Skip to main content
Log in

The influence of ploidy level on ultrastructure and motility of tench Tinca tinca (L.) spermatozoa

  • Research paper
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

The ultrastructure of diploid and triploid tench Tinca tinca (L.) spermatozoa were examined using electron microscopy focusing on parameters that influence movement. Triploid tench were produced artificially using a cold shock. Spermatozoa of triploid males in comparison with diploids featured significantly larger head (P < 0.01), higher amount of mitochondria (P < 0.05), and, surprisingly larger widths of the peripheral doublets and central pair of microtubules and the single microtubule (P < 0.01). However, the diameters of the flagellum were without significant differences as well as the length of the flagellum and length and width of the midpiece. Also motility parameters of spermatozoa did not significantly differ between diploid and triploid males, but the total velocity (summary of spermatozoa velocity and duration of movement) positively correlated with the flagellum length and negatively with the head diameter of tench spermatozoa with a high significant influence (P < 0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alavi SMH, Psenicka M, Rodina M, Policar T, Linhart O (2008a) Changes of sperm morphology, volume, density and motility and seminal plasma composition in Barbus barbus (Teleostei: Cyprinidae) during the reproductive season. Aquat Living Resour 21:75–80

    Article  Google Scholar 

  • Alavi SMH, Psenicka M, Policar T (2008b) Sperm characteristic in Barbus barbus as a function of nutrition throughout the reproductive season. Cybium 32:200–201

    Google Scholar 

  • Baccetti B, Burrini AG, Callaini G, Gibertini G, Mazzini M, Zerunian S (1984) Fish germinal cell. I. Comparative spermatology of seven cyprinid species. Gamete Res 10:373–396

    Article  Google Scholar 

  • Benfey T, Solar I, de Jong G, Donaldson E (1986) Flow-cytometric confirmation of aneuploid in sperm from triploid rainbow trout. Trans Am Fish Soc 115:838–840

    Article  Google Scholar 

  • Buchtova H, Svobodova Z, Flajshans M, Vorlová L (2003) Analysis of growth, weight and relevant indices of diploid and triploid population of tench Tinca tinca (Linnaeus 1758). Aquacult Res 34:719–726

    Article  Google Scholar 

  • Chourrout D, Chevassus B, Krieg F, Happe A, Burger G, Renard P (1986) Production of second generation triploid and tetraploid rainbow trout by mating tetraploid males and diploid females-potential of tetraploid fish. Theor Appl Genet 72:193–206

    Article  Google Scholar 

  • Christen R, Gatti JL, Billard R (1987) Trout sperm motility. Eur J Biochem 166:667–671

    Article  PubMed  CAS  Google Scholar 

  • Cosson J, Billard R, Cibert C, Dréanno C, Suquet M (1999) Ionic factors regulating the motility of fish sperm. In: Gagnon C (ed) From basic science the male gamete to clinical application. Cache River Press, Vienna, pp 161–186

    Google Scholar 

  • Davis C, Gull K (1983) Protofilament number in microtubules in cells of two parasitic nematodes. J Parasitol 69:1094–1099

    Article  PubMed  CAS  Google Scholar 

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  • Donaldson EM, Devlin RH (1996) Uses of biotechnology to enhance production. In: Pennell W, Barton B (eds) Principles of salmonid culture. Elsevier, Amsterdam, pp 969–1020

    Chapter  Google Scholar 

  • Dong Q, Huang C, Tiersch TR (2005) Spermatozoal ultrastructure of diploid and tetraploid Pacific oyster. Aquaculture 249:487–496

    Article  Google Scholar 

  • Flajshans M, Linhart O, Kvasnicka P (1993a) Genetic studies of tench (Tinca tinca L.). Induced triploidy and tetraploidy and first performance data. Aquaculture 113:301–312

    Article  Google Scholar 

  • Flajshans M, Kvasnicka P, Rab P (1993b) Genetic studies in tench (Tinca tinca L.). A high incidence of spontaneous triploidy. Aquaculture 110:243–248

    Article  Google Scholar 

  • Flajshans M, Kocour M, Gela D, Piackova V (2004) The first results on relationships aminy amphimictic diploid, diploid gynogenic and triploid tench, Tinca tinca L. under communal testing. Aquacult Int 12:103–118

    Article  Google Scholar 

  • Humphries S, Evans JP, Simmons LW (2008) Sperm competition: linking form to function. BMC Evol Biol 8:319

    Article  PubMed  Google Scholar 

  • Hussain MG, Panman DJ, McAndrew BJ (1996) Effects of triploidy on sexual maturation and reproduction in Nile tilapia, Oreochromis niloticus L. In: ICLARM Konference Proceedings. ICLARM, Makati City, Philippines, pp 320–325

  • Jamieson BGM (1991) Fish evolution and systematics: evidence from spermatozoa. Cambridge University Press, Cambridge, pp 230–295

    Google Scholar 

  • Kohlman K, Kersten P (2006) Microsatellite loci in tench: isolation and variability in a test population. Aquacult Int 14:3–7

    Article  CAS  Google Scholar 

  • Lincoln RF, Scott AP (1983) Production of all-female triploid rainbow trout. Aquaculture 30:375–380

    Article  Google Scholar 

  • Linhart O, Billard R (1995) Biology of gamets and artificial reproduction in common tench (Tinca tinca L.). Pol Arch Hydrobiol 42:37–56

    Google Scholar 

  • Linhart O, Rodina M, Bastl J, Cosson J (2003) Urinary bladder ionic composition of seminal fluid and urine with characterization of sperm motility in tench (Tinca tinca L.). J Appl Ichthyol 19:177–181

    Article  Google Scholar 

  • Linhart O, Rodina M, Flajshans M, Mavrodiev N, Nebesarova J, Gela D, Kocour M (2006) Studies on sperm of diploid and triploid tench. Tinca tinca (L.). Aquacult Int 14:9–25

    Article  Google Scholar 

  • Linhart O, Alavi SMH, Rodina M, Gela D, Cosson J (2008) Comparison of sperm velocity, motility and fertilizing ability between firstly and secondly activated spermatozoa of common carp (Cyprinus carpio). J Appl Ichthyol 24:386–396

    Article  Google Scholar 

  • Psenicka M, Rodina M, Nebesarova J, Linhart O (2006) Ultrastructure of spermatozoa of tench Tinca tinca observed by means of scanning and transmission electron microscopy. Theriogenology 66:1355–1363

    Article  PubMed  CAS  Google Scholar 

  • Psenicka M, Alavi SMH, Rodina M, Gela D, Nebesarova J, Linhart O (2007) Morphology and ultrastructure of Siberian sturgeon, Acipenser baerii, spermatozoa using scanning and transmission electron microscopy. Biol Cell 99:103–115

    Article  PubMed  Google Scholar 

  • Psenicka M, Alavi SMH, Vancova M, Koubek P, Tesitel J, Linhart O (2008a) Fine structure and morphology of sterlet (Acipenser ruthenus L. 1758) spermatozoa and acrosin localization. Anim Reprod Sci, in press

  • Psenicka M, Alavi SMH, Rodina M, Cicova Z, Gela D, Cosson J, Nebesarova J, Linhart O (2008b) Morphology, chemical contents and physiology of chondrostean fish sperm: A comparative study between Siberian sturgeon (Acipenser baerii) and sterlet (Acipenser ruthenus). J Appl Ichthyol 24:371–377

    Article  Google Scholar 

  • Purdom CE (1983) Genetic engineering by the manipulation of chromosomes. Aquaculture 33:287–300

    Article  Google Scholar 

  • Rodina M, Cosson J, Gela D, Linhart O (2004) Kurokura solution as immobilizing medium for spermatozoa of tench (Tinca tinca L.). Aquacult Int 12:119–131

    Article  Google Scholar 

  • Stoltz JA, Neff BD (2006) Sperm competition in a fish with external fertilization: the contribution of sperm number, speed and length. J Evolution Biol 19:1873–1881

    Article  CAS  Google Scholar 

  • Svobodova Z, Kolarova J, Flajshans M (1998) The first finding of the differences in complete blood count between diploid and triploid tench, Tinca tinca L. Acta Vet Brno 67:243–248

    Google Scholar 

  • Thorgaard GH (1983) Chromosome set manipulation and sex control in fish. Academic Press, New York, pp 405–434

    Google Scholar 

  • Ueda T, Sawada M, Kobayashi J (1987) Cytogenetical characteristics of embryos between diploid female and triploid male in rainbow trout. Japan J Genet 62:461–465

    Article  Google Scholar 

  • Vindelov LL, Christensen IJ (1990) Review of techniques and results obtained in one laboratory by an integrated system of methods designed for routine clinical flowcytometric DNA analysis. Cytometry 11:753–770

    Article  PubMed  CAS  Google Scholar 

  • Zuromska H, Markowska J (1984) The effect of sexual products quality on offspring survival and quality in tench (Tinca tinca L.). Pol Arch Hydrobiol 31:287–313

    Google Scholar 

Download references

Acknowledgments

The study was financially supported by project of USB RIFCH no. MSM6007665809, GACR no. 523/08/0824.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Pšenička.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pšenička, M., Flajšhans, M., Hulák, M. et al. The influence of ploidy level on ultrastructure and motility of tench Tinca tinca (L.) spermatozoa. Rev Fish Biol Fisheries 20, 331–338 (2010). https://doi.org/10.1007/s11160-009-9135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-009-9135-0

Keywords

Navigation