Skip to main content

Sperm and Spermatozoa Characteristics in the Siberian Sturgeon

  • Chapter
  • First Online:
The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1 - Biology

Abstract

Sperm and spermatozoa in Siberian sturgeon are very interesting and specific from several points of view. Siberian sturgeon usually produces high volume of semen with relatively low sperm and protein concentration, which is partially explained by the atypical testicular morphology where spermatozoa are mixed with urine during passage through the kidneys to the Wolffian ducts. Sodium and chloride ions contribute most to the osmolality of the seminal fluid. Potassium ions are critical for immobilization of spermatozoa, while its antagonist is calcium ion, which triggers spermatozoa motility. The motility period is relatively long (2–3 min) with flagellum beat frequency about 50 Hz. The main characteristics of sturgeon spermatozoa are an elongated head with an acrosome containing acrosomal proteins. The flagellum is equipped with a fin for more efficient movement. During penetration into the egg micropyle, the acrosome undergoes acrosomal reactions, which include formation of fertilization filament and opening of posterolateral projections. The fertilization filament activates the egg and causes the formation of a perivitelline space, while the posterolateral projections serve as an anchor against release from the micropyle. The acrosomal reaction has been recognized to be important for fertilization and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alavi SMH, Hatef A, Pšenička M et al (2012b) Sperm biology and control of reproduction in sturgeon: (II) sperm morphology, acrosome reaction, motility and cryopreservation. Rev Fish Biol Fisher 22:861–886

    Article  Google Scholar 

  • Alavi SMH, Rodina M, Gela D et al (2012a) Sperm biology and control of reproduction in sturgeon: (I) testicular development, sperm maturation and seminal plasma characteristics. Rev Fish Biol Fisher 22:695–717

    Article  Google Scholar 

  • Baccetti B (1979) The evolution of the acrosomal complex. In: Fawcett DW, Bedford JM (eds) The spermatozoon. Urban and Schwarzenberg, Baltimore-Munich, pp 305–329

    Google Scholar 

  • Baccetti B (1986) Evolutionary trends in sperm structure. Comp Biochem Physiol A 85:29–36

    Article  CAS  PubMed  Google Scholar 

  • Baccetti B, Afzelius BA (1976) The biology of the sperm cell. Monogr Dev Biol 10:1–4

    Google Scholar 

  • Baccetti B, Burrini AG, Callaini G et al (1984) Fish germinal cell. I. Comparative spermatology of seven cyprinid species. Gamete Res 10:373–396

    Article  Google Scholar 

  • Baccetti B, Burrini AG, Collodel G et al (1989) Localization of acrosomal enzymes in arthropoda, echinodermata and vertebrata. J Submicrosc Cytol Pathol 21(2):385–389

    CAS  PubMed  Google Scholar 

  • Billard R (1970) Ultrastructure comparée de spermatozoides de quelques poissons téléostéens. In: Baccetti B (ed) Comparative spermatology. Academic Press, New York, pp 71–79

    Google Scholar 

  • Billard R, Cosson J, Fierville F et al (1999) Motility analysis and energetics of the Siberian sturgeon Acipenser baerii spermatozoa. J Appl Ichthyol 15:199–203

    Article  Google Scholar 

  • Billard R, Cosson J, Linhart O (2000) Changes in the flagellum morphology of intact and frozen/thawed Siberian sturgeon Acipenser baerii (Brandt) sperm during motility. Aquac Res 31:283–287

    Article  Google Scholar 

  • Brandon CI, Srivastava PN, Heusner GL et al (1997) Extraction and quantification of acrosin, β-Nacetylglucosaminidase, and arylsulfatase-a from equine ejaculated spermatozoa. J Exp Zoo 279:301–308

    Article  CAS  Google Scholar 

  • Callard GV, Callard IP (1999) Spermatogenesis in nonmammals. In: Knobil E, Neill JD (eds) Encyclopedia of reproduction IV. Academic Press, New York, pp 563–570

    Google Scholar 

  • Cherr GN, Clark WH (1984) An acrosome reactions in sperm from the white sturgeon, Acipenser transmontanus. J Exp Zool 232:129–139

    Article  CAS  Google Scholar 

  • Cherr GN, Clark WH (1985) Gamete interaction in the white sturgeon Acipenser transmontanus: a morphological and physiological review. Environ Biol Fish 14:11–22

    Article  Google Scholar 

  • Ciereszko A, Dabrowski K, Lin F et al (1994) Identification of trypsin-like activity in sturgeon spermatozoa. J Exp Zool 268:486–491

    Article  CAS  Google Scholar 

  • Ciereszko A, Dabrowski K, Ochkur SI (1996) Characterization of acrosin-like activity of lake sturgeon (Acipenser fulvescens) spermatozoa. Mol Reprod Dev 45:72–77

    Article  CAS  PubMed  Google Scholar 

  • Cosson J, Linhart O, Mims S et al (2000) Analysis of motility parameters from paddlefish (Polyodon spathula) and shovelnose sturgeon (Scaphirhynchus platorynchus) spermatozoa. J Fish Biol 56:1348–1367

    Article  Google Scholar 

  • Dan JC (1967) Acrosome reaction and lysins. In: Metz CB, Monroy A (eds) Fertilization, comparative morphology, biochemistry and immunology. Academic Press, New York, pp 237–288

    Google Scholar 

  • Debus L, Winkler M, Billard R (2002) Structure of micropyle surface on oocytes and caviar grains in sturgeons. Internat Rev Hydrobiol 87(5-6):585–603

    Article  Google Scholar 

  • Dettlaff TA, Ginsburg AS, Schmalhausen OI (1993) Sturgeon fishes. Developmental biology and aquaculture. Springer-Verlag, Berlin

    Book  Google Scholar 

  • DiLauro MN, Kaboord W, Walsh RA (1998) Sperm-cell ultrastructure of north American sturgeons. I. The Atlantic sturgeon (Acipenser oxyrhynchus). Can J Zool-Rev Can Zool 76:1822–1836

    Article  Google Scholar 

  • DiLauro MN, Kaboord WS, Walsh RA (1999) Sperm-cell ultrastructure of north American sturgeons. II. The shortnose sturgeon (Acipenser brevirostrum, Lesueur, 1818). Can J Zool-Rev Can Zool 77:321–330

    Article  Google Scholar 

  • DiLauro MN, Kaboord WS, Walsh RA (2000) Sperm-cell ultrastructure of north American sturgeon. III. The Lake sturgeon (Acipenser fulvescens Rafinesque, 1817). Can J Zool 78:438–447

    Article  Google Scholar 

  • DiLauro MN, Walsh RA, Peiffer M (2001) Sperm-cell ultrastructure of north american sturgeons. IV. The pallid sturgeon (Scaphirhynchus albus Forbes and Richardson, 1905). Can J Zool-Rev Can Zool 79:802–808

    Article  Google Scholar 

  • Gallis JL, Fedrigo E, Jatteau P et al (1991) Siberian sturgeon spermatozoa: effects of dilution, pH, osmotic pressure, sodium and potassium ions on motility. In: Williot P (ed) Acipenser. Cemagref, Antony, France, pp 143–151

    Google Scholar 

  • Gillies EA, Bondarenko V, Cosson J et al (2013) Fins improve the swimming performance of fish sperm: a hydrodynamic analysis of the Siberian sturgeon Acipenser baerii. Cytoskeleton 70:85–100

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg AS (1977) Fine structure of the spermatozoon and acrosome reaction in Acipenser stellatus. In: Beljaev DK (ed) Problemy eksperimentalnoj biologii. Nauka, Moscow, pp 246–256

    Google Scholar 

  • Glogowski J, Kolman R, Szczepkowski M et al (2002) Fertilization rate of Siberian sturgeon (Acipenser baerii, Brandt) milt cryopreserved with methanol. Aquaculture 211:367–373

    Article  CAS  Google Scholar 

  • Hatef A, Alavi SMH, Noveiri SH et al (2011) Morphology and fine structure of Acipenser percius (Acipenseridae, Chondrostei) spermatozoon: interspecies comparison in Acipensiformes. Anim Reprod Sci 123:81–88

    Article  PubMed  Google Scholar 

  • Hatef A, Alavi SMH, Rodina M et al (2012) Morphology and fine structure of the Russian sturgeon, Acipenser gueldenstaedtii (Acipenseridae, Chondrostei) spermatozoa. J Appl Ichthyol 28:978–983

    Article  Google Scholar 

  • Iwamatsu T, Onitake K, Yoshimoto Y, Hiramoto Y (1991) Time sequence of early events in fertilization in the medaka egg. Develop Growth Differ 33:479–490

    Article  Google Scholar 

  • Jamieson BGM (1991) Fish evolution and systematics: evidence from spermatozoa. Cambridge University Press, Cambridge

    Google Scholar 

  • Jamieson BGM (1999) Spermatozoal phylogeny of the vertebrata. In: Gagnon C (ed) The male gamete: from basic science to clinical applications. Cache River Press, Vienna, pp 303–331

    Google Scholar 

  • Jones PR, Butler RD (1988) Spermatozoon ultrastructure of Platichthys flesus. J Ultra Mol Struct R 98:71–82

    Article  CAS  Google Scholar 

  • Judycka S, Szczepkowski M, Ciereszko A et al (2015a) Characterization of Siberian sturgeon (Acipenser baerii Brandt) sperm obtained out of season. J Appl Ichthyol 31:34–40

    Article  CAS  Google Scholar 

  • Judycka S, Szczepkowski M, Ciereszko A et al (2015b) New extender for cryopreservation of Siberian sturgeon (Acipenser baerii) semen. Cryobiology 70:184–189

    Article  CAS  PubMed  Google Scholar 

  • Kille RA (1960) Fertilization of lamprey egg. Exp Cell Res 20:12–27

    Article  CAS  PubMed  Google Scholar 

  • Klemm U, Mulleresterl W, Engel W (1991) Acrosin, the peculiar sperm-specific serine protease. Hum Genet 87(6):635–641

    Article  CAS  PubMed  Google Scholar 

  • Knobil E, Neill D (1999) Encyclopaedia of reproduction. Academic Press, New York

    Google Scholar 

  • Kobayashi W, Yamamoto TS (1981) Fine structure of micropylar apparatus of the chum salmon egg, with a discussion of the mechanism for blocking polyspermy. J Exp Biol 217:265–275

    Google Scholar 

  • Kudo S (1980) Sperm penetration and the formation of a fertilization cone in the common carp egg. Develop Growth Differ 22:403–414

    Article  Google Scholar 

  • Lahnsteiner F, Patzner RA (1997) Fine structure of spermatozoa of four littoral teleosts Symphodus ocellatus, Coris julis, Thalassoma pavo and Chromis chromis. J Submicr Cytol Path 29:477–485

    Google Scholar 

  • Li P, Hulak M, Rodina M et al (2010) Comparative protein profiles: potential molecular markers from spermatozoa of Acipenseriformes (Chondrostei, Pisces). Comp Biochem Physiol D 5:302–307

    Google Scholar 

  • Li P, Rodina M, Hulák M et al (2011) Physico-chemical properties and protein profiles of sperm from three freshwater chondrostean species: a comparative study among Siberian sturgeon (Acipenser baerii), sterlet (Acipenser ruthenus) and paddlefish (Polyodon spathula). J Appl Ichthyol 27:673–677

    Article  Google Scholar 

  • Linhart O, Kudo S (1997) Surface ultrastructure of paddlefish eggs before and after fertilization. J Fish Biol 51:573–582

    Google Scholar 

  • Linhartova Z, Rodina M, Nebesarova J et al (2013) Morphology and ultrastructure of beluga (Huso huso) spermatozoa and a comparison with related sturgeons. Anim Reprod Sci 137:220–229

    Article  PubMed  Google Scholar 

  • Lopo AC (1983) Sperm-egg interaction in invertebrates. In: Hartman JF (ed) Mechanisms and control fertilization. Academic Press, New York, pp 269–324

    Google Scholar 

  • Lowman FG (1953) Electron microscope studies of silver salmon spermatozoa (Oncorhynchus kisutch W.) Exp Cell Res 5:335–360

    Article  CAS  PubMed  Google Scholar 

  • Morisawa S (1995) Fine structure of spermatozoa of the hagfish Eptatretus burgeri (Agnatha). Biol Bull 189:6–12

    Article  CAS  PubMed  Google Scholar 

  • Morisawa S (1999a) Acrosome reaction in spermatozoa of the hagfish Eptatretus burgeri (Agnatha). Develop Growth Differ 41:109–112

    Article  CAS  Google Scholar 

  • Morisawa S (1999b) Fine structure of micropylar region during late oogenesis in eggs of the hagfish Eptatretus burgeri (Agnatha). Develop Growth Differ 41:611–618

    Article  CAS  Google Scholar 

  • Morisawa S, Cherr GN (2002) Acrosome reaction in spermatozoa from hagfish (Agnatha) Eptatretus burgeri and Eptatretus stouti: acrosomal exocytosis and identification of filamentous actin. Develop Growth Differ 44:337–344

    Article  Google Scholar 

  • Morisawa S, Morisawa M (1988) Induction of potential for sperm motility by bicarbonate and pH in rainbow trout and chum salmon. J Exp Biol 136:13–22

    CAS  PubMed  Google Scholar 

  • Nikolajczyk BS, O’Rand MG (1992) Characterization of rabbit testis β-galactosidase and arylsulfatase-a – purification and localization in spermatozoa during the acrosome reaction. Biol Reprod 46:366–378

    Article  CAS  PubMed  Google Scholar 

  • Piros B, Glogowski J, Kolman R et al (2002) Biochemical characterization of Siberian sturgeon Acipenser baerii and sterlet Acipenser ruthenus milt plasma and spermatozoa. Fish Physiol Biochem 26:289–295

    Article  CAS  Google Scholar 

  • Pšenička M, Alavi SMH, Rodina M et al (2007) Morphology and ultrastructure of Siberian sturgeon, Acipenser baerii, spermatozoa using scanning and transmission electron microscopy. Biol Cell 99(2):103–115

    Article  PubMed  Google Scholar 

  • Pšenička M, Alavi SMH, Rodina M et al (2008a) Morphology, chemical contents and physiology of chondrostean fish sperm: a comparative study between Siberian sturgeon (Acipenser baerii) and sterlet (Acipenser ruthenus). J Appl Ichthyol 24:371–377

    Article  Google Scholar 

  • Pšenička M, Cosson J, Alavi SMH et al (2008b) Staining of sturgeon spermatozoa with trypsin inhibitor from soybean, Alexa Fluor® 488 conjugate for visualization of sturgeon acrosome. J Appl Ichthyol 24:514–516

    Article  Google Scholar 

  • Pšenička M, Flajšhans M, Hulák M et al (2010b) The influence of ploidy level on ultrastructure and motility of tench (Tinca tinca L.) spermatozoa. Rev Fish Biol Fish 20(3):331–338

    Article  Google Scholar 

  • Pšenička M, Kašpar V, Rodina M et al (2011) Comparative study on ultrastructure and motility parameters of spermatozoa of tetraploid and hexaploid Siberian sturgeon Acipenser baerii. J Appl Ichthyol 27:683–686

    Article  Google Scholar 

  • Pšenička M, Rodina M, Linhart O (2010c) Ultrastructural study on fertilization process in sturgeon (Acipenser), function of acrosome and prevention of polyspermy. Anim Reprod Sci 117:147–154

    Article  PubMed  Google Scholar 

  • Pšenička M, Těšitel J, Tesařová M et al (2010a) Size determination of Acipenser ruthenus spermatozoa in different types of electron microscopy. Micron 41:455–460

    Article  PubMed  Google Scholar 

  • Pšenička M, Vancová M, Koubek P et al (2009) Fine structure and morphology of sterlet (Acipenser ruthenus L. 1758) spermatozoa and acrosin localization. Anim Reprod Sci 111:3–16

    Article  PubMed  Google Scholar 

  • Sarosiek B, Ciereszko A, Rzemieniecki A et al (2004) The influence of semen cryopreservation on the release of some enzymes from Siberian sturgeon (Acipenser baerii) and sterlet (Acipenser ruthenus) spermatozoa. Arch Pol Fish 12:13–21

    Google Scholar 

  • Sarosiek B, Dryl K, Judycka S et al (2015) Influence of acid phosphatase and arylsulfatase inhibitor additions on fertility rate of Siberian sturgeon (Acipenser baerii Brandt, 1869). J Appl Ichthyol 31:154–148

    Google Scholar 

  • Sarosiek B, Glogowski J, Cejko BI et al (2014) Inhibition of β-N-acetylglucosaminidase by acetamide affects sperm motility and fertilization success of rainbow trout (Oncorhynchus mykiss) and Siberian sturgeon (Acipenser baerii). Theriogenology 81:723–732

    Article  CAS  PubMed  Google Scholar 

  • Sarosiek B, Kowalski RK, Dryl K et al (2012) Isolation and characteristics of beta-N-acetylglucosaminidase present in rainbow trout (Oncorhynchus mykiss) and Siberian sturgeon (Acipenser baerii) milt. J Appl Ichthyol 28:984–989

    Article  CAS  Google Scholar 

  • Sarosiek B, Kowalski R, Glogowski J (2008) Isolation and preliminary characteristics of beta-N-acetylglucosaminidase in the sperm of Siberian sturgeon (Acipenser baerii) and rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 24:492–496

    Article  CAS  Google Scholar 

  • Shaliutina A, Hulak M, Gazo I et al (2013) Effect of short-term storage on quality parameters, DNA integrity, and oxidative stress in Russian (Acipenser gueldenstaedtii) and Siberian (Acipenser baerii) sturgeon sperm. Anim Reprod Sci 139(1-4):127–135

    Article  CAS  PubMed  Google Scholar 

  • Shapiro BM, Eddy EM (1980) When sperm meets egg: biochemical mechanisms of gamete interaction. Int Rev Cytol 66:257–302

    Article  CAS  PubMed  Google Scholar 

  • Sieczyński P, Glogowski J, Cejko B et al (2012) Characteristics of Siberian sturgeon and sterlet sperm motility parameters compared using CASA. Arch Pol Fish 20:137–143

    Google Scholar 

  • Słowińska M, Liszewska E, Dietrich GJ et al (2015) Effect of season on proteases and serine protease inhibitors of Siberian sturgeon (Acipenser baerii Brandt, 1869) semen. J Appl Ichthyol 31:125–131

    Google Scholar 

  • Toth GP, Ciereszko A, Christ SA et al (1997) Objective analysis of sperm motility in the lake sturgeon, Acipenser fulvescens: activation and inhibition conditions. Aquaculture 154:337–348

    Article  Google Scholar 

  • Tsvetkova LI, Cosson J, Linhart O et al (1996) Motility and fertilizing capacity of fresh and frozen-thawed spermatozoa in sturgeons Acipenser baerii and A. ruthenus. J Appl Ichthyol 12:107–112

    Article  Google Scholar 

  • Urbanyi B, Horvath A, Kovacs B (2004) Successful hybridization of Acipenser species using cryopreserved sperm. Aquacult Int 12:47–56

    Article  Google Scholar 

  • Wei Q, Li P, Pšenička M et al (2007) Ultrastructure and morphology of spermatozoa in Chinese sturgeon (Acipenser sinensis gray 1835) using scanning and transmission electron microscopy. Theriogenology 67:1269–1278

    Article  CAS  PubMed  Google Scholar 

  • Williot P, Kopeika EF, Goncharov BF (2000) Influence of testis state, temperature and delay in semen collection on spermatozoa motility in the cultured Siberian sturgeon (Acipenser baerii Brandt). Aquaculture 189:53–61

    Article  Google Scholar 

Download references

Acknowledgments

The study was financially supported by COST Office (Food and Agriculture COST Action FA1205: AQUAGAMETE); by the Ministry of Education, Youth and Sports of the Czech Republic, projects “CENAKVA” (No. CZ.1.05/2.1.00/01.0024) and “CENAKVA II” (No. LO1205 under the NPU I program); and by the Czech Science Foundation (No. P502/13/26952S), the National Science Centre granted for research project (No. 2011/01/D/NZ9/03738) and funds appropriated to Institute of Animal Reproduction and Food Research. Authors also express thanks to prof. MSc. William L. Shelton, PhD, for English corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Pšenička .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Pšenička, M., Ciereszko, A. (2018). Sperm and Spermatozoa Characteristics in the Siberian Sturgeon. In: Williot, P., Nonnotte, G., Vizziano-Cantonnet, D., Chebanov, M. (eds) The Siberian Sturgeon (Acipenser baerii, Brandt, 1869) Volume 1 - Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-61664-3_15

Download citation

Publish with us

Policies and ethics