Skip to main content
Log in

Study of electrospray assisted electrophoretic deposition of carbon nanotubes on insulator substrates

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In recent years, electrophoretic deposition (EPD) has been adopted as a cost-effective and reliable single-step solution-based room temperature coating method for carbon nanotubes (CNTs), predominantly on conducting surfaces. Contrary to this general pre-requisite of conductive target substrates, in this work we have explored a fabrication strategy for the scalable deposition of CNTs on insulating glass surfaces by the sequential combination of electrospraying and the EPD technique. This combined process flow has been referred to as “electrospray-assisted EPD”, where an initial CNT coating on glass substrates is obtained by electrospraying which, in turn, further assists CNT film growth by EPD. The successful integration of the electrospray technique in the EPD process flow also eliminates the need for surface functionalization of the insulator substrates prior to the deposition step. Electrospray-assisted EPD has resulted in the successful fabrication of uniform, homogenous, and thick CNT deposits (∼4.5 - 5 μm) with precise thickness control. A detailed investigation of the effect of the initial electrosprayed coating on the final CNT film growth and thickness is also presented in this report. This research endeavor presents a significant opportunity for the integration of this deposition model into a wider platform of materials research and technology, chemical sensing, and applications based upon printable and flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima and T. Ichihashi, Nature 364, 737 (1993).

    Google Scholar 

  2. P. Avouris, R. Martel, V. Derycke, and J. Appenzeller, Physica B. 323, 6 (2002).

    Article  Google Scholar 

  3. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and P. Avouris, Phys. Rev. Lett. 89, 106801 (2002).

    Article  Google Scholar 

  4. S. Lastella, G. Mallick, R. Woo, S. P. Karna, D. A. Rider, I. Manners, Y. J. Jung, C. Y. Ryu, and P. M. Ajayan, J. Appl. Phys. 99, 024302 (2006).

    Article  Google Scholar 

  5. M. F. De Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science 339, 535 (2013).

    Article  Google Scholar 

  6. C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, Appl. Phys. Lett. 70, 1480 (1997).

    Article  Google Scholar 

  7. A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Nano Lett. 9, 1002 (2009).

    Article  Google Scholar 

  8. K. Hong, S. Nam, C. Yang, S. H. Kim, D. S. Chung, W. M. Yun, and C. E. Park, Org. Electron. 10, 363 (2009).

    Article  Google Scholar 

  9. S. Wang, Q. Zhang, D. Yang, P. Sellin, and G. Zhong, Diamond Relat. Mater. 13, 1327 (2004).

    Article  Google Scholar 

  10. A. Sarkar, H. Wang, and T. Daniels-Race, Electron. Mater. Lett. 10, 325 (2014).

    Article  Google Scholar 

  11. L. Hu, J. Li, J. Liu, G. Grüner, and T. Marks, Nanotechnology 21, 155202 (2010).

    Article  Google Scholar 

  12. I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami, and N. Nakashima, Adv. Mater. 18, 69 (2006).

    Article  Google Scholar 

  13. T. Ebbesen and P. Ajayan, Nature 358, 220 (1992).

    Article  Google Scholar 

  14. N. Grobert, Mater. Today 10, 28 (2007).

    Article  Google Scholar 

  15. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, and R. Kizek, J. Mater. Chem. 21, 15872 (2011).

    Article  Google Scholar 

  16. A. Szab, C. Perri, A. Csat, G. Giordano, D. Vuono, and J. B. Nagy, Materials 3, 3092 (2010).

    Article  Google Scholar 

  17. A. Abdelhalim, A. Abdellah, G. Scarpa, and P. Lugli, Carbon 61, 72 (2013).

    Article  Google Scholar 

  18. L. Hu, D. S. Hecht, and G. Gruner, Chem. Rev. 110, 5790 (2010).

    Article  Google Scholar 

  19. A. R. Boccaccini, J. Cho, J. A. Roether, B. J. Thomas, E. J. Minay, and M. S. Shaffer, Carbon 44, 3149 (2006).

    Article  Google Scholar 

  20. I. Corni, M. P. Ryan, and A. R. Boccaccini, J. Eur. Ceram. Soc. 28, 1353 (2008).

    Article  Google Scholar 

  21. O. O. Van der Biest and L. J. Vandeperre, Annu. Rev. Mater. Sci. 29, 327 (1999).

    Article  Google Scholar 

  22. L. Besra and M. Liu, Prog. Mater Sci. 52, 1 (2007).

    Article  Google Scholar 

  23. H. Negishi, N. Oshima, K. Haraya, K. Sakaki, T. Ikegami, Y. Idemoto, N. Koura, and H. Yanagishita, Nippon Seram Kyo Gak. 114, 36 (2006).

    Article  Google Scholar 

  24. L. Besra, C. Compson, and M. Liu, J. Power Sources 173, 130 (2007).

    Article  Google Scholar 

  25. T. Talebi, M. H. Sarrafi, M. Haji, B. Raissi, and A. Maghsoudipour, Int. J. Hydrogen Energy 35, 9440 (2010).

    Article  Google Scholar 

  26. A. Sarkar and D. Hah, J. Electron. Mater. 41, 3130 (2012).

    Article  Google Scholar 

  27. A. Sarkar and T. Daniels-Race, Nanomaterials 3, 272 (2013).

    Article  Google Scholar 

  28. J. Desoto, A. Sarkar, and T. Daniels-Race, Proc. 80th. South Eastern Section of American Physical Society, American Physical Society, Western Kentucky University, Kentucky, USA (2013).

    Google Scholar 

  29. I. B. Rietveld, K. Kobayashi, H. Yamada, and K. Matsushige, J. Phys. Chem. B. 110, 23351 (2006).

    Article  Google Scholar 

  30. J. C. Almekinders and C. Jones, J. Aerosol Sci. 30, 969 (1999).

    Article  Google Scholar 

  31. M. Cloupeau and B. Prunetfoch, J. Aerosol Sci. 25, 1021 (1994).

    Article  Google Scholar 

  32. A. M. Ganan-Calvo, J. Davila, and A. Barrero, J. Aerosol Sci. 28, 249 (1997).

    Article  Google Scholar 

  33. I. Hayati, A. Bailey, and T. F. Tadros, J. Colloid Interface Sci. 117, 222 (1987).

    Article  Google Scholar 

  34. I. Hayati, A. I. Bailey, and T. F. Tadros, J. Colloid Interface Sci. 117, 205 (1987).

    Article  Google Scholar 

  35. A. Jaworek and A. T. Sobczyk, J. Electrostatics. 66, 197 (2008).

    Article  Google Scholar 

  36. I. W. Chiang, B. E. Brinson, R. E. Smalley, J. L. Margrave, and R. H. Hauge, J. Phys. Chem. B. 105, 1157 (2001).

    Article  Google Scholar 

  37. H. Suzuura and T. Ando, Mol. Cryst. Liq. Cryst. 340, 731 (2000).

    Article  Google Scholar 

  38. Y. Meng, G. Xin, J. Nam, S. M. Cho, and H. Chae, J. Nanosci. Nanotechno. 13, 6125 (2013).

    Article  Google Scholar 

  39. A. C. Ferrari, Solid State Commun. 143, 47 (2007).

    Article  Google Scholar 

  40. C. Vix-Guterl, M. Couzi, J. Dentzer, M. Trinquecoste, and P. Delhaes, J. Phys. Chem. B. 108, 19361 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theda Daniels Race.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanakamedala, K., DeSoto, J., Sarkar, A. et al. Study of electrospray assisted electrophoretic deposition of carbon nanotubes on insulator substrates. Electron. Mater. Lett. 11, 949–956 (2015). https://doi.org/10.1007/s13391-015-5108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-5108-8

Keywords

Navigation