Skip to main content
Log in

Acrosin, the peculiar sperm-specific serine protease

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The sperm enzyme acrosin has long been known as one of the key enzymes in the mammalian fertilization process. Elucidation of primary structures of preproacrosin from various species have allowed a deeper insight into the structural organization and the complex evolution of the sperm proteinase acrosin. In addition to the typical elements of serine proteases, the acrosin molecule possesses one novel domain that might convey DNA-binding properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adham IM, Klemm U, Maier WM, Hoyer-Fender S, Tsaousidou S, Engel W (1989) Molecular cloning of preproacrosin and analysis of its expression pattern in spermatogenesis. Eur J Biochem 182:563–568

    Google Scholar 

  • Adham IM, Klemm U, Maier WM, Engel W (1990) Molecular cloning of human preproacrosin cDNA. Hum Genet 84:125–128

    Google Scholar 

  • Arboleda CE, Gerton GL (1988) Proacrosin/acrosin during guinea pig spermatogenesis. Dev Biol 125:217–225

    Google Scholar 

  • Baba T, Watanabe K, Kashiwabara SI, Arai Y (1989a) Primary structure of human proacrosin deduced from its cDNA sequence. FEBS Lett 244:296–300

    Google Scholar 

  • Baba T, Kashiwabara SI, Watanabe K, Itoh H, Michikawa Y, Kimura K, Takada M, Fukamizu A, Arai Y (1989b) Activation and maturation of boar acrosin zymogen based on the deduced primary structure. J Biol Chem 264:11920–11927

    Google Scholar 

  • Bacetti B (1979) The evolution of the acrosomal complex. In: Fawcett DW, Bedford JM (eds) The spermatozoon. Urban and Schwarzenberg, Munich, pp 305–329

    Google Scholar 

  • Brown CR, Hartree EF (1976) Effects of acrosin inhibitors on the soluble and membrane-bound forms of ram acrosin, and a reappraisal of the role of the enzyme in fertilization. Hoppe-Seyler's Z Physiol Chem 357:57–65

    Google Scholar 

  • Brown CR, Hartree EF (1978) Studies on ram acrosin. Activation of ram proacrosin accompanying the isolation of acrosin from spermatozoa, and purification of the enzyme by affinity chromatography. Biochem J 175:227–238

    Google Scholar 

  • Cechova D, Töpfer-Petersen E, Henschen A (1988) Boar proacrosin is a single-chain molecule which has the N-terminus of the acrosin α-chain (light chain). FEBS Lett 241:136–140

    Google Scholar 

  • Dayhoff MO (1978) Survey of new data and computer methods of analysis: In: Dayhoff MO (ed) Atlas of protein sequences and structure, vol 5. NBR Foundation, Washington DC, pp 1–9

    Google Scholar 

  • Flake A (1990) Isolierung und Charakterisierung des Akrosingens der Ratte. Diplomarbeit, Naturwissenschaftliche Fakultät der Georg-August-Universität, Göttingen

    Google Scholar 

  • Flörke S, Phi-van L, Müller-Esterl W, Scheuber HP, Engel W (1983) Acrosin in the spermiohistogenesis of mammals. Differentiation 24:250–256

    Google Scholar 

  • Flörke-Gerloff S, Töpfer-Petersen E, Müller-Esterl W, Schill WB, Engel W (1983) Acrosin and the acrosome in human spermatogenesis. Hum Genet 65:61–67

    Google Scholar 

  • Fock-Nüzel R, Lottspeich F, Henschen A, Müller-Esterl W, Fritz H (1980) N-terminal amino acid sequence of boar sperm acrosin. Homology with other serine proteinases. Hoppe-Seyler's Z Physiol Chem 361:1823–1828

    Google Scholar 

  • Fock-Nüzel R, Lottspeich F, Henschen A, Müller-Esterl W (1984) Boar acrosin is a two chain molecule. Isolation and primary structure of the light chain; homology with the pro-part of other serine proteinases. Eur J Biochem 141:441–446

    Google Scholar 

  • Fridberger A, Klint M, Sudelin J, Peterson PA (1984) The amino terminal sequences of boar sperm proacrosin and active acrosin are identical. Biochem Biophys Res Commun 121:884–889

    Google Scholar 

  • Gerloff T (1990) Isolierung und Charakterisierung eines Präproacrosin cDNA-Klons der Ratte. Inauguraldissertation, Medizinische Fakultät der Georg-August-Universität, Göttingen

    Google Scholar 

  • Gilboa E, Elkana Y, Rigbi M (1973) Purification and properties of human acrosin. Eur J Biochem 39:85–92

    Google Scholar 

  • Green DPL, Hockaday AR (1978) The histochemical localization of acrosin in guinea-pig sperm after the acrosome reaction. J Cell Sci 32:177–184

    Google Scholar 

  • Hardy DM, Schoots AFM, Hedrick JL (1989) Caprine acrosin. Purification, characterization and proteolysis of the porcine zone pellucida. Biochem J 257:447–453

    Google Scholar 

  • Heijne G von (1983) Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21

    Google Scholar 

  • Heijne von G (1984) How signal sequences maintain cleavage specificity. J Mol Biol 173:243–251

    Google Scholar 

  • Jones R, Brown CR, Lancaster RT (1988) Carbohydrate-binding properties of boar sperm proacrosin and assessment of its role in sperm-egg recognition and adhesion during fertilization. Development 102:781–792

    Google Scholar 

  • Kallajoki M, Parvinen M, Suominen JJO (1986) Expression of acrosin during mouse spermatogenesis: a biochemical and immunocytochemical analysis by a monoclonal antibody C 11 H. Biol Reprod 35:157–165

    Google Scholar 

  • Kashiwabara S, Baba T, Takada M, Watanabe K, Yano Y, Arai Y (1990a) Primary structure of mouse proacrosin deduced from the cDNA sequence and its gene expression during spermatogenesis. J Biochem 108:785–791

    Google Scholar 

  • Kashiwabara S, Arai Y, Kodeira K, Baba T (1990b) Acrosin biosynthesis in meiotic and postmeiotic spermatogenic cells. Biochem Biophys Res Commun 173:240–245

    Google Scholar 

  • Keime S, Adham IM, Engel W (1990) Nucleotide sequence and exon-intron organization of the human proacrosin gene. Eur J Biochem 190:195–200

    Google Scholar 

  • Klemm U, Maier WM, Tsaousidou S, Adham IM, Willison K, Engel W (1990) Mouse preproacrosin: cDNA sequence, primary structure and postmeiotic expression in spermatogenesis. Differentiation 42:160–166

    Google Scholar 

  • MacGillivray RTA, Davie EW (1984) Characterization of bovine prothrombin mRNA and its translation product. Biochemistry 23:1626–1634

    Google Scholar 

  • Mansouri A, Phi-van L, Geithe HP, Engel W (1983) Proacrosin/acrosin activity during spermiohistogenesis of the bull. Differentiation 24:149–152

    Google Scholar 

  • Mermod N, O'Neill EA, Kelly TJ, Tijan R (1989) The proline-rich transcriptional activator of CTF/NF-I is distinct from the replication and DNA binding domain. Cell 58:741–753

    Google Scholar 

  • Mitchell PJ, Tijan R (1989) Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378

    Google Scholar 

  • Müller-Esterl W, Fritz H (1980) Interactions of boar acrosin with detergents. Hoppe-Seyler's Z Physiol Chem 361:1673–1682

    Google Scholar 

  • Mukerji SK, Meizel S (1979) Rabbit testis proacrosin. Purification, molecular weight estimation, and amino acid and carbohydrate composition of the molecule. J Biol Chem 254:11721–11728

    Google Scholar 

  • Parrish RF, Straus JW, Polakoski KL, Dombrose FA (1978) Phospholipid vesicle stimulation of proacrosin activation. Proc Natl Acad Sci USA 75:149–152

    Google Scholar 

  • Pless DD, Lennarz WJ (1977) Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci USA 74:134–138

    Google Scholar 

  • Polakoski KL, Parrish RF (1977) Boar proacrosin. Purification and preliminary activation studies of proacrosin isolated from ejaculated boar sperm. J Biol Chem 252:1888–1894

    Google Scholar 

  • Polakoski KL, McRorie RA (1973) Boar acrosin. Classification, inhibition, and specificity studies of a proteinase from sperm acrosomes. J Biol Chem 248:8183–8188

    Google Scholar 

  • Sawada H, Yokosawa H, Someno T, Saino T, Ishi SI (1984) Evidence for the participation of two sperm proteases, spermosin and acrosin, in fertilization of the ascidian, Halocynthia roretzi: inhibitory effects of leupeptin analogs on enzyme activities and fertilization. Dev Biol 105:246–249

    Google Scholar 

  • Schaller J, Moser PW, Danegger-Müller GAK, Rösselet SJ, Kämpfer U, Rickli EE (1985) Complete amino acid sequence of bovine plasminogen. Comparison with human plasminogen. Eur J Biochem 149:267–278

    Google Scholar 

  • Schill WB, Wolff HH (1974) Ultrastructure of human sperm acrosome and determination of acrosin activity under conditions of semen preservation. Int J Fertil 19:217–223

    Google Scholar 

  • Siegel MS, Bechthold DS, Willand JL, Polakoski KL (1987) Partial purification and characterization of human sperminogen. Biol Reprod 36:1063–1068

    Google Scholar 

  • Stambaugh R, Buckley J (1968) Zona pellucida dissolution. Enzymes of the rabbit sperm head. Science 161:585–586

    Google Scholar 

  • Stice SL, Robl JM (1990) Activation of mammalian oocytes by a factor obtained from rabbit sperm. Mol Reprod Dev 25:272–280

    Google Scholar 

  • Straus JW, Parrish RF, Polakoski KL (1981) Boar acrosin. Association of an endogenous membrane proteinase with phospholipid membranes. J Biol Chem 256:5662–5668

    Google Scholar 

  • Struhl K (1989) Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eucaryotic transcriptional regulatory proteins. Trends Biochem Sci 14:137–140

    Google Scholar 

  • Titani K, Fujikawa K, Enfield DL, Ericsson LH, Walsh KA, Neurath H (1975) Bovine factor X1 (Stuart factor): aminoacid sequence of heavy chain. Proc Natl Acad Sci USA 72:3082–3086

    Google Scholar 

  • Töpfer-Petersen E (1988) Sperm-egg interaction in the pig —a model for mammalian fertilization. In: Holstein AF, Leidenberger F, Hölzer KH, Bettendorf G (eds) Carl Schirren Symposium: Advances in andrology. Diesbach, Berlin, pp 251–260

    Google Scholar 

  • Töpfer-Petersen E, Henschen A (1988) Zona pellucida-binding and fucose-binding of boar sperm acrosin is not correlated with proteolytic activity. Biol Chem Hoppe-Seyler 369:69–76

    Google Scholar 

  • Töpfer-Petersen E, Calvete J, Schäfer W, Henschen A (1990) Complete localization of the disulfide bridges and glycosylation sites in boar sperm acrosin. FEBS Lett 275:139–142

    Google Scholar 

  • Wassarman PM (1988) The biology and chemistry of fertilization. Science 235:553–560

    Google Scholar 

  • Wilhelm K (1990). Zur Struktur und Organisation vonäufer-Proakrosingenen. Diplomarbeit, Naturwissenschaftliche Fakultät der, Georg-August-Universität, Göttingen

    Google Scholar 

  • Yamane JY (1935) Kausal-analytische Studien über die Befruchtung des Kanincheneies. Cytologia 6:233–255

    CAS  PubMed  Google Scholar 

  • Young CL, Barker WC, Tomaselli CM, Dayhoff MO (1978) Serine proteases. In: Dayhoff MO (ed) Atlas of protein sequences and structure, vol 5. NBR Foundation, Washington DC, pp 73–93

    Google Scholar 

  • Zanefeld LDJ, Robertson RT, Kessler M, Williams WL (1971) Inhibition of fertilization in vivo by pancreatic and seminal plasma trypsin inhibitors. J Reprod Fertil 25:387–392

    Google Scholar 

  • Zelezna B, Cechova D (1982) Boar acrosin. Isolation of two active forms from boar ejaculated sperm. Hoppe-Seyler's Z Physiol Chem 363:757–766

    Google Scholar 

  • Zelezna B, Cechova D, Henschen A (1989) Isolation of the boar sperm acrosin peptide, released during the conversion of α-form into β-form. Biol Chem Hoppe Seyler 370:323–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klemm, U., Müller-Esterl, W. & Engel, W. Acrosin, the peculiar sperm-specific serine protease. Hum Genet 87, 635–641 (1991). https://doi.org/10.1007/BF00201716

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201716

Keywords

Navigation