nano Lett. 5(12), 2355–2359 (2005)

    Article  Google Scholar 

  93. X. Chen, X.-Z. Tang, Y.N. Liang, et al., Controlled thermal functionalization for dispersion enhancement of multi-wall carbon nanotube in organic solvents. J. Mater. Sci. 51(12), 5625–5634 (2016)

    Article  Google Scholar 

  94. D. Dima, M. Murarescu, G. Andrei, Dispersion of carbon nanotubes coated with iron (iii) oxide into polymer composite under oscillating magnetic field. Dig. J. Nanomater. Biostruct. 5(4), 1009–1014 (2010)

    Google Scholar 

  95. Dispersion and Alignment of Carbon Nanotubes Using Electric Fields. http://hpmi.research.fsu.edu/. Accessed on 5 May 2017

  96. M.-J. Chen. Development and parametric studies of carbon nanotube dispersion using electrospraying. M.Sc. Thesis, 2007, Florida State University. http://diginole.lib.fsu.edu/islandora/object/fsu%3A182086

  97. K. Kanakamedala, J. DeSoto, A. Sarkar, T.D. Theda Daniels Race, Study of electrospray assisted electrophoretic deposition of carbon nanotubes on insulator substrates. Electron. Mater. Lett. 11(6), 949–956 (2015)

    Article  Google Scholar 

  98. Y. Meng, G. Xin, J. Nam, S.M. Cho, H.J. Chae, Electrospray deposition of carbon nanotube thin films for flexible transparent electrodes. J. Nanosci. Nanotechnol. 13(9), 6125–6129 (2013)

    Article  Google Scholar 

  99. K.-h. Ahn, S.-M. Kim, I.J. Yu, Multi-walled carbon nanotube (MWCNT) dispersion and Aerosolization with hot water atomization without addition of any surfactant. Saf. Health Work 2(1), 65–69 (2011)

    Article  Google Scholar 

  100. http://www.sono-tek.com/carbon-nanotube-dispersion/. Accessed on 8 May 2017

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kharissova, O.V., Kharisov, B.I. (2017). Physical Methods. In: Solubilization and Dispersion of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-62950-6_2

Download citation

Publish with us

Policies and ethics