Skip to main content

Response of Biomass Species to Hydrothermal Pretreatment

  • Chapter
  • First Online:
Hydrothermal Processing in Biorefineries

Abstract

Considerable effort has been devoted to the development of biofuels from renewable lignocellulosic biomass. To resolve the challenges associated with the structural barrier of lignocellulosic biomass, hydrothermal pretreatment is applied to alter the structure and improve the accessibility of carbohydrate sugars to microorganisms or chemicals in the subsequent conversion processes. Hydrothermal pretreatment takes advantage of high moisture content of biomass and efficiently converts polysaccharides into monomeric sugars and their corresponding degradation products. To achieve this goal, multiple technologies have been explored using liquid water as the media, with or without addition of chemicals (acids or alkalis). However, there are difficulties in developing an optimized and universal treatment approach due to the heterogeneity of biomass. In this chapter, four major biomass types, wood, bamboo, agricultural residues, and agave, are discussed and compared with respect to feedstock composition and response to the various hydrothermal pretreatments. Moreover, the reaction pathways of individual biomass components (hemicellulose, cellulose, lignin, extractive, and ash) under different treatment conditions (acidic and alkaline) are also comparatively reviewed. Finally, the effects of pH, biomass solid loading, and reactor selection on pretreatment are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbi M, Kuhad RC, Singh A (1996) Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. J Ind Microbiol 17(1):20–23

    Article  Google Scholar 

  • Allen SG, Kam LC, Zemann AJ, Antal MJ (1996) Fractionation of sugar cane with hot, compressed, liquid water. Ind Eng Chem Res 35:2709–2715

    Article  Google Scholar 

  • Altaner CM, Jarvis MC (2008) Modelling polymer interactions of the ‘molecular Velcro’ type in wood under mechanical stress. J Theor Biol 253:434–445

    Article  Google Scholar 

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro M (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  • Amidon TE, Liu S (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550

    Article  Google Scholar 

  • Ando S, Arai I, Kiyoto K, Hanai S (1986) Identification of aromatic monomers in steam-exploded poplar and their influences on ethanol fermentation by Saccharomyces cerevisiae. J Ferment Technol 64:567–570

    Article  Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  Google Scholar 

  • Batalha LAR, Colodette JL, Gomide JL, Barbosa LC, Maltha CR, Gomes FJB (2011) Dissolving pulp production from bamboo. Bioresources 7:0640–0651

    Google Scholar 

  • Bjerre AB, Olesen AB, Fernqvist T (1996) Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol Bioeng 49:568–577

    Article  Google Scholar 

  • Blumentritt M, Gardner DJ, Cole BJ, Shaler SM (2016) Influence of hot-water extraction on ultrastructure and distribution of glucomannans and xylans in poplar xylem as detected by gold immunolabeling. Holzforschung 70(3):243–252

    Article  Google Scholar 

  • Bobleter O, Niesner R, Röhr M (1976) The hydrothermal degradation of cellulosic matter to sugars and their fermentative conversion to protein. J Appl Polym Sci 20:2083–2093

    Article  Google Scholar 

  • Borrega M, Nieminen K, Sixta H (2011) Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures. Bioresour Technol 102:10724–10732

    Article  Google Scholar 

  • Brodeur G, Yau E, Badal K (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:787532

    Article  Google Scholar 

  • Burkhardt SJ (2013) Forest residues as a potential feedstock for a biorefinery: material balance and pretreatment strategies. Doctoral Dissertation, University of British Columbia

    Google Scholar 

  • Chang VS, Nagwani M, Holtzapple MT (1998) Lime pretreatment of crop residues bagasse and wheat straw. Appl Biochem Biotechnol A Enzyme Eng Biotechnol 74:135–159

    Article  Google Scholar 

  • Chen X, Lawoko M, van Heiningen A (2010) Kinetics and mechanism of autohydrolysis of hardwoods. Bioresour Technol 101:7812–7819

    Article  Google Scholar 

  • Chen WH, Tu YJ, Sheen HK (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88:2726–2734

    Article  Google Scholar 

  • Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6:1

    Article  Google Scholar 

  • Cheng KK, Cai BY, Zhang JA, Ling HZ, Zhou YJ, Ge JP, Xu JM (2008) Sugarcane bagasse hemicellulose hydrolysate for ethanol production by acid recovery process. Biochem Eng J 38(1):105–109

    Article  Google Scholar 

  • Corona-González RI, Varela-Almanza KM, Arriola-Guevara E, Martínez-Gómez AJ, Pelayo-Ortiz C, Toriz G (2016) Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succiongenes in batch and repeated batch reactor. Bioresour Technol 205:15–23

    Article  Google Scholar 

  • Corrales RCNR, Mendes FMT, Perrone CC, Sant’Anna C, de Souza W, Abud Y, Ferreira-Leitão V (2012) Structural evaluation of sugar cane bagasse steam pretreated in the presence of CO2 and SO2. Biotechnol Biofuels 5:1–8

    Article  Google Scholar 

  • Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:204

    Article  Google Scholar 

  • Dammström S, Salmén L, Gatenholm P (2009) On the interaction between cellulose and xylan, a biomimetic bacterial simulation of the hardwood cell wall. Bioresources 4:3–14

    Google Scholar 

  • Davis SC, Dohleman FG, Long SP (2011) The global potential for Agave as a biofuel feedstock. Glob Chang Biol 3:68–78

    Article  Google Scholar 

  • Diep NQ, Fujimoto S, Minowa T, Sakanishi K, Nakagoshi N (2012) Estimation of the potential of rice straw for ethanol production and the optimum facility size for different regions in Vietnam. Appl Energy 93:205–211

    Article  Google Scholar 

  • Dornburg V, Faaij APC, Verweij P, Langeveld H, Wester P, Meeusen MJG, Mozaffarian H, Smekens K (2008) Biomass assessment: global biomass potentials and their links to food, water, biodiversity, energy modelling and economy: supporting document. MNP, Bilthoven, pp 31–105

    Google Scholar 

  • Du B, Sharma LN, Becker C, Chen SF, Mowery RA, van Walsum GP, Chambliss CK (2010) Effect of varying feedstock–pretreatment chemistry combinations on the formation and accumulation of potentially inhibitory degradation products in biomass hydrolysates. Biotechnol Bioeng 107:430–440

    Article  Google Scholar 

  • Duff S, Murray W (1996) Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour Technol 55:1–33

    Article  Google Scholar 

  • Dunford NT, Irmak S, Jonnala R (2009) Effect of the solvent type and temperature on phytosterol contents and compositions of wheat straw, bran, and germ extracts. J Agric Food Chem 57:10608–10611

    Article  Google Scholar 

  • Effland MJ (1977) Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi (United States) 60(10):143–144

    Google Scholar 

  • Egüés I, Sanchez C, Mondragon I, Labidi J (2012) Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks. Bioresour Technol 103:239–248

    Article  Google Scholar 

  • Esteghlalian A, Hashimoto AG, Fenske JJ, Penner MH (1997) Modeling and optimization of the dilute sulfuric acid pretreatment of corn stover, poplar, and switchgrass. Bioresour Technol 59:129–136

    Article  Google Scholar 

  • Fan LT, Gharpuray MM, Lee YH (1987) Cellulose hydrolysis biotechnology monographs. Springer, Berlin, p 57

    Book  Google Scholar 

  • FAO (2008) Food and Agriculture Organization of the United Nations 2008. The state of food insecurity. Food and Agriculture Organization of the United Nations, World Health Organization, Rome

    Google Scholar 

  • Fengel D, Wegener G (eds) (1983a) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, pp 6–17

    Google Scholar 

  • Fengel D, Wegener G (eds) (1983b) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, pp 26–28

    Google Scholar 

  • Fengel D, Wegener G (eds) (1983c) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, pp 106–115

    Google Scholar 

  • Fengel D, Wegener G (eds) (1983d) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, pp 217–220

    Google Scholar 

  • Fengel D, Wegener G (eds) (1983e) Wood: chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin, pp 268–272

    Google Scholar 

  • Fitzpatrick SW (2002) Final technical report commercialization of the biofine technology for levulinic acid production from paper sludge (No DOE/CE/41178). BioMetics, Waltham

    Book  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628

    Article  Google Scholar 

  • García-Aparicio M, Parawira W, van Rensburg E, Diedericks D, Galbe M, Rosslander C, Zacchi G, Gorgens J (2011) Evaluation of steam-treated giant bamboo for production of fermentable sugars. Biotechnol Prog 27:641–649

    Article  Google Scholar 

  • Garcia-Moya E, Romero-Manzanares A, Nobel PS (2011) Highlights for Agave productivity. Glob Chang Biol 3:4–14

    Article  Google Scholar 

  • Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Eur J Wood Wood Prod 57(3):191–202

    Article  Google Scholar 

  • Gáspár M, Kálmán G, Réczey K (2007) Corn fiber as a raw material for hemicellulose and ethanol production. Process Biochem 42:1135–1139

    Article  Google Scholar 

  • Girisuta B, Dussan K, Haverty D, Leahy JJ, Hayes MHB (2013) A kinetic study of acid catalysed hydrolysis of sugar cane bagasse to levulinic acid. Chem Eng J 217:61–70

    Article  Google Scholar 

  • Gratani L, Crescente MF, Varone L, Fabrini G, Digiulio E (2008) Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. Flora-Morphol Distrib Funct Ecol Plants 203:77–84

    Article  Google Scholar 

  • Gütsch JS, Nousiainen T, Sixta H (2012) Comparative evaluation of autohydrolysis and acid-catalyzed hydrolysis of Eucalyptus globulus wood. Bioresour Technol 109:77–85

    Article  Google Scholar 

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol. Biofuels Bioprod Biorefin 5:215–225

    Article  Google Scholar 

  • He Y, Yue Y (2008) A review of the effective component and applications of extracts from bamboo leaves. Biomass Chem Eng 3:31–37

    Google Scholar 

  • He Y, Pang Y, Liu Y, Li X, Wang K (2008) Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 22(4):2775–2781

    Article  Google Scholar 

  • Henrique M, Silveira L, Morais RC, Costa M (2015) Current pretreatment technologies for the development of cellulosic ethanol and biorefineries. ChemSusChem 8:3366–3390

    Article  Google Scholar 

  • Hernández-Salas JM, Villa-Ramírez MS, Veloz-Rendón JS, Rivera-Hernández KN, González-César RA, Plascencia-Esponosa MA, Trejo-Estrada SR (2009) Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour Technol 100:1238–1245

    Article  Google Scholar 

  • Hsu TA (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol, production and utilization. Taylor and Francis, Washington, DC, pp 179–212

    Google Scholar 

  • Hsu TC, Guo GL, Chen WH, Hwang WS (2010) Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour Technol 101:4907–4913

    Article  Google Scholar 

  • Hundt M, Engel N, Schnitzlein K, Schnitzlein MG (2016) The AlkaPolP process: fractionation of various lignocelluloses and continuous pulping within an integrated biorefinery concept. Chem Eng Res Des 107:13–23

    Article  Google Scholar 

  • Ibrahim AA, Nada AMA, Hagemann U, El Seoud OA (1996) Preparation of dissolving pulp from sugar cane bagasse, and its acetylation under homogeneous solution condition. Holzforschung 50(3):221–225

    Article  Google Scholar 

  • Iñiguez-Covarrubias G, Díaz-Teres R, Sanjuan-Dueñas R, Anzaldo-Hernández J, Rowell RM (2001) Utilization of by-products from the tequila industry. Part 2: potential value of Agave tequilana Weber azul leaves. Bioresour Technol 77:101–108

    Article  Google Scholar 

  • Jackson MG (1977) The alkali treatment of straws. Anim Feed Sci Technol 2:105–130

    Article  Google Scholar 

  • Jacobsen SE, Wyman CE (2002) Xylose monomer and oligomer yields for uncatalyzed Hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. Ind Eng Chem Res 41:1454–1461

    Article  Google Scholar 

  • Jahan SM, Shamsuzzaman M, Rahman MM, Iqbal Moeiz SM, Ni Y (2012) Effect of pre-extraction on soda-anthraquinone (AQ) pulping of rice straw. Ind Crop Prod 37:164–169

    Article  Google Scholar 

  • Ji Z, Ling Z, Zhang X, Yang GH, Xu F (2014) Impact of alkali pretreatment on the chemical component distribution and ultrastructure of poplar cell walls. Bioresources 9(3):4159–4172

    Article  Google Scholar 

  • Jin Y, Jameel H, Chang H, Phillips R (2010) Green liquor pretreatment of mixed hardwood for ethanol production in a repurposed kraft pulp mill. J Wood Chem Technol 30:86–104

    Article  Google Scholar 

  • Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49(6):691–697

    Article  Google Scholar 

  • Jun A, Tschirner UW, Tauer Z (2012) Hemicellulose extraction from aspen chips prior to kraft pulping utilizing kraft white liquor. Biomass Bioenergy 37:229–236

    Article  Google Scholar 

  • Kabyemela BM, Adschiri T, Malaluan RM, Arai K (1999) Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res 38:2888–2895

    Article  Google Scholar 

  • Kang L, Lee YY, Yoon S, Smith AJ, Krishnagopalan G (2012) Ethanol production from the mixture of hemicellulose prehydrolysate and paper sludge. Bioresources 7:3607–3626

    Google Scholar 

  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568

    Article  Google Scholar 

  • Kapu NS, Trajano HL (2014) Review of hemicellulose hydrolysis in softwoods and bamboo. Biofuels Bioprod Biorefin 8:857–870

    Article  Google Scholar 

  • Kapu NS, Yuan Z, Chang XF, Beatson R, Martinez DM, Trajano HL (2016) Insight into the evolution of the proton concentration during autohydrolysis and dilute-acid hydrolysis of hemicellulose. Biotechnol Biofuels 9(1):224

    Article  Google Scholar 

  • Karimi K, Emtiazi G, Taherzadeh MJ (2006a) Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae, and Saccharomyces cerevisiae. Enzyme Microbial Technol 40:138–144

    Article  Google Scholar 

  • Karimi K, Kheradmandinia S, Taherzadeh MJ (2006b) Conversion of rice straw to sugars by dilute acid hydrolysis. Biomass Bioenergy 30:247–253

    Article  Google Scholar 

  • Kemppainen K, Inkinen J, Uusitalo J, Nakari-Setälä T, Siika-aho M (2012) Hot water extraction and steam explosion as pretreatments for ethanol production from spruce bark. Bioresour Technol 117:131–139

    Article  Google Scholar 

  • Kestur G, Flores-Sahagun TH, Dos Santos LP, Dos Santos J, Mazzaro I, Mikowski A (2013) Characterization of blue agave bagasse fibers of Mexico. Compos A Appl Sci Manuf 45:153–161

    Article  Google Scholar 

  • Kilpeläinen PO, Hautala SS, Byman OO, Tanner LJ, Korpinen RI, Lillandt MK, Ilvesniemi HS (2014) Pressurized hot water flow-through extraction system scale up from the laboratory to the pilot scale. Green Chem 16(6):3186–3194

    Article  Google Scholar 

  • Kim S, Holtzapple MT (2006) Delignification kinetics of corn stover in lime pretreatment. Bioresour Technol 97:778–785

    Article  Google Scholar 

  • Kim SB, Lee YY (2002) Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment. Bioresour Technol 83:165–171

    Article  Google Scholar 

  • Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic, San Diego, pp 34–38

    Google Scholar 

  • Krogell J, Korotkova E, Eränen K, Pranovich A, Salmi T, Murzin D, Willför S (2013) Intensification of hemicellulose hot-water extraction from spruce wood in a batch extractor–effects of wood particle size. Bioresour Technol 143:212–220

    Article  Google Scholar 

  • KrzesiÅ„ska M, Zachariasz J, Lachowski AI (2009) Development of monolithic eco-composites from carbonized blocks of solid iron bamboo (Dendrocalamus strictus) by impregnation with furfuryl alcohol. Bioresour Technol 100:1274–1278

    Article  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microbial Technol 24:151–159

    Article  Google Scholar 

  • Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44

    Article  Google Scholar 

  • Lavarack BP, Griffin GJ, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380

    Article  Google Scholar 

  • Leenakul W, Tippayawong N (2010) Dilute acid pretreatment of bamboo for fermentable sugar production. J Sustain Energy Environ 1:117–120

    Google Scholar 

  • Lehto J, Alén R (2013) Alkaline pre-treatment of hardwood chips prior to delignification. J Wood Sci Technol 33:77–91

    Article  Google Scholar 

  • Lehto J, Alén R (2015) Alkaline pre-treatment of softwood chips prior to delignification. J Wood Sci Technol 35:146–155

    Article  Google Scholar 

  • Lehto J, Pakkanen H, Alén R (2015) Characterization of lignin dissolved during alkaline pretreatment of softwood and hardwood. J Wood Sci Technol 35:337–347

    Article  Google Scholar 

  • Lei Y, Liu S, Li J, Sun R (2010) Effect of hot-water extraction on alkaline pulping of bagasse. Biotechnol Adv 28:609–612

    Article  Google Scholar 

  • Leppänen K, Spetz P, Pranovich A, Hartonen K, Kitunen V, Ilvesniemi H (2011) Pressurized hot water extraction of Norway spruce hemicelluloses using a flow-through system. J Wood Sci Technol 45:223–236

    Article  Google Scholar 

  • Li Z, Jiang Z, Fei B, Cai Z, Pan X (2014) Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresour Technol 151:91–99

    Article  Google Scholar 

  • Li HY, Sun SN, Zhou X, Peng F, Sun RC (2015) Structural characterization of hemicelluloses and topochemical changes in Eucalyptus cell wall during alkali ethanol treatment. Carbohydr Polym 123:17–26

    Article  Google Scholar 

  • Lim WS, Lee JW (2013) Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood. Bioresour Technol 140:306–311

    Article  Google Scholar 

  • Linde M, Galbe M, Zacchi G (2008) Bioethanol production from non-starch carbohydrate residues in process streams from a dry-mill ethanol plant. Bioresour Technol 99:6505–6511

    Article  Google Scholar 

  • Littlewood J, Wang L, Turnbull C, Murphy RJ (2013) Techno-economic potential of bioethanol from bamboo in China. Biotechnol Biofuels 6:1

    Article  Google Scholar 

  • Liu S (2015) A synergetic pretreatment technology for woody biomass conversion. Appl Energy 144:114–128

    Article  Google Scholar 

  • Liu C, Wyman CE (2004) The effect of flow rate of very dilute sulfuric acid on xylan, lignin, and total mass removal from corn stover. Ind Eng Chem Res 43:2781–2788

    Article  Google Scholar 

  • Liu C, Wyman CE (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 96:1978–1985

    Article  Google Scholar 

  • Liu S, Lu H, Hu R, Shupe A, Lin L, Liang B (2012) A sustainable woody biomass biorefinery. Biotechnol Adv 30(4):785–810

    Article  Google Scholar 

  • Liu H, Hu H, Baktash MM, Jahan MS, Ahsan L, Ni Y (2014) Kinetics of furfural production from pre-hydrolysis liquor (PHL) of a kraft-based hardwood dissolving pulp production process. Biomass Bioenergy 66:320–327

    Article  Google Scholar 

  • Liu ZH, Qin L, Li BZ, Yuan YJ (2015) Physical and chemical characterizations of corn stover from leading pretreatment methods and effects on enzymatic hydrolysis. ACS Sustain Chem Eng 3:140–146

    Article  Google Scholar 

  • Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96:1967–1977

    Article  Google Scholar 

  • Luo X, Ma X, Hu H, Li C, Cao S, Huang L, Chen L (2013) Kinetic study of pentosan solubility during heating and reacting processes of steam treatment of green bamboo. Bioresour Technol 130:769–776

    Article  Google Scholar 

  • Luo X, Liu J, Wang H, Huang L, Chen L (2014) Comparison of hot-water extraction and steam treatment for production of high purity-grade dissolving pulp from green bamboo. Cellulose 21:1445–1457

    Article  Google Scholar 

  • Ma X, Huang L, Chen Y, Chen L (2011) Preparation of bamboo dissolving pulp for textile production; Part 1. Study on prehydrolysis of green bamboo for producing dissolving pulp. BioResources 6:1428–1439

    Google Scholar 

  • Ma XJ, Cao SL, Lin L, Luo XL, Hu HC, Chen LH, Huang LL (2013) Hydrothermal pretreatment of bamboo and cellulose degradation. Bioresour Technol 148:408–413

    Article  Google Scholar 

  • Ma XJ, Yang XF, Zheng X, Lin L, Chen LH, Huang LL, Cao SL (2014a) Degradation and dissolution of hemicelluloses during bamboo hydrothermal pretreatment. Bioresour Technol 161:215–220

    Article  Google Scholar 

  • Ma J, Zhang X, Zhou X, Xu F (2014b) Revealing the changes in topochemical characteristics of poplar cell wall during hydrothermal pretreatment. Bioenergy Res 7(4):1358–1368

    Article  Google Scholar 

  • Mân Vu TH, Pakkanen H, Alén R (2004) Delignification of bamboo (Bambusa procera acher). Ind Crop Prod 19:49–57

    Article  Google Scholar 

  • Martin C, Alriksson B, Sjöde A, Nilvebrant NO, Jönsson LJ (2007) Dilute sulfuric acid pretreatment of agricultural and agro-industrial residues for ethanol production. Appl Biochem Biotechnol 137:339–352

    Google Scholar 

  • McIntosh S, Vancov T (2011) Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy 35:3094–3103

    Article  Google Scholar 

  • Mirahmadi K, Kabir MM, Jeihanipour A, Karimi K, Taherzadeh M (2010) Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 5:928–938

    Google Scholar 

  • Mok WSL, Antal MJ (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind Eng Chem Res 31:1157–1161

    Article  Google Scholar 

  • Moshkelani M, Marinova M, Perrier M, Paris J (2013) The forest biorefinery and its implementation in the pulp and paper industry: energy overview. Appl Thermal Eng 50:1427–1436

    Article  Google Scholar 

  • Mosier N, Wyman CE, Dale BE, Elander RT, Lee YY, Holtzapple M, Ladisch MR (2005a) Features of promising technologies for pretreatment of ligno-cellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005b) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993

    Article  Google Scholar 

  • Moxley G, Gaspar AR, Higgins D, Xu H (2012) Structural changes of corn stover lignin during acid pretreatment. J Ind Microbiol Biotechnol 39:1289–1299

    Article  Google Scholar 

  • Oh SY, Dong Il Y, Younsook S, Hwan CK, Hak YK, Yong SC, Won HP, Ji HY (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  Google Scholar 

  • Paavilainen L (1998) European prospects for using nonwood fibers. Pulp Paper Int 40:4

    Google Scholar 

  • Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues I: sugarcane bagasse. Bioresour Technol 74(1):69–80

    Article  Google Scholar 

  • Park YC, Kim JS (2012) Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy 47:31–35

    Article  Google Scholar 

  • Pauly M, Albersheim P, Darvill A, York WS (1999) Molecular domains of the cellulose/xyloglucan network in the cell walls of higher plants. Plant J 20:629–639

    Article  Google Scholar 

  • Pecina R, Burtscher P, Bonn G, Bobleter O (1986) GC-MS and HPLC analyses of lignin degradation products in biomass hydrolyzates. Fresenius’ Z Anal Chem 325(5):461–465

    Article  Google Scholar 

  • Pedersen M, Meyer AS (2009) Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw. Biotechnol Prog 25:399–408

    Article  Google Scholar 

  • Peiji G, Yinbo Q, Xin Z, Mingtian Z, Yongcheng D (1997) Screening microbial strain for improving the nutritional value of wheat and corn straws as animal feed. Enzym Microb Technol 20:581–584

    Article  Google Scholar 

  • Pekarovic J, Pekarovicova A, Joyce TW (2005) Desilication of agricultural residues-the first step prior to pulping. Appita J 58:130–134

    Google Scholar 

  • Pelaez-Samaniego MR, Yadama V, Lowell E, Espinoza-Herrera R (2013) A review of wood thermal pretreatments to improve wood composite properties. Wood Sci Technol 47:1285–1319

    Article  Google Scholar 

  • Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2009) Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J Agric Food Chem 57:6305–6317

    Article  Google Scholar 

  • Pérez JA, Ballesteros I, Ballesteros M, Sáez F, Negro MJ, Manzanares P (2008) Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87:3640–3647

    Article  Google Scholar 

  • Petersen MØ, Larsen J, Thomsen MH (2009) Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy 33:834–840

    Article  Google Scholar 

  • Powlson DS, Glendining MJ, Coleman K, Whitmore AP (2011) Implications for soil properties of removing cereal straw: results from long-term studies. Agron J 103:279–287

    Article  Google Scholar 

  • Pu Y, Treasure T, Gonzalez R, Venditti RA, Jameel H (2013) Autohydrolysis pretreatment of mixed softwood to produce value prior to combustion. Bioenergy Res 6:1094–1103

    Article  Google Scholar 

  • Renders T, Schutyser W, Bosch S, Van Den Koelewijn S, Vangeel T, Courtin CM, Sels BF (2016) Influence of acidic (H3PO4) and alkaline (NaOH) additives on the catalytic reductive fractionation of lignocellulose. ACS Catal 6:2055–2066

    Article  Google Scholar 

  • Rexen F, Munck L (1984) Cereal crops for industrial use in Europe. Commission of the European Communities, Brussels

    Google Scholar 

  • Richards GN, Sephton HH (1957) The alkaline degradation of polysaccharides. Part I. soluble products of the action of sodium hydroxide on cellulose. J Chemical Society (Resumed) 4492–4499

    Google Scholar 

  • Rijal D, Vancov T, McIntosh S, Ashwath N, Stanley GA (2016) Process optimization for conversion of Agave tequilana leaves into bioethanol. Ind Crops Prod 84:263–272

    Article  Google Scholar 

  • Rissanen JV, Gre H, Willfo S, Murzin DY, Salmi T (2014a) Spruce hemicellulose for chemicals using aqueous extraction: kinetics, mass transfer, and modeling. Ind Eng Chem 53:6341–6350

    Article  Google Scholar 

  • Rissanen JV, Grønman H, Xu C, Willfçr S, Murzin Y (2014b) Obtaining spruce hemicelluloses of desired molar mass by using pressurized hot water extraction. ChemSusChem 7:2947–2953

    Article  Google Scholar 

  • Roberto IC, Mussatto SI, Rodrigues RC (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crop Prod 17:171–176

    Article  Google Scholar 

  • Rogalinski T, Ingram T, Brunner G (2008) Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. J Supercrit Fluids 47:54–63

    Article  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–51

    Article  Google Scholar 

  • Saake B, Lehnen R (2007) Lignin. In: Bohnet M (ed) Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken

    Google Scholar 

  • Saha BC, Cotta MA (2006) Ethanol production from alkaline peroxide pretreated enzymatically saccharified wheat straw. Biotechnol Prog 22:449–453

    Article  Google Scholar 

  • Saha BC, Yoshida T, Cotta MA, Sonomoto K (2013) Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Ind Crop Prod 44:367–372

    Article  Google Scholar 

  • Sakaki T, Shibata M, Miki T, Hirosue H, Hayashi N (1996) Decomposition of cellulose in near-critical water and fermentability of the products. Energy Fuel 10:684–688

    Article  Google Scholar 

  • Salmela M, Alén R, Vu MTH (2008) Description of kraft cooking and oxygen–alkali delignification of bamboo by pulp and dissolving material analysis. Ind Crop Prod 28:47–55

    Article  Google Scholar 

  • Sánchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99(13):5270–5295

    Article  Google Scholar 

  • Sands R (ed) (2013a) Forestry in a global context. CABI, Oxfordshire, pp 1–8

    Google Scholar 

  • Sands R (ed) (2013b) Forestry in a global context. CABI, Oxfordshire, pp 37–53

    Google Scholar 

  • Sands R (ed) (2013c) Forestry in a global context. CABI, Oxfordshire, pp 81–82

    Google Scholar 

  • Sands R (ed) (2013d) Forestry in a global context. CABI, Oxfordshire, pp 98–100

    Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energy 37:19–27

    Article  Google Scholar 

  • Sasaki M, Fang Z, Fukushima Y, Adschiri T, Arai K (2000) Dissolution and hydrolysis of cellulose in subcritical and supercritical water. Ind Eng Chem Res 39(8):2883–2890

    Article  Google Scholar 

  • Sathitsuksanoh N, Zhu Z, Ho TJ, Bai MD, Zhang YHP (2010) Bamboo saccharification through cellulose solvent-based biomass pretreatment followed by enzymatic hydrolysis at ultra-low cellulase loadings. Bioresour Technol 101:4926–4929

    Article  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  Google Scholar 

  • Scurlock J, Dayton D, Hames B (2000) Bamboo: an overlooked biomass resource. Biomass Bioenergy 19:229–244

    Article  Google Scholar 

  • Selig MJ, Vinzant TB, Himmel ME, Decker SR (2009) The effect of lignin removal by alkaline peroxide pretreatment on the susceptibility of corn stover to purified cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 155:94–103

    Article  Google Scholar 

  • Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4:83–99

    Article  Google Scholar 

  • Shen J, Kaur I, Baktash MM, He Z, Ni Y (2013) A combined process of activated carbon adsorption, ion exchange resin treatment and membrane concentration for recovery of dissolved organics in pre-hydrolysis liquor of the kraft-based dissolving pulp production process. Bioresour Technol 127:59–65

    Article  Google Scholar 

  • Sindhu R, Kuttiraja M, Binod P, Sukumaran RK, Pandey A (2014) Bioethanol production from dilute acid pretreated Indian bamboo variety (Dendrocalamus sp.) by separate hydrolysis and fermentation. Ind Crops Prod 52:169–176

    Article  Google Scholar 

  • Sixta H (ed) (2006) Handbook of pulp. Wiley, Hoboken, pp 174–176

    Google Scholar 

  • Sjöström E (1993a) Wood chemistry: fundamentals and applications. Gulf Professional Publishing, Academic, San Diego, p 1

    Book  Google Scholar 

  • Sjöström E (1993b) Wood chemistry: fundamentals and applications. Gulf Professional Publishing, Academic, San Diego, pp 6–12

    Google Scholar 

  • Sjöström E (1993c) Wood chemistry: fundamentals and applications. Gulf Professional Publishing, Academic, San Diego, pp 63–69

    Google Scholar 

  • Sjöström E (1993d) Wood chemistry: fundamentals and applications. Gulf Professional Publishing, Academic, San Diego, pp 13–17

    Google Scholar 

  • Sjöström E (1993e) Wood chemistry: fundamentals and applications. Gulf Professional Publishing, Academic, San Diego, pp 84–86

    Google Scholar 

  • Sjöström E (1993f) Wood chemistry: fundamentals and applications. Gulf Professional Publishing, Academic, San Diego, pp 151–156

    Google Scholar 

  • Sjöström E (1993g) Wood chemistry: fundamentals and applications. Gulf Professional Publishing, Academic, San Diego, pp 44–49

    Google Scholar 

  • Sluiter A, Hames B, Ruiz R (2005) Determination of ash in biomass: laboratory analytical procedure [Internet]. National Renewable Energy Laboratory, United States of America. Available from http://www.nrel.gov/biomass/pdfs/42622.pdf

  • Smook GA, Kocurek MJ (1982) Handbook for pulp and paper technologists. TAPPI; Canadian Pulp and Paper Association, Canada

    Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science AAAS 329:790–792

    Google Scholar 

  • Song T, Pranovich A, Sumerskiy I, Holmbom B (2008) Extraction of galactoglucomannan from spruce wood with pressurised hot water. Holzforschung 62:659–666

    Article  Google Scholar 

  • Song T, Pranovich A, Holmbom B (2011) Effects of pH control with phthalate buffers on hot-water extraction of hemicelluloses from spruce wood. Bioresour Technol 102:10518–10523

    Article  Google Scholar 

  • Spencer RR, Akin DE (1980) Rumen microbial-degradation of potassium hydroxide-treated coastal bermudagrass leaf blades examined by electron-microscopy. J Anim Sci 51:1189–1196

    Article  Google Scholar 

  • Staniforth AR (1979) Cereal straw. Oxford University Press, Oxford, UK

    Google Scholar 

  • Stephens C, Whitmore P, Morris H, Bier M (2008) Hydrolysis of the amorphous cellulose in cotton-based paper. Biomacromolecules 9:1093–1099

    Article  Google Scholar 

  • Sun R, Lawther JM, Banks WB (1995) Influence of alkaline pre-treatments on the cell wall components of wheat straw. Ind Crops Prod 4:127–145

    Article  Google Scholar 

  • Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH (2011) Zeolite-catalyzed biomass conversion to fuels and chemicals. Energy Environ Sci 4:793–804

    Article  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753

    Article  Google Scholar 

  • Tarkow H, Feist WC (1969) A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid ammonia. In: Advance chemistry series 95. American Chemical Society, Washington, DC, pp 197–218

    Google Scholar 

  • Thomsen MH, Thygesen A, Thomsen AB (2008) Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresour Technol 99:4221–4228

    Article  Google Scholar 

  • Timung R, Mohan M, Chilukoti B, Sasmal S, Banerjee T, Goud VV (2015) Optimization of dilute acid and hot water pretreatment of different lignocellulosic biomass: a comparative study. Biomass Bioenergy 81:9–18

    Article  Google Scholar 

  • Torelli N, ÄŒufar K (1995) Mexican tropical hardwoods. Comparative study of ash and silica content. Holz als Roh-und werkstoff 53:61–62

    Article  Google Scholar 

  • Torget R, Walter PJ, Himmel M, Grohmann K (1991) Dilute acid pretreatment of corn residues and short rotation woody crops. Appl Biochem Biotechnol 28:75–86

    Article  Google Scholar 

  • Torssell KBG (1997) Natural product chemistry: a mechanistic, biosynthetic and ecological approach. Apotekarsocieteten, Stockholm

    Google Scholar 

  • Trajano HL, Engle NL, Foston M, Ragauskas AJ, Tschaplinski TJ, Wyman CE (2013) Fate of lignin during hydrothermal pretreatment. Biotechnol Biofuels 6(110):1–16

    Google Scholar 

  • Trajano HL, Pattathil S, Hahn MG, Tomkins BA, Tschaplinski TJ, van Berkel GJ, Wyman CE (2015) Xylan hydrolysis in Populus trichocarpa x P. deltoides stemwood and model substrates during hydrothermal pretreatment. Bioresour Technol 179:202–210

    Article  Google Scholar 

  • Tunc MS, Chheda J, van der Heide E, Morris J, van Heiningen A (2014) Pretreatment of hardwood chips via autohydrolysis supported by acetic and formic acid. Holzforschung 68(4):401–409

    Article  Google Scholar 

  • Van Heiningen A (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Paper Can 107:38–43

    Google Scholar 

  • Van Zyl C, Prior BA, Du Preez JC (1988) Production of ethanol from sugar cane bagasse hemicellulose hydrolyzate by Pichia stipitis. Appl Biochem Biotechnol 17:357–369

    Article  Google Scholar 

  • Velázquez-Valadez U, Farías-Sánchez JC, Vargas-Santillán A, Castro-Montoya AJ (2016) Tequilana weber Agave bagasse enzymatic hydrolysis for the production of fermentable sugars: oxidative-alkaline pretreatment and kinetic modeling. Bioenergy Res 9:998–1004

    Article  Google Scholar 

  • Vena PF, García-Aparicio MP, Brienzo M, Görgens JF, Rypstra T (2013) Effect of alkaline hemicellulose extraction on kraft pulp fibers from Eucalyptus grandis. J Wood Chem Technol 33:157–173

    Article  Google Scholar 

  • Waldemar J (1977) Puukemia, Suomen paperi-insinöörien yhdistyksen oppi-jakäsikirja I. Toinen uudistettu painos, p 5

    Google Scholar 

  • Walton SL, Hutto D, Genco JM, Walsum GP, van Heiningen ARP (2010) Pre-extraction of hemicelluloses from hardwood chips using an alkaline wood pulping solution followed by kraft pulping of the extracted wood chips. Ind Eng Chem Res 49:12638–12645

    Article  Google Scholar 

  • World Energy Council (2010) 2010 Survey of energy resources executive summary. World Energy Council, London. Available from http://www.worldenergy.org/publications/3040.asp. Accessed April 2011

  • Wyman CE (ed) (1996) Handbook on bioethanol: production and utilization. Taylor and Francis, Washington, DC, pp 1–15

    Google Scholar 

  • Wyman CE (ed) (2013) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, Chichester, pp 391–393

    Book  Google Scholar 

  • Xiao X, Bian J, Peng XP, Xu H, Xiao B, Sun RC (2013) Autohydrolysis of bamboo (Dendrocalamus giganteus Munro) culm for the production of xylo-oligosaccharides. Bioresour Technol 138:63–70

    Article  Google Scholar 

  • Xiao X, Bian J, Li MF, Xu H, Xiao B, Sun RC (2014) Enhanced enzymatic hydrolysis of bamboo (Dendrocalamus giganteus Munro) culm by hydrothermal pretreatment. Bioresour Technol 159:41–47

    Article  Google Scholar 

  • Xu Z, Huang F (2014) Pretreatment methods for bioethanol production. Appl Biochem Biotechnol 174:43–62

    Article  Google Scholar 

  • Yamashita Y, Shono M, Sasaki C, Nakamura Y (2010) Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydr Polym 79(4):914–920

    Article  Google Scholar 

  • Yan L, Zhang H, Chen J, Lin Z, Jin Q, Jia H, Huang H (2009) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresour Technol 100:1803–1808

    Article  Google Scholar 

  • Yan L, Zhang L, Yang B (2014) Enhancement of total sugar and lignin yields through dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment. Biotechnol Biofuels 7:1–15

    Article  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86:88–98

    Article  Google Scholar 

  • Yoon SH, van Heiningen A (2010) Green liquor extraction of hemicelluloses from southern pine in an Integrated Forest Biorefinery. J Ind Eng Chem 16:74–80

    Article  Google Scholar 

  • Yu G, Yano S, Inoue H, Inoue S, Endo T, Sawayama S (2010) Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Appl Biochem Biotechnol 160:539–551

    Article  Google Scholar 

  • Yu X, Zheng Y, Dorgan KM, Chen S (2011) Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol 102:6134–6140

    Article  Google Scholar 

  • Yu Q, Zhuang X, Lv S, He M, Zhang Y, Yuan Z, Qi W, Wang Q, Wang W, Tan X (2013) Liquid hot water pretreatment of sugarcane bagasse and its comparison with chemical pretreatment methods for the sugar recovery and structural changes. Bioresour Technol 129:592–598

    Article  Google Scholar 

  • Yuan CG, Jiang GB, He B (2005) Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L, and analysis by HPLC-HG-AFS. J Anal At Spectrom 20:103–110

    Article  Google Scholar 

  • Yuan Z, Kapu SN, Beatson R, Chang XF, Martinez DM (2016) Effect of alkaline pre-extraction of silica and hemicellulose on kraft pulping of bamboo (Neosinocalamus affinis Keng). Ind Crops Prod 91:66–75

    Article  Google Scholar 

  • Zhang YHP (2008) Reviving the carbohydrate economy via multi-product lignocellulosics biorefineries. J Ind Microbiol Biotechnol 35:367–375

    Article  Google Scholar 

  • Zhang Q, Cai W (2008) Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3. Biomass Bioenergy 32:1130–1135

    Article  Google Scholar 

  • Zhang YHP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioenergy 88:797–824

    Article  Google Scholar 

  • Zhang J, Tang M, Viikari L (2012) Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 121:8–12

    Article  Google Scholar 

  • Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817–3828

    Article  Google Scholar 

Download references

Acknowledgment

Dr. Heather L. Trajano and Jingqian Chen acknowledge Canfor Pulp Products and the Natural Sciences and Engineering Research Council of Canada for financial support. Zhaoyang Yuan is grateful to Professor D. Mark Martinez, University of British Columbia, Vancouver, for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather L. Trajano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chen, J., Yuan, Z., Zanuso, E., Trajano, H.L. (2017). Response of Biomass Species to Hydrothermal Pretreatment. In: Ruiz, H., Hedegaard Thomsen, M., Trajano, H. (eds) Hydrothermal Processing in Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-56457-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56457-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56456-2

  • Online ISBN: 978-3-319-56457-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics