Skip to main content

Magnetic Resonance Imaging of the Breast in Surgical Planning

  • Chapter
  • First Online:
Oncoplastic and Reconstructive Breast Surgery
  • 1444 Accesses

Abstract

Magnetic resonance imaging (MRI) has changed the landscape of breast disease diagnosis and management, and it has been incorporated into treatment algorithms according to evidence-based consensus guidelines [1–3]. In oncology, the ability to biopsy a finding seen only on MRI has been a significant advancement in the field [4–7]. Preoperatively, MRI has the ability to detect breast disease occult on other imaging modalities as well as additional sites of disease within the ipsilateral or contralateral breast, assess treatment response to neoadjuvant chemotherapy, and guide preoperative needle localization. Breast MRI also has high sensitivity for the evaluation of residual disease post-lumpectomy with positive surgical margins and the evaluation of recurrent disease [8–12]. Other more controversial and emerging uses for MRI in the preoperative setting include axillary staging and aiding in the planning of reconstructive procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris E et al (2005) Breast MRI: diagnosis and intervention. Springer, New York. xviii, 513 p

    Google Scholar 

  2. American College of Radiology (2007) Practice guideline for the breast conservation therapy in the management of invasive breast carcinoma. J Am Coll Surg 205(2):362–376

    Article  Google Scholar 

  3. American College of Radiology (2013) ACR practice parameter for the performance of contrast-enhanced magnetic resonance imaging (MRI) of the breast. https://www.acr.org/~/media/ACR/Documents/PGTS/guidelines/MRI_Breast.pdf?db=web. Accessed 22 Jan 2017

  4. Kaiser WA, Pfleiderer SO, Baltzer PA (2008) MRI-guided interventions of the breast. J Magn Reson Imaging 27(2):347–355

    Article  PubMed  Google Scholar 

  5. Plantade R, Thomassin-Naggara I (2014) MRI vacuum-assisted breast biopsies. Diagn Interv Imaging 95(9):779–801

    Article  CAS  PubMed  Google Scholar 

  6. Imschweiler T et al (2014) MRI-guided vacuum-assisted breast biopsy: comparison with stereotactically guided and ultrasound-guided techniques. Eur Radiol 24(1):128–135

    Article  PubMed  Google Scholar 

  7. Chevrier MC et al (2016) Breast biopsies under magnetic resonance imaging guidance: challenges of an essential but imperfect technique. Curr Probl Diagn Radiol 45(3):193–204

    Article  PubMed  Google Scholar 

  8. Pinker K et al (2014) Improved diagnostic accuracy with multiparametric magnetic resonance imaging of the breast using dynamic contrast-enhanced magnetic resonance imaging, diffusion-weighted imaging, and 3-dimensional proton magnetic resonance spectroscopic imaging. Invest Radiol 49(6):421–430

    Article  CAS  PubMed  Google Scholar 

  9. Dialani V, Chadashvili T, Slanetz PJ (2015) Role of imaging in neoadjuvant therapy for breast cancer. Ann Surg Oncol 22(5):1416–1424

    Article  PubMed  Google Scholar 

  10. Partridge SC et al (2005) MRI measurements of breast tumor volume predict response to neoadjuvant chemotherapy and recurrence-free survival. AJR Am J Roentgenol 184(6):1774–1781

    Article  PubMed  Google Scholar 

  11. Hylton N (2006) MR imaging for assessment of breast cancer response to neoadjuvant chemotherapy. Magn Reson Imaging Clin N Am 14(3):383–389

    Article  PubMed  Google Scholar 

  12. Schott AF et al (2005) Clinical and radiologic assessments to predict breast cancer pathologic complete response to neoadjuvant chemotherapy. Breast Cancer Res Treat 92(3):231–238

    Article  CAS  PubMed  Google Scholar 

  13. American College of Radiology (2014) The ACR technical standard for diagnostic medical physics performance monitoring of magnetic resonance imaging (MRI) equipment. https://www.acr.org/~/media/ACR/Documents/PGTS/standards/MonitorMRIEquipment.pdf. Accessed 16 Jan 2017

  14. Glockner JF et al (2005) Parallel MR imaging: a user’s guide. Radiographics 25(5):1279–1297

    Article  PubMed  Google Scholar 

  15. Rahbar H et al (2013) Clinical and technical considerations for high quality breast MRI at 3 Tesla. J Magn Reson Imaging 37(4):778–790

    Article  PubMed  PubMed Central  Google Scholar 

  16. Veronesi U et al (2002) Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347(16):1227–1232

    Article  PubMed  Google Scholar 

  17. Fisher B et al (2002) Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347(16):1233–1241

    Article  PubMed  Google Scholar 

  18. Simone NL et al (2012) Twenty-five year results of the national cancer institute randomized breast conservation trial. Breast Cancer Res Treat 132(1):197–203

    Article  PubMed  Google Scholar 

  19. Litiere S et al (2012) Breast conserving therapy versus mastectomy for stage I-II breast cancer: 20 year follow-up of the EORTC 10801 phase 3 randomised trial. Lancet Oncol 13(4):412–419

    Article  PubMed  Google Scholar 

  20. Early Breast Cancer Trialists’ Collaborative Group (1995) Effects of radiotherapy and surgery in early breast cancer. An overview of the randomized trials. N Engl J Med 333(22):1444–1455

    Article  Google Scholar 

  21. van der Hage JA et al (2003) Impact of locoregional treatment on the early-stage breast cancer patients: a retrospective analysis. Eur J Cancer 39(15):2192–2199

    Article  PubMed  Google Scholar 

  22. Early Breast Cancer Trialists’ Collaborative Group (2000) Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomised trials. Lancet 355(9217):1757–1770

    Article  Google Scholar 

  23. Weedon-Fekjaer H, Romundstad PR, Vatten LJ (2014) Modern mammography screening and breast cancer mortality: population study. BMJ 348:g3701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Timmermans L et al (2017) Screen-detected versus interval cancers: effect of imaging modality and breast density in the Flemish Breast Cancer Screening Programme. Eur Radiol 27(9):3810–3819

    Article  PubMed  Google Scholar 

  25. Tagliafico AS et al (2016) Diagnostic performance of contrast-enhanced spectral mammography: systematic review and meta-analysis. Breast 28:13–19

    Article  PubMed  Google Scholar 

  26. Mariscotti G et al (2014) Accuracy of mammography, digital breast tomosynthesis, ultrasound and MR imaging in preoperative assessment of breast cancer. Anticancer Res 34(3):1219–1225

    PubMed  Google Scholar 

  27. Kuhl CK (2007) Current status of breast MR imaging. Part 2. Clinical applications. Radiology 244(3):672–691

    Article  PubMed  Google Scholar 

  28. Kriege M et al (2004) Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 351(5):427–437

    Article  CAS  PubMed  Google Scholar 

  29. Kuhl C et al (2010) Prospective multicenter cohort study to refine management recommendations for women at elevated familial risk of breast cancer: the EVA trial. J Clin Oncol 28(9):1450–1457

    Article  PubMed  Google Scholar 

  30. Leach MO et al (2005) Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS). Lancet 365(9473):1769–1778

    Article  CAS  PubMed  Google Scholar 

  31. Cooney CS, Khouri NF, Tsangaris TN (2008) The role of breast MRI in the management of patients with breast disease. Adv Surg 42:299–312

    Article  PubMed  Google Scholar 

  32. Morris EA et al (2003) MRI of occult breast carcinoma in a high-risk population. Am J Roentgenol 181(3):619–626

    Article  Google Scholar 

  33. Saslow D et al (2007) American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57(2):75–89

    Article  PubMed  Google Scholar 

  34. Berg WA et al (2004) Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 233(3):830–849

    Article  PubMed  Google Scholar 

  35. Berg WA et al (2012) Detection of breast cancer with addition of annual screening ultrasound or a single screening MRI to mammography in women with elevated breast cancer risk. JAMA 307(13):1394–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barrett A (2015) Preoperative breast MR imaging: its role in surgical planning. Radiol Technol 86(5):499–510

    PubMed  Google Scholar 

  37. Iacconi C et al (2016) Multicentric cancer detected at breast MR imaging and not at mammography: important or not? Radiology 279(2):378–384

    Article  PubMed  Google Scholar 

  38. Hollingsworth AB, Stough RG (2006) Preoperative breast MRI for locoregional staging. J Okla State Med Assoc 99(10):505–515

    PubMed  Google Scholar 

  39. Lehman CD et al (2007) MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 356(13):1295–1303

    Article  CAS  PubMed  Google Scholar 

  40. Mann RM (2010) The effectiveness of MR imaging in the assessment of invasive lobular carcinoma of the breast. Magn Reson Imaging Clin N Am 18(2):259–276, ix

    Article  PubMed  Google Scholar 

  41. Nori J et al (2014) Role of preoperative breast MRI in ductal carcinoma in situ for prediction of the presence and assessment of the extent of occult invasive component. Breast J 20(3):243–248

    Article  PubMed  Google Scholar 

  42. Dewar JA et al (1995) Local relapse and contralateral tumor rates in patients with breast cancer treated with conservative surgery and radiotherapy (institut gustave roussy 1970–1982). Cancer 76(11):2260–2265

    Article  CAS  PubMed  Google Scholar 

  43. Gage I et al (1996) Pathologic margin involvement and the risk of recurrence in patients treated with breast-conserving therapy. Cancer 78(9):1921–1928

    Article  CAS  PubMed  Google Scholar 

  44. Fischer U, Kopka L, Grabbe E (1999) Breast carcinoma: effect of preoperative contrast-enhanced MR imaging on the therapeutic approach. Radiology 213(3):881–888

    Article  CAS  PubMed  Google Scholar 

  45. Hollingsworth AB et al (2008) Breast magnetic resonance imaging for preoperative locoregional staging. Am J Surg 196(3):389–397

    Article  PubMed  Google Scholar 

  46. Liberman L et al (2003) MR imaging of the ipsilateral breast in women with percutaneously proven breast cancer. AJR Am J Roentgenol 180(4):901–910

    Article  PubMed  Google Scholar 

  47. Kuhl CK et al (2017) Impact of preoperative breast MR imaging and MR-guided surgery on diagnosis and surgical outcome of women with invasive breast cancer with and without DCIS component. Radiology 284(3):645–655

    Article  PubMed  Google Scholar 

  48. Brennan ME et al (2017) Impact of selective use of breast MRI on surgical decision-making in women with newly diagnosed operable breast cancer. Breast 32:135–143

    Article  PubMed  Google Scholar 

  49. Bilimoria KY (2007) Evaluating the impact of preoperative breast magnetic resonance imaging on the surgical management of newly diagnosed breast cancers. Arch Surg 142(5):441

    Article  PubMed  Google Scholar 

  50. Turnbull LW et al (2010) Multicentre randomised controlled trial examining the cost-effectiveness of contrast-enhanced high field magnetic resonance imaging in women with primary breast cancer scheduled for wide local excision (COMICE). Health Technol Assess 14(1):1–182

    Article  CAS  PubMed  Google Scholar 

  51. Peters NH et al (2011) Preoperative MRI and surgical management in patients with nonpalpable breast cancer: the MONET—randomised controlled trial. Eur J Cancer 47(6):879–886

    Article  CAS  PubMed  Google Scholar 

  52. Kuhl C et al (2007) Pre-operative staging of breast cancer with breast MRI: one step forward, two steps back? Breast 16(Suppl 2):S34–S44

    Article  PubMed  Google Scholar 

  53. Lehman CD et al (2005) Screening women at high risk for breast cancer with mammography and magnetic resonance imaging. Cancer 103(9):1898–1905

    Article  PubMed  Google Scholar 

  54. Morris EA et al (2000) Evaluation of pectoralis major muscle in patients with posterior breast tumors on breast MR images: early experience. Radiology 214(1):67–72

    Article  CAS  PubMed  Google Scholar 

  55. Borger J et al (1994) Risk factors in breast-conservation therapy. J Clin Oncol 12(4):653–660

    Article  CAS  PubMed  Google Scholar 

  56. Freedman G et al (1998) Patients with close or positive margins treated with conservative surgery and radiation have an increased risk of breast recurrence that is delayed by adjuvant systemic therapy. Int J Radiat Oncol Biol Phys 42(1):126

    Article  Google Scholar 

  57. Smitt M et al (2002) Predictors of re-excision findings and recurrence following breast conservation. Int J Radiat Oncol Biol Phys 54((2):6

    Article  Google Scholar 

  58. Morris EA (2010) Should we dispense with preoperative breast MRI? Lancet 375(9714):528–530

    Article  PubMed  Google Scholar 

  59. Mossa-Basha M et al (2010) Ductal carcinoma in situ of the breast: MR imaging findings with histopathologic correlation. Radiographics 30(6):1673–1687

    Article  PubMed  Google Scholar 

  60. Stomper PC et al (1995) Suspect breast lesions: findings at dynamic gadolinium-enhanced MR imaging correlated with mammographic and pathologic features. Radiology 197(2):387–395

    Article  CAS  PubMed  Google Scholar 

  61. Deurloo EE et al (2012) MRI of the breast in patients with DCIS to exclude the presence of invasive disease. Eur Radiol 22(7):1504–1511

    Article  PubMed  Google Scholar 

  62. Orel SG et al (1995) Staging of suspected breast cancer: effect of MR imaging and MR-guided biopsy. Radiology 196(1):115–122

    Article  CAS  PubMed  Google Scholar 

  63. Boetes C et al (1995) Breast tumors: comparative accuracy of MR imaging relative to mammography and US for demonstrating extent. Radiology 197(3):743–747

    Article  CAS  PubMed  Google Scholar 

  64. Viehweg P et al (2000) In situ and minimally invasive breast cancer: morphologic and kinetic features on contrast-enhanced MR imaging. MAGMA 11(2):129–137

    Article  CAS  PubMed  Google Scholar 

  65. Fobben ES et al (1995) Breast MR imaging with commercially available techniques: radiologic-pathologic correlation. Radiology 196(1):143–152

    Article  CAS  PubMed  Google Scholar 

  66. Menell JH et al (2006) Determination of the presence and extent of pure ductal carcinoma in situ by mammography and magnetic resonance imaging. Clin Imaging 30(3):225

    Article  Google Scholar 

  67. Schouten van der Velden AP et al (2009) Magnetic resonance imaging of ductal carcinoma in situ: what is its clinical application? A review. Am J Surg 198(2):262–269

    Article  PubMed  Google Scholar 

  68. Jansen SA et al (2007) Pure ductal carcinoma in situ: kinetic and morphologic MR characteristics compared with mammographic appearance and nuclear grade. Radiology 245(3):684–691

    Article  PubMed  Google Scholar 

  69. Hwang ES et al (2003) Magnetic resonance imaging in patients diagnosed with ductal carcinoma-in-situ: value in the diagnosis of residual disease, occult invasion, and multicentricity. Ann Surg Oncol 10(4):381–388

    Article  PubMed  Google Scholar 

  70. Huang YT et al (2011) MRI findings of cancers preoperatively diagnosed as pure DCIS at core needle biopsy. Acta Radiol 52(10):1064–1068

    Article  PubMed  Google Scholar 

  71. Mennella S et al (2015) Magnetic resonance imaging of breast cancer: factors affecting the accuracy of preoperative lesion sizing. Acta Radiol 56(3):260–268

    Article  PubMed  Google Scholar 

  72. Bickel H et al (2015) Quantitative apparent diffusion coefficient as a noninvasive imaging biomarker for the differentiation of invasive breast cancer and ductal carcinoma in situ. Invest Radiol 50(2):95–100

    Article  CAS  PubMed  Google Scholar 

  73. Ding JR, Wang DN, Pan JL (2016) Apparent diffusion coefficient value of diffusion-weighted imaging for differential diagnosis of ductal carcinoma in situ and infiltrating ductal carcinoma. J Cancer Res Ther 12(2):744–750

    Article  PubMed  Google Scholar 

  74. Hussein H et al (2015) Evaluation of apparent diffusion coefficient to predict grade, microinvasion, and invasion in ductal carcinoma in situ of the breast. Acad Radiol 22(12):1483–1488

    Article  PubMed  Google Scholar 

  75. Li CI (2003) Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA 289(11):1421

    Article  PubMed  Google Scholar 

  76. Hanby AM, Hughes TA (2007) In situ and invasive lobular neoplasia of the breast. Histopathology 52(1):58–66

    Article  Google Scholar 

  77. Arpino G et al (2004) Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res 6(3):R149–R156

    Article  PubMed  PubMed Central  Google Scholar 

  78. Doyle AJ et al (2016) DCIS of the breast: the value of preoperative MRI. J Med Imaging Radiat Oncol 60(2):194–198

    Article  PubMed  Google Scholar 

  79. Doyle DJ et al (2005) Metastatic manifestations of invasive lobular breast carcinoma. Clin Radiol 60(2):271–274

    Article  CAS  PubMed  Google Scholar 

  80. Biglia N et al (2007) Increased incidence of lobular breast cancer in women treated with hormone replacement therapy: implications for diagnosis, surgical and medical treatment. Endocr Relat Cancer 14(3):549–567

    Article  CAS  PubMed  Google Scholar 

  81. Rodenko GN et al (1996) MR imaging in the management before surgery of lobular carcinoma of the breast: correlation with pathology. AJR Am J Roentgenol 167(6):1415–1419

    Article  CAS  PubMed  Google Scholar 

  82. Weinstein SP et al (2001) MR imaging of the breast in patients with invasive lobular carcinoma. Am J Roentgenol 176(2):399–406

    Article  CAS  Google Scholar 

  83. Munot K et al (2002) Role of magnetic resonance imaging in the diagnosis and single-stage surgical resection of invasive lobular carcinoma of the breast. Br J Surg 89(10):1296–1301

    Article  CAS  PubMed  Google Scholar 

  84. Schelfout K et al (2004) Preoperative breast MRI in patients with invasive lobular breast cancer. Eur Radiol 14(7):1209–1216

    Article  CAS  PubMed  Google Scholar 

  85. Caramella T et al (2007) Value of MRI in the surgical planning of invasive lobular breast carcinoma: a prospective and a retrospective study of 57 cases: comparison with physical examination, conventional imaging, and histology. Clin Imaging 31(3):155–161

    Article  PubMed  Google Scholar 

  86. Fitzgibbons PL, Connolly JL, Page DL (2000) Updated protocol for the examination of specimens from patients with carcinomas of the breast. Cancer Committee. Arch Pathol Lab Med 124(7):1026–1033

    Article  CAS  PubMed  Google Scholar 

  87. Fitzgibbons PL et al (2000) Prognostic factors in breast cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124(7):966–978

    Article  CAS  PubMed  Google Scholar 

  88. Lehman CD et al (2009) Indications for breast MRI in the patient with newly diagnosed breast cancer. J Natl Compr Canc Netw 7(2):193–201

    Article  PubMed  Google Scholar 

  89. Sung JS et al (2014) Preoperative breast MRI for early-stage breast cancer: effect on surgical and long-term outcomes. AJR Am J Roentgenol 202(6):1376–1382

    Article  PubMed  Google Scholar 

  90. Liberman L et al (2003) MR imaging findings in the contralateral breast of women with recently diagnosed breast cancer. AJR Am J Roentgenol 180(2):333–341

    Article  PubMed  Google Scholar 

  91. Houssami N, Turner R, Morrow M (2013) Preoperative magnetic resonance imaging in breast cancer: meta-analysis of surgical outcomes. Ann Surg 257(2):249–255

    Article  PubMed  Google Scholar 

  92. Nichols HB et al (2011) Declining incidence of contralateral breast cancer in the United States from 1975 to 2006. J Clin Oncol 29(12):1564–1569

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lee CH, Carter D (1995) Detecting residual tumor after excisional biopsy of impalpable breast carcinoma: efficacy of comparing preoperative mammograms with radiographs of the biopsy specimen. Am J Roentgenol 164(1):81–86

    Article  CAS  Google Scholar 

  94. Gluck BS et al (1993) Microcalcifications on postoperative mammograms as an indicator of adequacy of tumor excision. Radiology 188(2):469–472

    Article  CAS  PubMed  Google Scholar 

  95. Frei KA et al (2000) MR imaging of the breast in patients with positive margins after lumpectomy. Am J Roentgenol 175(6):1577–1584

    Article  CAS  Google Scholar 

  96. Morris EA (2010) Diagnostic breast MR imaging: current status and future directions. Magn Reson Imaging Clin N Am 18(1):57–74

    Article  PubMed  Google Scholar 

  97. Brooks JP et al (2005) Early ipsilateral breast tumor recurrences after breast conservation affect survival: an analysis of the National Cancer Institute randomized trial. Int J Radiat Oncol Biol Phys 62(3):785–789

    Article  PubMed  Google Scholar 

  98. Doyle T et al (2001) Long-term results of local recurrence after breast conservation treatment for invasive breast cancer. Int J Radiat Oncol Biol Phys 51(1):74–80

    Article  CAS  PubMed  Google Scholar 

  99. Fisher B et al (1995) Reanalysis and results after 12 years of follow-up in a randomized clinical trial comparing total mastectomy with lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med 333(22):1456–1461

    Article  CAS  PubMed  Google Scholar 

  100. Fowble BL et al (1991) Ten year results of conservative surgery and irradiation for stage I and II breast cancer. Int J Radiat Oncol Biol Phys 21(2):269–277

    Article  CAS  PubMed  Google Scholar 

  101. Haffty BG et al (1996) Ipsilateral breast tumor recurrence as a predictor of distant disease: implications for systemic therapy at the time of local relapse. J Clin Oncol 14(1):52–57

    Article  CAS  PubMed  Google Scholar 

  102. Jacobson JA et al (1995) Ten-year results of a comparison of conservation with mastectomy in the treatment of stage I and II breast cancer. N Engl J Med 332(14):907–911

    Article  CAS  PubMed  Google Scholar 

  103. Tabar Ls et al (1999) The natural history of breast carcinoma. Cancer 86(3):449–462

    Article  CAS  PubMed  Google Scholar 

  104. Whelan T et al (1994) Ipsilateral breast tumor recurrence postlumpectomy is predictive of subsequent mortality: results from a randomized trial. Int J Radiat Oncol Biol Phys 30(1):11–16

    Article  CAS  PubMed  Google Scholar 

  105. Yoo H et al (2014) Local recurrence of breast cancer in reconstructed breasts using TRAM flap after skin-sparing mastectomy: clinical and imaging features. Eur Radiol 24(9):2220–2226

    Article  PubMed  Google Scholar 

  106. Hidalgo DA et al (1998) Immediate reconstruction after complete skin-sparing mastectomy with autologous tissue. J Am Coll Surg 187(1):17–21

    Article  CAS  PubMed  Google Scholar 

  107. Howard MA et al (2006) Breast cancer local recurrence after mastectomy and TRAM flap reconstruction: incidence and treatment options. Plast Reconstr Surg 117(5):1381–1386

    Article  CAS  PubMed  Google Scholar 

  108. Disa JJ et al (2003) Skin-sparing mastectomy and immediate autologous tissue reconstruction after whole-breast irradiation. Plast Reconstr Surg 111(1):118–124

    Article  PubMed  Google Scholar 

  109. Kroll SS et al (1999) Local recurrence risk after skin-sparing and conventional mastectomy: a 6-year follow-up. Plast Reconstr Surg 104(2):421–425

    Article  CAS  PubMed  Google Scholar 

  110. Kroll SS et al (1997) Risk of recurrence after treatment of early breast cancer with skin-sparing mastectomy. Ann Surg Oncol 4(3):193–197

    Article  CAS  PubMed  Google Scholar 

  111. Foster RD et al (2002) Skin-sparing mastectomy and immediate breast reconstruction: a prospective cohort study for the treatment of advanced stages of breast carcinoma. Ann Surg Oncol 9(5):462–466

    Article  PubMed  Google Scholar 

  112. Carlson GW (1998) Local recurrence after skin-sparing mastectomy: a manifestation of tumor biology or surgical conservatism? Ann Surg Oncol 5(7):571–572

    Article  CAS  PubMed  Google Scholar 

  113. Rieber A et al (2003) Breast-conserving surgery and autogenous tissue reconstruction in patients with breast cancer: efficacy of MRI of the breast in the detection of recurrent disease. Eur Radiol 13(4):780–787

    Article  PubMed  Google Scholar 

  114. Dao TH et al (1993) Tumor recurrence versus fibrosis in the irradiated breast: differentiation with dynamic gadolinium-enhanced MR imaging. Radiology 187(3):751–755

    Article  CAS  PubMed  Google Scholar 

  115. Gilles R et al (1993) Assessment of breast cancer recurrence with contrast-enhanced subtraction MR imaging: preliminary results in 26 patients. Radiology 188(2):473–478

    Article  CAS  PubMed  Google Scholar 

  116. Heywang-Köbrunner SH et al (1993) Contrast-enhanced MRI of the breast after limited surgery and radiation therapy. J Comput Assist Tomogr 17(6):891–900

    Article  PubMed  Google Scholar 

  117. Kerslake RW et al (1994) Dynamic contrast-enhanced and fat suppressed magnetic resonance imaging in suspected recurrent carcinoma of the breast: preliminary experience. Br J Radiol 67(804):1158–1168

    Article  CAS  PubMed  Google Scholar 

  118. Lewis-Jones HG, Whitehouse GH, Leinster SJ (1991) The role of magnetic resonance imaging in the assessment of local recurrent breast carcinoma. Clin Radiol 43(3):197–204

    Article  CAS  PubMed  Google Scholar 

  119. Mumtaz H et al (1997) Comparison of magnetic resonance imaging and conventional triple assessment in locally recurrent breast cancer. Br J Surg 84(8):1147–1151

    CAS  PubMed  Google Scholar 

  120. Murray AD et al (1996) Dynamic magnetic resonance mammography of both breasts following local excision and radiotherapy for breast carcinoma. Br J Radiol 69(823):594–600

    Article  CAS  PubMed  Google Scholar 

  121. Mussurakis S et al (1995) Dynamic contrast-enhanced magnetic resonance imaging of the breast combined with pharmacokinetic analysis of gadolinium-DTPA uptake in the diagnosis of local recurrence of early stage breast carcinoma. Invest Radiol 30(11):650–662

    Article  CAS  PubMed  Google Scholar 

  122. Nunes LW et al (1997) Diagnostic performance characteristics of architectural features revealed by high spatial-resolution MR imaging of the breast. Am J Roentgenol 169(2):409–415

    Article  CAS  Google Scholar 

  123. Rieber A et al (1997) Value of MR mammography in the detection and exclusion of recurrent breast carcinoma. J Comput Assist Tomogr 21(5):780–784

    Article  CAS  PubMed  Google Scholar 

  124. Heywang SH et al (1990) Gd-DTPA enhanced MR imaging of the breast in patients with postoperative scarring and silicon implants. J Comput Assist Tomogr 14(3):348–356

    Article  CAS  PubMed  Google Scholar 

  125. Boné B et al (1995) Contrast-enhanced MR imaging of the breast in patients with breast implants after cancer surgery. Acta Radiol 36(2):111–116

    Article  PubMed  Google Scholar 

  126. Huch RA et al (1998) MR imaging of the augmented breast. Eur Radiol 8(3):371–376

    Article  CAS  PubMed  Google Scholar 

  127. Ahn CY et al (1995) Evaluation of autogenous tissue breast reconstruction using MRI. Plast Reconstr Surg 95(1):70–76

    Article  CAS  PubMed  Google Scholar 

  128. Soderstrom CE et al (1997) Detection with MR imaging of residual tumor in the breast soon after surgery. AJR Am J Roentgenol 168(2):485–488

    Article  CAS  PubMed  Google Scholar 

  129. Bostwick J (1995) Breast reconstruction following mastectomy. CA Cancer J Clin 45(5):289–304

    Article  PubMed  Google Scholar 

  130. Slavin SA, Goldwyn RM (1988) The midabdominal rectus abdominis myocutaneous flap. Plast Reconstr Surg 81(2):189–197

    Article  CAS  PubMed  Google Scholar 

  131. Hartrampf CR, Scheflan M, Black PW (1982) Breast reconstruction with a transverse Abdominal Island flap. Plast Reconstr Surg 69(2):216–224

    Article  CAS  PubMed  Google Scholar 

  132. Davidson NE (1997) Diseases of the breast Jay R. Harris, Marc E. Lippman, Monica Morrow, Samuel Hellman, eds. Philadelphia: Lippincott-Raven, 1996. 1047 pp., illus. $169. ISBN 0-397-51470-0. JNCI J Natl Cancer Inst 89(1):85–85

    Article  Google Scholar 

  133. Bloom S, Morrow M (2010) A clinical oncologic perspective on breast magnetic resonance imaging. Magn Reson Imaging Clin N Am 18(2):277–294, ix

    Article  PubMed  Google Scholar 

  134. de Bresser J et al (2010) Breast MRI in clinically and mammographically occult breast cancer presenting with an axillary metastasis: a systematic review. Eur J Surg Oncol 36(2):114–119

    Article  PubMed  Google Scholar 

  135. Olson JA et al (2000) Magnetic resonance imaging facilitates breast conservation for occult breast cancer. Ann Surg Oncol 7(6):411–415

    Article  PubMed  Google Scholar 

  136. Bartella L et al (2006) Nonpalpable mammographically occult invasive breast cancers detected by MRI. AJR Am J Roentgenol 186(3):865–870

    Article  PubMed  Google Scholar 

  137. Morrow M, Waters J, Morris E (2011) MRI for breast cancer screening, diagnosis, and treatment. Lancet 378(9805):1804–1811

    Article  PubMed  Google Scholar 

  138. Black D et al (2007) Detecting occult malignancy in prophylactic mastectomy: preoperative MRI versus sentinel lymph node biopsy. Ann Surg Oncol 14(9):2477–2484

    Article  PubMed  Google Scholar 

  139. Lee CH et al (1999) Clinical usefulness of MR imaging of the breast in the evaluation of the problematic mammogram. AJR Am J Roentgenol 173(5):1323–1329

    Article  CAS  PubMed  Google Scholar 

  140. Ahmed M et al (2014) Is imaging the future of axillary staging in breast cancer? Eur Radiol 24(2):288–293

    Article  CAS  PubMed  Google Scholar 

  141. Gill G (2008) Sentinel-lymph-node-based management or routine axillary clearance? One-year outcomes of sentinel node biopsy versus axillary clearance (SNAC): a randomized controlled surgical trial. Ann Surg Oncol 16(2):266–275

    Article  PubMed  Google Scholar 

  142. Kim T, Giuliano AE, Lyman GH (2006) Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma. Cancer 106(1):4–16

    Article  PubMed  Google Scholar 

  143. Krag D et al (1998) The sentinel node in breast cancer—a multicenter validation study. N Engl J Med 339(14):941–946

    Article  CAS  PubMed  Google Scholar 

  144. Veronesi U et al (2003) A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med 349(6):546–553

    Article  PubMed  Google Scholar 

  145. Zavagno G et al (2008) A randomized clinical trial on sentinel lymph node biopsy versus axillary lymph node dissection in breast cancer. Ann Surg 247(2):207–213

    Article  PubMed  Google Scholar 

  146. Bilimoria KY et al (2009) Comparison of sentinel lymph node biopsy alone and completion axillary lymph node dissection for node-positive breast cancer. J Clin Oncol 27(18):2946–2953

    Article  PubMed  Google Scholar 

  147. Galimberti V et al (2011) Can we avoid axillary dissection in the micrometastatic sentinel node in breast cancer? Breast Cancer Res Treat 131(3):819–825

    Article  PubMed  Google Scholar 

  148. Giuliano AE et al (2016) Locoregional recurrence after sentinel lymph node dissection with or without axillary dissection in patients with sentinel lymph node metastases: long-term follow-up from the American College of Surgeons Oncology Group (Alliance) ACOSOG Z0011 Randomized Trial. Ann Surg 264(3):413–420

    Article  PubMed  Google Scholar 

  149. Galimberti V et al (2013) Axillary dissection versus no axillary dissection in patients with sentinel-node micrometastases (IBCSG 23-01): a phase 3 randomised controlled trial. Lancet Oncol 14(4):297–305

    Article  PubMed  PubMed Central  Google Scholar 

  150. Houssami N et al (2011) Preoperative ultrasound-guided needle biopsy of axillary nodes in invasive breast cancer. Ann Surg 254(2):243–251

    Article  PubMed  Google Scholar 

  151. Mortellaro VE et al (2009) Magnetic resonance imaging for axillary staging in patients with breast cancer. J Magn Reson Imaging 30(2):309–312

    Article  PubMed  Google Scholar 

  152. Luciani A et al (2009) Ex vivo MRI of axillary lymph nodes in breast cancer. Eur J Radiol 69(1):59–66

    Article  PubMed  Google Scholar 

  153. Harnan SE et al (2011) Magnetic resonance for assessment of axillary lymph node status in early breast cancer: a systematic review and meta-analysis. Eur J Surg Oncol 37(11):928–936

    Article  CAS  PubMed  Google Scholar 

  154. Meng Y et al (2011) Cost-effectiveness of MRI and PET imaging for the evaluation of axillary lymph node metastases in early stage breast cancer. Eur J Surg Oncol 37(1):40–46

    Article  CAS  PubMed  Google Scholar 

  155. Vasile JV et al (2010) Anatomic imaging of gluteal perforator flaps without ionizing radiation: seeing is believing with magnetic resonance angiography. J Reconstr Microsurg 26(1):45–57

    Article  PubMed  Google Scholar 

  156. Vasile JV, Levine JL (2016) Magnetic resonance angiography in perforator flap breast reconstruction. Gland Surg 5(2):197–211

    PubMed  PubMed Central  Google Scholar 

  157. Nahabedian MY (2011) Overview of perforator imaging and flap perfusion technologies. Clin Plast Surg 38(2):165–174

    Article  PubMed  Google Scholar 

  158. Mohan AT, Saint-Cyr M (2016) Advances in imaging technologies for planning breast reconstruction. Gland Surg 5(2):242–254

    PubMed  PubMed Central  Google Scholar 

  159. Rozen WM et al (2008) The accuracy of computed tomographic angiography for mapping the perforators of the DIEA: a cadaveric study. Plast Reconstr Surg 122(2):363–369

    Article  CAS  PubMed  Google Scholar 

  160. Rozen WM et al (2010) Deep inferior epigastric perforators do not correlate between sides of the body: the role for preoperative imaging. J Plast Reconstr Aesthet Surg 63(12):e842–e843

    Article  PubMed  Google Scholar 

  161. Giunta RE, Geisweid A, Feller AM (2000) The value of preoperative Doppler sonography for planning free perforator flaps. Plast Reconstr Surg 105(7):2381–2386

    Article  CAS  PubMed  Google Scholar 

  162. Blondeel PN et al (1998) Doppler flowmetry in the planning of perforator flaps. Br J Plast Surg 51(3):202–209

    Article  CAS  PubMed  Google Scholar 

  163. Smit JM et al (2009) Preoperative CT angiography reduces surgery time in perforator flap reconstruction. J Plast Reconstr Aesthet Surg 62(9):1112–1117

    Article  PubMed  Google Scholar 

  164. Laungani AT et al (2015) Three-dimensional CT angiography assessment of the impact of the dermis and the subdermal plexus in DIEP flap perfusion. J Plast Reconstr Aesthet Surg 68(4):525–530

    Article  PubMed  Google Scholar 

  165. Ahn C, Narayanan K, Shaw W (1994) In vivo anatomic study of cutaneous perforators in free flaps using magnetic resonance imaging. J Reconstr Microsurg 10(03):157–163

    Article  CAS  PubMed  Google Scholar 

  166. Chernyak V et al (2009) Breast reconstruction with deep inferior epigastric artery perforator flap: 3.0-T gadolinium-enhanced MR imaging for preoperative localization of abdominal wall perforators. Radiology 250(2):417–424

    Article  PubMed  Google Scholar 

  167. Pauchot J et al (2012) Preoperative imaging for deep inferior epigastric perforator flaps: a comparative study of computed tomographic angiography and magnetic resonance angiography. Eur J Plast Surg 35(11):795–801

    Article  Google Scholar 

  168. Rozen WM, Ashton MW, Grinsell D (2010) The branching pattern of the deep inferior epigastric artery revisited in-vivo: a new classification based on CT angiography. Clin Anat 23(1):87–92

    PubMed  Google Scholar 

  169. Bergeron L, Tang M, Morris SF (2006) A review of vascular injection techniques for the study of perforator flaps. Plast Reconstr Surg 117(6):2050–2057

    Article  CAS  PubMed  Google Scholar 

  170. Faermann R et al (2014) Tumor-to-breast volume ratio as measured on MRI: a possible predictor of breast-conserving surgery versus mastectomy. Isr Med Assoc J 16(2):101–105

    PubMed  Google Scholar 

  171. Mills JM, Schultz DJ, Solin LJ (1997) Preservation of cosmesis with low complication risk after conservative surgery and radiotherapy for ductal carcinoma in situ of the breast. Int J Radiat Oncol Biol Phys 39(3):637–641

    Article  CAS  PubMed  Google Scholar 

  172. Taylor ME et al (1995) Factors influencing cosmetic results after conservation therapy for breast cancer. Int J Radiat Oncol Biol Phys 31(4):753–764

    Article  CAS  PubMed  Google Scholar 

  173. Martic K et al (2011) Tumor and breast volume ratio as a predictive factor for axillary lymph node metastases in T1c ductal invasive breast cancer: prospective observational clinico-pathological study. Jpn J Clin Oncol 41(12):1322–1326

    Article  PubMed  Google Scholar 

  174. Kurniawan ED et al (2008) Predictors of surgical margin status in breast-conserving surgery within a breast screening program. Ann Surg Oncol 15(9):2542–2549

    Article  PubMed  Google Scholar 

  175. Van Goethem M et al (2004) MR mammography in the pre-operative staging of breast cancer in patients with dense breast tissue: comparison with mammography and ultrasound. Eur Radiol 14(5):809–816

    Article  PubMed  Google Scholar 

  176. Wengert GJ et al (2017) Accuracy of fully automated, quantitative, volumetric measurement of the amount of fibroglandular breast tissue using MRI: correlation with anthropomorphic breast phantoms. NMR Biomed 30(6):e3705

    Google Scholar 

  177. Wengert GJ et al (2015) Introduction of an automated user-independent quantitative volumetric magnetic resonance imaging breast density measurement system using the Dixon sequence: comparison with mammographic breast density assessment. Invest Radiol 50(2):73–80

    Article  PubMed  Google Scholar 

  178. Bartella L et al (2007) Imaging breast cancer. Radiol Clin North Am 45(1):45–67

    Article  PubMed  Google Scholar 

  179. Le-Petross HC, Hylton N (2010) Role of breast MR imaging in neoadjuvant chemotherapy. Magn Reson Imaging Clin N Am 18(2):249–258, viii–ix

    Article  PubMed  Google Scholar 

  180. Tsuchida Y, Therasse P (2001) Response evaluation criteria in solid tumors (RECIST): new guidelines. Med Pediatr Oncol 37(1):1–3

    Article  CAS  PubMed  Google Scholar 

  181. Drew PJ et al (2001) Evaluation of response to neoadjuvant chemoradiotherapy for locally advanced breast cancer with dynamic contrast-enhanced MRI of the breast. Eur J Surg Oncol 27(7):617–620

    Article  CAS  PubMed  Google Scholar 

  182. Akazawa K et al (2006) Preoperative evaluation of residual tumor extent by three-dimensional magnetic resonance imaging in breast cancer patients treated with neoadjuvant chemotherapy. Breast J 12(2):130–137

    Article  PubMed  Google Scholar 

  183. Abraham DC et al (1996) Evaluation of neoadjuvant chemotherapeutic response of locally advanced breast cancer by magnetic resonance imaging. Cancer 78(1):91–100

    Article  CAS  PubMed  Google Scholar 

  184. Cheung YC et al (2003) Monitoring the size and response of locally advanced breast cancers to neoadjuvant chemotherapy (weekly paclitaxel and epirubicin) with serial enhanced MRI. Breast Cancer Res Treat 78(1):51–58

    Article  CAS  PubMed  Google Scholar 

  185. Martincich L et al (2004) Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat 83(1):67–76

    Article  PubMed  Google Scholar 

  186. Pickles MD et al (2005) Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy. Breast Cancer Res Treat 91(1):1–10

    Article  CAS  PubMed  Google Scholar 

  187. Manton DJ et al (2006) Neoadjuvant chemotherapy in breast cancer: early response prediction with quantitative MR imaging and spectroscopy. Br J Cancer 94(3):427–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Murata Y et al (2004) Utility of initial MRI for predicting extent of residual disease after neoadjuvant chemotherapy: analysis of 70 breast cancer patients. Oncol Rep 12:1257–1262

    PubMed  Google Scholar 

  189. Esserman L et al (2001) MRI phenotype is associated with response to doxorubicin and cyclophosphamide neoadjuvant chemotherapy in stage III breast cancer. Ann Surg Oncol 8(6):549–559

    Article  CAS  PubMed  Google Scholar 

  190. Martincich L et al (2003) Role of magnetic resonance imaging in the prediction of tumor response in patients with locally advanced breast cancer receiving neoadjuvant chemo-therapy. Radiol Med 106(1–2):51–58

    PubMed  Google Scholar 

  191. Hylton NM et al (2012) Locally advanced breast cancer: MR imaging for prediction of response to neoadjuvant chemotherapy—results from ACRIN 6657/I-SPY TRIAL. Radiology 263(3):663–672

    Article  PubMed  PubMed Central  Google Scholar 

  192. Moon HG et al (2009) Age and HER2 expression status affect MRI accuracy in predicting residual tumor extent after neo-adjuvant systemic treatment. Ann Oncol 20(4):636–641

    Article  PubMed  Google Scholar 

  193. Partridge SC et al (2002) Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy. Am J Roentgenol 179(5):1193–1199

    Article  Google Scholar 

  194. Chen JH, Su MY (2013) Clinical application of magnetic resonance imaging in management of breast cancer patients receiving neoadjuvant chemotherapy. Biomed Res Int 2013:348167

    PubMed  PubMed Central  Google Scholar 

  195. Bahri S et al (2009) Residual breast cancer diagnosed by MRI in patients receiving neoadjuvant chemotherapy with and without bevacizumab. Ann Surg Oncol 16(6):1619–1628

    Article  PubMed  PubMed Central  Google Scholar 

  196. Chen JH et al (2007) MRI evaluation of pathologically complete response and residual tumors in breast cancer after neoadjuvant chemotherapy. Cancer 112(1):17–26

    Article  Google Scholar 

  197. Orel S (2008) Who should have breast magnetic resonance imaging evaluation? J Clin Oncol 26(5):703–711

    Article  PubMed  Google Scholar 

  198. Yeh E et al (2005) Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer. Am J Roentgenol 184(3):868–877

    Article  Google Scholar 

  199. Weatherall PT et al (2001) MRI vs. histologic measurement of breast cancer following chemotherapy: comparison with x-ray mammography and palpation. J Magn Reson Imaging 13(6):868–875

    Article  CAS  PubMed  Google Scholar 

  200. Kwong MS et al (2006) Postchemotherapy MRI overestimates residual disease compared with histopathology in responders to neoadjuvant therapy for locally advanced breast cancer. Cancer J 12(3):212–221

    Article  PubMed  Google Scholar 

  201. Rieber A et al (2002) Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy. Eur Radiol 12(7):1711–1719

    Article  CAS  PubMed  Google Scholar 

  202. Wasser K et al (2003) Accuracy of tumor size measurement in breast cancer using MRI is influenced by histological regression induced by neoadjuvant chemotherapy. Eur Radiol 13(6):1213–1223

    Article  CAS  PubMed  Google Scholar 

  203. Chen J-H et al (2007) Magnetic resonance imaging in predicting pathological response of triple negative breast cancer following neoadjuvant chemotherapy. J Clin Oncol 25(35):5667–5669

    Article  PubMed  Google Scholar 

  204. De Los Santos J et al (2011) Accuracy of breast magnetic resonance imaging in predicting pathologic response in patients treated with neoadjuvant chemotherapy. Clin Breast Cancer 11(5):312–319

    Article  PubMed  Google Scholar 

  205. Kuzucan A et al (2012) Diagnostic performance of magnetic resonance imaging for assessing tumor response in patients with HER2-negative breast cancer receiving neoadjuvant chemotherapy is associated with molecular biomarker profile. Clin Breast Cancer 12(2):110–118

    Article  PubMed  PubMed Central  Google Scholar 

  206. Marcos de Paz LM et al (2012) Breast MR imaging changes after neoadjuvant chemotherapy: correlation with molecular subtypes. Radiología (English Edition) 54(5):442–448

    Article  CAS  Google Scholar 

  207. Nakahara H et al (2010) MR and US imaging for breast cancer patients who underwent conservation surgery after neoadjuvant chemotherapy: comparison of triple negative breast cancer and other intrinsic subtypes. Breast Cancer 18(3):152–160

    Article  PubMed  Google Scholar 

  208. Chen J-H et al (2011) Breast cancer: evaluation of response to neoadjuvant chemotherapy with 3.0-T MR imaging. Radiology 261(3):735–743

    Article  PubMed  PubMed Central  Google Scholar 

  209. Korteweg MA et al (2011) Feasibility of 7 Tesla breast magnetic resonance imaging determination of intrinsic sensitivity and high-resolution magnetic resonance imaging, diffusion-weighted imaging, and 1H-magnetic resonance spectroscopy of breast cancer patients receiving neoadjuvant therapy. Invest Radiol 46(6):370–376

    Article  CAS  PubMed  Google Scholar 

  210. Chen JH et al (2009) Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer. Ann Surg 249(3):448–454

    Article  PubMed  Google Scholar 

  211. Lehman CD et al (2005) Clinical experience with MRI-guided vacuum-assisted breast biopsy. Am J Roentgenol 184(6):1782–1787

    Article  Google Scholar 

  212. Morris EA et al (2002) Preoperative MR imaging-guided needle localization of breast lesions. AJR Am J Roentgenol 178(5):1211–1220

    Article  PubMed  Google Scholar 

  213. LaTrenta LR et al (2003) Breast lesions detected with MR imaging: utility and histopathologic importance of identification with US. Radiology 227(3):856–861

    Article  PubMed  Google Scholar 

  214. Boetes C et al (1997) False-negative MR imaging of malignant breast tumors. Eur Radiol 7(8):1231–1234

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Sutton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haddad, D., Pinker, K., Morris, E., Sutton, E. (2019). Magnetic Resonance Imaging of the Breast in Surgical Planning. In: Urban, C., Rietjens, M., El-Tamer, M., Sacchini, V.S. (eds) Oncoplastic and Reconstructive Breast Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-62927-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62927-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62925-4

  • Online ISBN: 978-3-319-62927-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics