Skip to main content
Log in

Real-time monitoring of carbon nanotube dispersion using dynamic light scattering and UV-vis spectroscopy

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A process for continuously monitoring the ultrasonic dispersion process of carbon nanotubes (CNTs) was discovered by integrating dynamic light scattering (DLS) and UV-vis spectroscopy. Through a continuous flow approach adapted to the dispersion system, the CNT suspension could be quantitatively characterized in real time. By continuously monitoring and identifying the evolution of mean particle size distribution and transparency of CNT suspension, the effective dispersion parameters and dispersion quality was quantified. Two types of MWNTs of different diameters and lengths were studied. For longer MWNTs with smaller diameters, the dispersion process achieved at a steady 100 nm of agglomerate size with 40 min of sonication. For shorter and large diameter and less entangled MWNTs, after 60 min of sonication, an agglomerate size of 100 nm was achieved, yet the stability decrease. The results show the potential ability of the system to optimize nanoparticle dispersion process for in-line dispersion quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kukovecz Á, Kanyó T, Kónya Z, Kiricsi I (2005) Long-time low-impact ball milling of multi-wall carbon nanotubes. Carbon 43(5):994–1000. doi:10.1016/j.carbon.2004.11.030

    Article  Google Scholar 

  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297(5582):787–792. doi:10.1126/science.1060928

    Article  Google Scholar 

  3. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng A-Struct 334(1–2):173–178. doi:10.1016/S0921-5093(01)01807-X

  4. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680. doi:10.1038/381678a0

    Article  Google Scholar 

  5. Ruoff RS, Lorents DC (1995) Mechanical and thermal-properties of carbon nanotubes. Carbon 33(7):925–930. doi:10.1016/0008-6223(95)00021-5

    Article  Google Scholar 

  6. Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Single-wall carbon nanotube films. Chem Mater 15(1):175–178. doi:10.1021/Cm020367y

    Article  Google Scholar 

  7. Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodriguez-Macias FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE (1998) Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A-Mater 67(1):29–37. doi:10.1007/s003390050734

    Article  Google Scholar 

  8. Endo M, Muramatsu H, Hayashi T, Kim YA, Terrones M, Dresselhaus NS (2005) ‘Buckypaper’ from coaxial nanotubes. Nature 433(7025):476. doi:10.1038/433476a

    Article  Google Scholar 

  9. Vaisman L, Marom G, Wagner HD (2006) Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv Funct Mater 16(3):357–363. doi:10.1002/adfm.200500142

    Article  Google Scholar 

  10. Kim SH, Lee WI, Park JM (2009) Assessment of dispersion in carbon nanotube reinforced composites using differential scanning calorimetry. Carbon 47(11):2699–2703. doi:10.1016/j.carbon.2009.05.026

    Article  Google Scholar 

  11. Badaire S, Poulin P, Maugey M, Zakri C (2004) In situ measurements of nanotube dimensions in suspensions by depolarized dynamic light scattering. Langmuir 20(24):10367–10370. doi:10.1021/la049096r

    Article  Google Scholar 

  12. SouthWest Nano Technologies (2014) SMW specialty multi-walled carbon nanotubes technical data sheets. http://www.swentnano.com/multi-wall-cnts.html. Accessed 23 Mar 2015

  13. Beckman Coulter, Inc (2010) DelsaNano Series Zeta potential and submicron particle size analyzer brochure (BR-11313). https://www.beckmancoulter.com/wsrportal/bibliography?docname=BR-11313B%20DelsaNano%20Brochure.pdf. Accessed 23 Mar 2015

  14. Hennrich F, Krupke R, Arnold K, Rojas Stütz JA, Lebedkin S, Koch T, Schimmel T, Kappes MM (2007) The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J Phys Chem B 111(8):1932–1937. doi:10.1021/jp065262n

    Article  Google Scholar 

  15. Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94. doi:10.1016/S0021-9797(02)00176-5

    Article  Google Scholar 

  16. Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623. doi:10.1016/j.carbon.2006.10.010

    Article  Google Scholar 

  17. Kasaliwal GR, Pegel S, Goldel A, Potschke P, Heinrich G (2010) Analysis of agglomerate dispersion mechanisms of multiwalled carbon nanotubes during melt mixing in polycarbonate. Polymer 51(12):2708–2720. doi:10.1016/j.polymer.2010.02.048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Mc.(., Li, My., Luo, S. et al. Real-time monitoring of carbon nanotube dispersion using dynamic light scattering and UV-vis spectroscopy. Int J Adv Manuf Technol 82, 361–367 (2016). https://doi.org/10.1007/s00170-015-7348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-015-7348-z

Keywords

Navigation