Skip to main content

Global Biogeography and Invasions of Ectomycorrhizal Plants: Past, Present and Future

  • Chapter
  • First Online:
Biogeography of Mycorrhizal Symbiosis

Part of the book series: Ecological Studies ((ECOLSTUD,volume 230))

Abstract

Ectomycorrhizal (EcM) plants have evolved multiple times from arbuscular mycorrhizal or non-mycorrhizal ancestors, and they have a broad distribution on Earth, with abundant recent human introductions. The evolution as well as historical and current distribution of these EcM plant groups and mechanisms of their invasion have remained poorly understood. The purpose of this review/synthesis is fivefold: (1) to determine the time and place of evolution for EcM plant groups based on dated phylogenies and fossil evidence, (2) to characterise the historical and current natural distribution patterns based on fossil record and information from accumulated observations and specimens, (3) to establish the major global biodiversity hotspots for EcM plants based on the present distribution patterns of EcM plant lineages, (4) to determine the relative importance and role of EcM plants in human-mediated plant invasions and to shed light on the mechanisms and (5) integrate this information with climate change scenarios into predictions of the future biogeography of EcM plants.

This chapter demonstrates that plant groups have evolved and retained the EcM habit since the Early Jurassic to present, with relatively more frequent evolutionary events from the Late Cretaceous to Mid-Miocene. I provide maps for natural distribution of each EcM plant lineage and show that the present and historical distribution patterns may have little overlap in certain groups. The distribution data from all EcM plant lineages identifies SW and SE Australia and mountain ranges in Mexico and Central Europe as phylogenetic diversity hotspots for EcM plants. Fossil records and phylogeographic studies of fungi indicate that EcM plants have experienced three major events of symbiont interchange: (1) North Africa in the Eocene, (2) the Isthmus of Panama in the Late Pliocene and Pleistocene and (3) Malesia in the Pleistocene. In the last 200 years, multiple species of Eucalyptus, Pinus and Acacia have been widely planted in several continents and oceanic islands. Several species of these genera have become highly invasive in native grassland, shrubland and savanna ecosystems and transformed these open habitats to forests via promoting fire, suppressing native plants by slowly decomposing allelopathic litter and disrupting the cycle of water, carbon and soil nutrients. In the era of rapid climate change and fragmentation of landscape, the relative importance of both invasive EcM plants and native EcM plants is expected to increase, except in subtropical regions subject to desertification. The future distribution and importance of EcM vegetation will be a function of climate change, trade-off between human economic and conservation interests, biological invasions and natural dispersal capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62

    Article  CAS  Google Scholar 

  • Archer D, Ganopolski A (2005) A movable trigger: Fossil fuel CO2 and the onset of the next glaciation. Geochem Geophys Geosyst 6:Q05003

    Google Scholar 

  • Arrington JM, Kubitzki K (2003) Cistaceae. In: Flowering plants: dicotyledons. Springer, Berlin, pp 62–70

    Chapter  Google Scholar 

  • Ashton PS (1988) Dipterocarp biology as a window to the understanding of tropical forest structure. Annu Rev Ecol Syst 19:347–370

    Article  Google Scholar 

  • Augusto L, De Schrijver A, Vesterdal L, Smolander A, Prescott C, Ranger J (2015) Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol Rev 90:444–466

    Article  PubMed  Google Scholar 

  • Averill C, Hawkes C (2016) Ectomycorrhizal fungi slow down soil carbon cycling. Ecol Lett 19:937–947

    Article  PubMed  Google Scholar 

  • Axelrod DI (1983) Biogeography of oaks in the Arcto-Tertiary province. Ann Mo Bot Gard 70:629–657

    Article  Google Scholar 

  • Axelrod DI (1989) Age and origin of chaparral. The California chaparral: paradigms reexamined. Sci Ser 34:7–19

    Google Scholar 

  • Bandala VM, Montoya L, Villegas R (2011) Tremelloscypha gelatinosa (Sebacinales) occurring in Gymnopodium forests in the tropical deciduous vegetation from southern Mexico. Mycotaxon 118:147–157

    Article  Google Scholar 

  • Barreda VD, Cúneo NR, Wilf P, Currano ED, Scasso RA, Brinkhuis H (2012) Cretaceous/Paleogene floral turnover in Patagonia: drop in diversity, low extinction, and a Classopollis spike. PLoS ONE 7:e52455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoze NG, Thuiller W (2011) Impacts of climate change on the world’s most exceptional ecoregions. Proc Natl Acad Sci U S A 108:2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett KD, Tzedakis PC, Willis KJ (1991) Quaternary refugia of North European trees. J Biogeogr 18:103–115

    Article  Google Scholar 

  • Bennike O, Böcher J (1990) Forest-tundra neighbouring the North Pole: plant and insect remains from the Plio-Pleistocene Kap København formation, North Greenland. Arctic 43:331–338

    Article  Google Scholar 

  • Berger BA, Kriebel R, Spalink D, Sytsma KJ (2016) Divergence times, historical biogeography, and shifts in speciation rates of Myrtales. Mol Phyl Evol 95:116–136

    Article  Google Scholar 

  • Bergh NG, Linder HP (2009) Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae–Gnaphalieae). Mol Phyl Evol 51:5–18

    Article  Google Scholar 

  • Birkinshaw C, Edmond R, Hong-Wa C, Rajeriarison C, Randriantafika F, Schatz G (2004) Red lists for Malagasy plants II: Asteropeiaceae. Missouri Botanical Garden and Antananarivo University, Antananarivo

    Google Scholar 

  • Bogar LM, Dickie IA, Kennedy PG (2015) Testing the co-invasion hypothesis: ectomycorrhizal fungal communities on Alnus glutinosa and Salix fragilis in New Zealand. Divers Distrib 21:268–278

    Article  Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165:525–538

    Article  CAS  PubMed  Google Scholar 

  • Boureau E, Cheboldaeff-Salard M, Koeniguer JC, Louvet P (1983) Evolution des flores et de la végétation Tertiaires en Afrique, au nord de l’Equateur. Bothalia 14:355–367

    Article  Google Scholar 

  • Bradley BA, Blumenthal DM, Wilcove DS, Ziska LH (2010) Predicting plant invasions in an era of global change. Trends Ecol Evol 25:310–318

    Article  PubMed  Google Scholar 

  • Briggs JC (2003) The biogeographic and tectonic history of India. J Biogeogr 30:381–388

    Article  Google Scholar 

  • Brown GK, Udovicic F, Ladiges PY (2001) Molecular phylogeny and biogeography of Melaleuca, Callistemon and related genera (Myrtaceae). Aust Syst Bot 14:565–585

    Article  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understnding global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Brzostek ER, Dradoni D, Brown ZA, Phillips RP (2015) Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytol 206:1274–1282

    Article  CAS  PubMed  Google Scholar 

  • Burger AE (2005) Dispersal and germination of seeds of Pisonia grandis, an Indo-Pacific tropical tree associated with insular seabird colonies. J Trop Ecol 21:263–271

    Article  Google Scholar 

  • Burgess N, D’Amico Hales J, Underwood E, Dinerstein E (2004) Terrestrial Ecoregions of Africa and Madagascar. Island Press, Washington, DC

    Google Scholar 

  • Burtt Davy J (1922) The distribution and origin of Salix in South Africa. J Ecol 10:62–86

    Article  Google Scholar 

  • Calder IR, Rosier PT, Prasanna KT, Parameswarappa S (1997) Eucalyptus water use greater than rainfall input-possible explanation from southern India. Hydrol Earth Syst Sci Discuss 1:249–256

    Article  Google Scholar 

  • Campbell JD, Holden AM (1984) Miocene casuarinacean fossils from Southland and Central Otago, New Zealand. N Z J Bot 22:159–167

    Article  Google Scholar 

  • Cannon CH, Manos PS (2003) Phylogeography of the Southeast Asian stone oaks (Lithocarpus). J Biogeogr 30:211–226

    Article  Google Scholar 

  • Chaia EE, Wall LG, Huss-Danell K (2010) Life in soil by the actinorhizal nodule endophyte Frankia. A review. Symbiosis 51:201–226

    Article  Google Scholar 

  • Chapela IH, Osher LJ, Horton TR, Henn MR (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem 33:1733–1740

    Article  CAS  Google Scholar 

  • Chen Z-D, Manchester SR, Sun H-Y (1999) Phylogeny and evolution of the Betulaceae as inferred from DNA sequences, morphology and paleobotany. Am J Bot 86:1168–1181

    Article  CAS  PubMed  Google Scholar 

  • Chen J-H, Sun H, Wen J, Yang Y-P (2010) Molecular phylogeny of Salix L. (Salicaceae) inferred from three chloroplast datasets and its systematic implications. Taxon 59:29–37

    Google Scholar 

  • Cochrane MA (2011) The past, present, and future importance of fire in tropical rainforests. In: Bush MB, Flenley JR, Gosling WD (eds) Tropical rainforest responses to climatic change. Springer, Berlin, pp 213–240

    Chapter  Google Scholar 

  • Coetzee JA, Muller J (1984) The phytogeographic significance of some extinct Gondwana pollen types from the Tertiary of the southwestern Cape (South Africa). Ann Mo Bot Gard 71:1088–1099

    Article  Google Scholar 

  • Collinson ME (1992) The early fossil history of Salicaceae: a brief review. Proc R Soc Edinb B 98:155–167

    Google Scholar 

  • Cook LG, Crisp MD (2005) Not so ancient: the extant crown group of Nothofagus represents a post-Gondwanan radiation. Proc R Soc B 272:2535–2544

    Article  PubMed  PubMed Central  Google Scholar 

  • Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573–582

    Article  Google Scholar 

  • Crisp MD, Burrows GE, Cook LG, Thornhill AG, Bowman DMJS (2011) Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat Commun 2:193

    Article  PubMed  CAS  Google Scholar 

  • Crisp MD, Cook L, Steane D (2004) Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philos Trans R Soc Lond B 359:1551–1571

    Article  Google Scholar 

  • Damblon F, Gerrienne P, D’Outrelepont H, Delvaux D, Beeckman H, Back S (1998) Identification of a fossil wood specimen in the Red Sandstone Group of southwestern Tanzania: stratigraphical and tectonic implications. J Afr Earth Sci 26:387–396

    Article  Google Scholar 

  • Davis AS, Landis DA (2011) Agriculture. In: Simberloff D, Rejmanek M (eds) Encyclopedia of biological invasions. University of California Press, London, pp 32–36

    Google Scholar 

  • Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of Malpighiales supports a Mid-Cretaceous origin of modern tropical rain forests. Am Nat 165:E36–E65

    Article  PubMed  Google Scholar 

  • De Crop E, Nuytinck J, Van de Putte K, Wisitrassameewong K, Hackel J, Stubbe D, Hyde KD, Roy M, Halling RE, Moreau PA, Eberhardt U (2017) A multi-gene phylogeny of Lactifluus (Basidiomycota, Russulales) translated into a new infrageneric classification of the genus. Persoonia 38:58–80

    Google Scholar 

  • de la Estrella M, Forest F, Wieringa JJ, Fougere-Danezan M, Bruneau A (2017) Insights on the evolutionary origin of Detarioideae, a clade of ecologically dominant tropical African trees. New Phytol. doi:10.1111/nph.14523

    PubMed  Google Scholar 

  • Dell B, Bartle JR, Tacey WH (1983) Root occupation and root channels of jarrah forest subsoils. Aust J Bot 31:615–627

    Article  Google Scholar 

  • Desprez-Loustau M-L, Rizzo DM (2011) Fungi. In: Simberloff D, Rejmanek M (eds) Encyclopedia of biological invasions. University of California Press, London, pp 282–288

    Google Scholar 

  • Desprez-Loustau M-L, Robin C, Buee M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo DM (2007) The fungal dimension of biological invasions. Trends Ecol Evol 22:472–480

    Article  PubMed  Google Scholar 

  • DeVore ML, Pigg KB (2007) A brief review of the fossil history of the family Rosaceae with a focus on the Eocene Okanogan Highlands of eastern Washington State, USA, and British Columbia, Canada. Plant Syst Evol 266:45–57

    Article  Google Scholar 

  • Dickie IA, Bennett BM, Burrows LE, Nunez MA, Peltzer DA, Porté A, Richardson DM, Rejmánek M, Rundel PW, van Wilgen BW (2014a) Conflicting values: ecosystem services and invasive tree management. Biol Invas 16:705–719

    Article  Google Scholar 

  • Dickie IA, Bolstridge N, Cooper JA, Peltzer DA (2010) Co-invasion by Pinus and its mycorrhizal fungi. New Phytol 187:475–484

    Article  PubMed  Google Scholar 

  • Dickie IA, Koele N, Blum JD, Gleason JD, McGlone MS (2014b) Mycorrhizas in changing ecosystems. Botany 92:149–160

    Article  CAS  Google Scholar 

  • Donkpegan AS, Doucet JL, Migliore J, Duminil J, Dainou K, Piñeiro R, Wieringa JJ, Champluvier D, Hardy OJ (2017) Evolution in African tropical trees displaying ploidy-habitat association: the genus Afzelia (Leguminosae). Mol Phylogenet Evol 107:270–281

    Article  PubMed  Google Scholar 

  • Donoghue MJ, Smith SA (2004) Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos Trans R Soc Lond B 359:1633–1644

    Article  Google Scholar 

  • Douglas N, Spellenberg R (2010) A new tribal classification of Nyctaginaceae. Taxon 59:905–910

    Google Scholar 

  • Dray FA, Bennett BC, Center TD (2006) Invasion history of Melaleuca quinquenervia (Cav.) ST Blake in Florida. Castanea 71:210–225

    Article  Google Scholar 

  • Dregne HE, Chou NT (1992) Global desertification dimensions and costs. Degradation and restoration of arid lands. In: Dregne H (ed) Degradation and restoration of arid lands. Texas Technical University, Lubbock, TX, pp 73–92

    Google Scholar 

  • Ducousso M (1990) Importance des symbioses racinaires pour l’utilisation des acacias en Afrique de l’Ouest. Université de Lyon I, Lyons

    Google Scholar 

  • Ducousso M, Bena G, Bourgeois C, Buyck B, Eyssartier G, Vincelette M, Rabavohitra R, Randrihasipara L, Dreyfus B, Prin Y (2004) The last common ancestor of Sarcolaenaceae and Asian dipterocarp trees was ectomycorrhizal before the India-Madagascar separation, about 88 million years ago. Mol Ecol 13:231–236

    Article  CAS  PubMed  Google Scholar 

  • Elferink E, van der Weijden W (2011) Ecoterrorism and biosecurity. In: Simberloff D, Rejmanek M (eds) Encyclopedia of biological invasions. University of California Press, London, pp 208–212

    Google Scholar 

  • Feng X, Tang B, Kodrul TM, Jin J (2013) Winged fruits and associated leaves of Shorea (Dipterocarpaceae) from the Late Eocene of South China and their phytogeographic and paleoclimatic implications. Am J Bot 100:574–581

    Article  PubMed  Google Scholar 

  • Friis EM, Pedersen KR, Schönenberger J (2006) Normapolles plants: a prominent component of the Cretaceous rosid diversification. Plant Syst Evol 260:107–140

    Google Scholar 

  • Garrett KA, Thomas-Sharma S, Forbes GA, Nopsa JH (2014) Climate change and plant pathogen invasions. In: Ziska SH, Dukes JS (eds) Invasive species and global climate change. CABI International, Wallingford, pp 22–44

    Google Scholar 

  • Goldblatt P (1997) Floristic diversity in the Cape flora of South Africa. Biodivers Conserv 6:359–377

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz M (2012) The geologic time scale 2012. Elsevier, Boston, MA

    Google Scholar 

  • Graham A (1964) Origin and evolution of the biota of southeastern North America: evidence from the fossil plant record. Evolution 18:571–585

    Article  Google Scholar 

  • Graham A (1985) Studies in neotropical paleobotany. IV. The Eocene communities of Panama. Ann Mo Bot Gard 72:504–534

    Article  Google Scholar 

  • Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  PubMed  Google Scholar 

  • Graham A, Jarzen DM (1969) Studies in neotropical paleobotany. I. The Oligocene communities of Puerto Rico. Ann Mo Bot Gard 56:308–357

    Article  Google Scholar 

  • Grandcolas P, Murienne J, Robillard T, Desutter-Grandcolas L, Jourdan H, Guilbert E, Deharveng L (2008) New Caledonia: a very old Darwinian island? Philos Trans R Soc Lond B 363:3309–3317

    Article  Google Scholar 

  • Gray J (1960) Temperate pollen genera in the Eocene (Claiborne) flora, Alabama. Science 132:808–810

    Article  CAS  PubMed  Google Scholar 

  • Gregory-Wodzicki KM (2000) Uplift history of the Central and Northern Andes: a review. Geol Soc Am Bull 112:1091–1105

    Article  Google Scholar 

  • Guzman B, Vargas P (2009) Historical biogeography and character evolution of Cistaceae (Malvales) based on analysis of plastid rbcL and trnL-trnF sequences. Org Div Evol 9:83–99

    Article  Google Scholar 

  • Hall R (2009) Southeast Asia’s changing palaeogeography. Blumea 54:148–161

    Article  Google Scholar 

  • Hall R, Cottam MA, Wilson ME (2012) The SE Asian gateway: history and tectonics of the Australia–Asia collision. Geol Soc Lond Spec Publ 355:1–6

    Article  Google Scholar 

  • Haq BU (2009) Sequence stratigraphy, sea-level change, and significance for the deep sea. In: Macdonald DIM (ed) Sedimentation, tectonics and eustasy. Int Ass Sedim Spec Publ, vol 12, pp 3–39

    Google Scholar 

  • Haq BU (2014) Cretaceous eustasy revisited. Glob Planet Change 28:44–58

    Article  Google Scholar 

  • Harcharik D (2000) The geography of eucalypts. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Harland M, Francis JE, Brentnall SJ, Beerling DJ (2007) Cretaceous (Albian–Aptian) conifer wood from Northern Hemisphere high latitudes: forest composition and palaeoclimate. Rev Paleobot Palynol 143:167–196

    Article  Google Scholar 

  • Hayward J, Horton TR, Nunez MA (2015a) Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque. New Phytol 208:497–506

    Article  PubMed  Google Scholar 

  • Hayward J, Horton TR, Pauchard A, Nunez MA (2015b) A single ectomycorrhizal fungal species can enable a Pinus invasion. Ecology 96:1438–1444

    Article  PubMed  Google Scholar 

  • Hayward J, Hynson NA (2014) New evidence of ectomycorrhizal fungi in the Hawaiian Islands associated with the endemic host Pisonia sandwicensis (Nyctaginaceae). Fung Ecol 12:62–69

    Article  Google Scholar 

  • Henderson L (2007) Invasive, naturalized and casual alien plants in southern Africa: a summary based on the Southern African Plant Invaders Atlas (SAPIA). Bothalia 37:215–248

    Article  Google Scholar 

  • Henkel TW (2003) Monodominance in the ectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae) from Guyana. J Trop Ecol 19:417–437

    Article  Google Scholar 

  • Herman AB (2013) Albian-Paleocene flora of the north pacific: systematic composition, palaeofloristics and phytostratigraphy. Stratigr Geol Correl 21:689–747

    Article  Google Scholar 

  • Hermsen EJ, Gandolfo MA, del Carmen ZM (2012) The fossil record of Eucalyptus in Patagonia. Am J Bot 99:1356–1374

    Article  PubMed  Google Scholar 

  • Hill RS (2004) Origins of the southeastern Australian vegetation. Philos Trans R Soc Lond B 359:1537–1549

    Article  Google Scholar 

  • Hill RS, Beer YK, Hill KE, Maciunas E, Tarran MA, Wainman CC (2017) Evolution of the eucalypts – an interpretation from the macrofossil record. Aust J Bot. doi:10.1071/BT16117

    Google Scholar 

  • Hoorn C, Wesselingh FP, Ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    Article  CAS  PubMed  Google Scholar 

  • Hope GS (1996) History of Nothofagus in New Guinea and New Caledonia. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, London, pp 257–270

    Google Scholar 

  • Horak E (1983) Mycogeography in the south pacific region: agaricales, boletales. Aust J Bot 10:S1–S41

    Google Scholar 

  • Horn JW, Wurdack KJ, Dorr LJ (2016) Phylogeny and diversification of Malvales. Proceedings in Botany 2016, Savannah, Georgia, p 157

    Google Scholar 

  • Hosaka K, Castellano MA, Spatafora JW (2008) Biogeography of hysterangiales (phallomycetidae, basidiomycota). Mycol Res 112:448–462

    Article  CAS  PubMed  Google Scholar 

  • Howard RA (1961) Studies in the genus Coccoloba, X. New Species and a summary distribution in South America. J Arn Arbor 42:87–95

    Article  Google Scholar 

  • Howarth DG, Gustafsson MH, Baum DA, Motley TJ (2003) Phylogenetics of the genus Scaevola (Goodeniaceae): implication for dispersal patterns across the Pacific Basin and colonization of the Hawaiian Islands. Am J Bot 90:915–923

    Article  PubMed  Google Scholar 

  • Howell C (2008) Consolidated list of environmental weeds in New Zealand. Science and Technical Publishing, Department of Conservation, New Zealand

    Google Scholar 

  • Hueber FM, Nambudiri EM, Tidwell WD, Wheeler EF (1991) An Eocene fossil tree with cambial variant wood structure. Rev Paleobot Palynol 68:257–267

    Article  Google Scholar 

  • Hui C, Richardson DM, Visser V, Wilson JR (2014) Macroecology meets invasion ecology: performance of Australian acacias and eucalypts around the world revealed by features of their native ranges. Biol Invas 16:565–576

    Article  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Jabaily RS, Shepherd KA, Gardner AG, Gustafsson MH, Howarth DG, Motley TJ (2014) Historical biogeography of the predominantly Australian plant family Goodeniaceae. J Biogeogr 41:2057–2067

    Article  Google Scholar 

  • Jahren AH (2007) The arctic forests in the middle of Eocene. Annu Rev Earth Planet Sci 35:509–540

    Article  CAS  Google Scholar 

  • Jairus T, Mpumba R, Chinoya S, Tedersoo L (2011) Invasion potential and host shifts of Australian and African ectomycorrhizal fungi in mixed eucalypt plantations. New Phytol 192:179–187

    Article  PubMed  Google Scholar 

  • Jaramillo C, Rueda MJ, Mora G (2006) Cenozoic plant diversity in Neotropics. Science 311:1893–1896

    Article  CAS  PubMed  Google Scholar 

  • Johnson NC, Angelard C, Sanders IR, Kiers ET (2013) Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecol Lett 16:140–153

    Article  PubMed  Google Scholar 

  • Jolly-Saad MC, Dupéron J, Bonnefille R (2012) 5.8 Myr old Mimosoideae fossil woods from Ethiopia and comparison with African Albizia. Palaeontogr Abt B 1:161–187

    Google Scholar 

  • Jourand P, Carriconde F, Ducousso M, Majorel C, Hannibal L, Prin Y, Lebrun M (2014) Abundance, distribution and function of Pisolithus albus and other ectomycorrhizal fungi of ultramafic soils in New Caledonia. In: Ba AM, McGuire KL, Diedhiou A (eds) Ectomycorrhizal symbioses in tropical and neotropical forests. CRC Press, Boca Raton, FL, pp 100–125

    Chapter  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Article  Google Scholar 

  • Kershaw AP, van der Kaars S, Flenley JR (2011) The quaternary history of far eastern rainforests. In: Bush MB, Flenley JR, Gosling WD (eds) Tropical rainforest responses to climatic change. Springer, Berlin, pp 85–123

    Chapter  Google Scholar 

  • Koele N, Dickie IA, Oleksyn J, Richardson SJ, Reich PB (2012) No globally consistent effect of ectomycorrhizal status on foliar traits. New Phytol 196:845–852

    Article  PubMed  Google Scholar 

  • Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci U S A 104:5925–5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kron KA, Luteyn JL (2005) Origins and biogeographic patterns in Ericaceae: new insights from recent phylogenetic analyses. Biol Skr 55:479–500

    Google Scholar 

  • Kubitzki K, Bayer C (2003) Flowering plants: dicotyledons. Springer, Berlin

    Book  Google Scholar 

  • Kull CA (2004) Isle of fire: the political ecology of landscape burning in Madagascar. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Kuzovkina YA, Weih M, Romero MA, Charles J, Hust S, McIvor I, Karp A, Trybush S, Labrecque M, Teodorescu TI, Singh NB (2008) Salix: Botany and global horticulture. Hortic Rev 34:447–489

    CAS  Google Scholar 

  • Ladiges PY, Kellermann J, Nelson G, Humphries CJ, Udovicic F (2005) Historical biogeography of Australian Rhamnaceae, tribe Pomaderreae. J Biogeogr 32:1909–1919

    Article  Google Scholar 

  • Ladiges PY, Udovicic F, Nelson G (2003) Australian biogeographical connections and the phylogeny of large genera in the plant family Myrtaceae. J Biogeogr 30:989–998

    Article  Google Scholar 

  • Lankau RA, Zhu K, Ordonez A (2015) Mycorrhizal strategies of tree species correlate with trailing range edge responses to current and past climate change. Ecology 96:1451–1458

    Article  Google Scholar 

  • Larson-Johnson K (2015) Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. New Phytol 209:418–435

    Article  PubMed  CAS  Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:530–549

    Article  Google Scholar 

  • Le Roux JJ, Strasberg D, Rouget M, Morden CW, Koordom M, Richardson DM (2014) Relatedness defies biogeography: the tale of two island endemics (Acacia heterophylla and A. koa). New Phytol 204:230–242

    Article  PubMed  Google Scholar 

  • Lee DE, Lee WG, Jordan GJ, Barreda VD (2016) The Cenozoic history of New Zealand temperate rainforests: comparisons with southern Australia and South America. N Z J Bot 54:1–28

    Article  Google Scholar 

  • Leopold EB (1969) Miocene pollen and spore flora of Eniwetok Atoll, Marshall Islands. Geol Survey Prof Paper 260–11

    Google Scholar 

  • LePage BA (2003) The evolution, biogeography and palaeoecology of the Pinaceae based on fossil and extant representatives. Acta Hortic 615:29–52

    Article  Google Scholar 

  • Leslie AB, Beaulieu JM, Rai HS, Crane PR, Donoghue MJ, Mathews S (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proc Natl Acad Sci U S A 109:16217–16221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Bao B, Grabovskaya-Borodina AE (2003) Polygonaceae. Flora of China 5:277–350

    Google Scholar 

  • Liebhold AM, McCullough DG (2011) Forest insects. In: Simberloff D, Rejmanek M (eds) Encyclopedia of biological invasions. University of California Press, London, pp 263–267

    Google Scholar 

  • Lu Y, Ran JH, Guo DM, Yang ZY, Wang XQ (2014) Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PloS ONE 15:e107679

    Article  CAS  Google Scholar 

  • Macphail MK (1997) Late Neogene climates in Australia: fossil pollen-and spore-based estimates in retrospect and prospect. Aust J Bot 45:425–464

    Article  Google Scholar 

  • Macphail M (2007) Australian palaeoclimates: Cretaceous to tertiary. CRC-Leme Report. Australian National University, Canberra. DOI:10.1071/BT16124

  • Macphail MK, Cantrill DJ (2006) Age and implications of the Forest Bed, Falkland Islands, southwest Atlantic Ocean: evidence from fossil pollen and spores. Palaeogeogr Palaeoclimatol Palaeoecol 240:602–629

    Article  Google Scholar 

  • Macphail M, Hill R (2001) Fossil record of Acacia in Australia: Eocene to recent. Flora of Australia 11A:13–29

    Google Scholar 

  • Macphail M, Thornhill AH (2017) How old are the eucalypts? A review of the microfossil and phylogenetic evidence. Aust J Bot. doi:10.1071/BT16124

    Google Scholar 

  • Mahall BE, Thwing LK, Tyler CM (2010) A quantitative comparison of two extremes in chaparral shrub phenology. Flora 205:513–526

    Article  Google Scholar 

  • Manchester SR (1999) Biogeographical relationships of North American tertiary floras. Ann Mo Bot Gard 86:472–522

    Article  Google Scholar 

  • Manchester SR (2011) Fruits of Ticodendraceae (Fagales) from the Eocene of Europe and North America. Int J Plant Sci 172:1179–1187

    Article  Google Scholar 

  • Manos PS, Stanford AM (2001) The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the Northern Hemisphere. Int J Plant Sci 162:S77–S93

    Article  Google Scholar 

  • Markgraf V, Romero E, Villagran C (1996) History and paleoecology of South Ametican Nothofagus forests. In: Veblen TT, Hill RS, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, London, pp 354–386

    Google Scholar 

  • Marr KL, Allen GA, Hebda RJ, McCormick LJ (2013) Phylogeographical patterns in the widespread arctic–alpine plant Bistorta vivipara (Polygonaceae) with emphasis on western North America. J Biogeogr 40:847–856

    Article  Google Scholar 

  • Mattioni C, Martin MA, Pollegioni P, Cherubini M, Villani F (2013) Microsatellite markers reveal a strong geographical structure in European populations of Castanea sativa (Fagaceae):evidence for multiple glacial refugia. Am J Bot 100:951–961

    Article  PubMed  Google Scholar 

  • Mayor J, Bahram M, Henkel T, Buegger F, Pritsch K, Tedersoo L (2015) Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms. Ecol Lett 18:96–107

    Article  PubMed  Google Scholar 

  • McGlone MS, Buitenwerf R, Richardson SJ (2016) The formation of the oceanic temperate forests of New Zealand. N Z J Bot 54:128–155

    Article  Google Scholar 

  • Mehrotra RC, Liu XQ, Li CS, Wang YF, Chauhan MS (2005) Comparison of the Tertiary flora of southwest China and northeast India and its significance in the antiquity of the modern Himalayan flora. Rev Paleobot Palynol 135:145–163

    Article  Google Scholar 

  • Mejia VE, Echazarreta CM (1999) Gymnopodium floribundum: a major honey plant for beekeepers in Yucatan, Mexico. Bee World 80:145–147

    Article  Google Scholar 

  • Menzel A, Hempel S, Manceur AM, Götzenberger L, Moora M, Rillig MC, Zobel M, Kühn I (2016) Distribution patterns of arbuscular mycorrhizal and non-mycorrhizal plant species in Germany. Persp. Plant Ecol Evol Syst 21:78–88

    Article  Google Scholar 

  • Metcalfe I (2012) Palaeozoic–Mesozoic history of SE Asia. Geo Soc Lond Spec Publ 355:7–35

    Article  Google Scholar 

  • Miehe G, Bach K, Miehe S, Kluge J, Yongping Y, Duo L, Co S, Wesche K (2011) Alpine steppe plant communities of the Tibetan highlands. Appl Veg Sci 14:547–560

    Article  Google Scholar 

  • Mikola P (1969) Afforestation of treeless areas. Unasylva 23:S1–S20

    Google Scholar 

  • Millar CI, Stephenson NK (2015) Temperate forest health in an era of emerging megadisturbance. Science 349:823–826

    Article  CAS  PubMed  Google Scholar 

  • Miller JT, Murphy DJ, Ho SY, Cantrill DJ, Seigler D (2013) Comparative dating of Acacia:combining fossils and multiple phylogenies to infer ages of clades with poor fossil records. Aust J Bot 61:436–445

    Article  Google Scholar 

  • Mishler BD, Knerr N, González-Orozco CE, Thornhill AH, Laffan SW, Miller JT (2014) Phylogenetic measures of biodiversity and neo-and paleo-endemism in Australian Acacia. Nat Commun 5:4473

    Article  CAS  PubMed  Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. Wiley, New York, NY

    Google Scholar 

  • Moyersoen B (2006) Pakaraimea dipterocarpacea is ectomycorrhizal, indicating an ancient Gondwanaland origin for the ectomycorrhizal habit in Dipterocarpaceae. New Phytol 170:873–883

    Article  CAS  Google Scholar 

  • Muller J (1981) Fossil pollen records of extant angiosperms. Bot Rev 47:1–142

    Article  Google Scholar 

  • Murphy DJ, Miller JT, Bayer RJ, Ladiges PY (2003) Molecular phylogeny of Acacia subgenus Phyllodineae (Mimosoideae: Leguminosae) based on DNA sequences of the internal transcribed spacer region. Aust Syst Bot 16:19–26

    Article  CAS  Google Scholar 

  • Myers N, Mittermeier R, Mittermeier CG, de Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation purposes. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Newbery DM, Alexander IJ, Rother JA (1997) Phosphorus dynamics in a lowland African rain forest: the influence of ectomycorrhizal trees. Ecol Monogr 67:367–409

    Google Scholar 

  • Nicolas A (2009) Understanding evolutionary relationships in the angiosperm order Apiales based on analyses of organellar DNA sequences and nuclear gene duplications. Thesis. Virginia Commonwealth University, Richmond

    Google Scholar 

  • O’Dea A, Lessios HA, Coates AG, Eytan RI, Restrepo-Moreno SA, Cione AL, Collins LS, de Queiroz A, Farris DW, Norris RD, Stallard RF (2016) Formation of the Isthmus of Panama. Sci Adv 2:e1600883

    Article  PubMed  PubMed Central  Google Scholar 

  • Olson A, Stenlid J (2002) Pathogenic fungal species hybrids infecting plants. Microb Infect 4:1353–1359

    Article  CAS  Google Scholar 

  • Onstein RE, Carter RJ, Xing Y, Richardson JE, Linder HP (2015) Do Mediterranean-type ecosystems have a common history?—Insights from the Buckthorn family (Rhamnaceae). Evolution 69:756–771

    Article  PubMed  Google Scholar 

  • Palamarev E (1989) Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst Evol 162:93–107

    Article  Google Scholar 

  • Palazzesi L, Barreda VD, Cuitiño JI, Guler MV, Tellería MC, Santos RV (2014) Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nat Commun 5:3558

    Article  CAS  PubMed  Google Scholar 

  • Pan AD, Jacobs BF, Herendeen PS (2010) Detarieae sensu lato (Fabaceae) from the Late Oligocene (27-23 Ma) Guang River flora of north-western Ethiopia. Bot J Linn Soc 163:44–54

    Article  Google Scholar 

  • Parrotta JA (1993) Casuarina equisetifolia L. ex J. R. and G. Forst. Casuarina, Australian pine. Research notes, USDA Forest Service, Southern Forest Experiment Station, New Orleans, pp 11–14

    Google Scholar 

  • Pedley L (1975) Revision of the extra-Australian species of Acacia subg. Heterophyllum. Contrib Qld Herbarium 26:1–24

    Google Scholar 

  • Pennington RT, Lavin M, Särkinen T, Lewis GP, Klitgaard BB, Hughes CE (2010) Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc Natl Acad Sci 107:13783–13787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips RP, Brzostek E, Midgley MG (2013) The mycorrhizal-associated nutrient economy:a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol 199:41–51

    Article  CAS  PubMed  Google Scholar 

  • Phillips RP, Fahey TJ (2006) Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology 87:1302–1313

    Article  PubMed  Google Scholar 

  • Pirozynski KA (1983) Pacific mycogeography: an appraisal. Aust J Bot 10:137–159

    Google Scholar 

  • Plana V (2004) Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. Philos Trans R Soc Lond B 359:1573–1583

    Article  Google Scholar 

  • Poole I (2002) Systematics of Cretaceous and Tertiary Nothofagoxylon: implications for Southern Hemisphere biogeography and evolution of the Nothofagaceae. Aust Syst Bot 15:247–276

    Article  Google Scholar 

  • Poole I, Cantrill DJ (2006) Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record. Geol Soc Lond Spec Publ 258:63–81

    Article  Google Scholar 

  • Potgieter LJ, Richardson DM, Wilson JR (2014) Casuarina: biogeography and ecology of an important tree genus in a changing world. Biol Invas 16:609–633

    Article  Google Scholar 

  • Price GD, Twitchett RJ, Wheeley JR, Buono G (2013) Isotopic evidence for long term warmth in the Mesozoic. Sci Rep 3:1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian H, Ricklefs RE (2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature 407:180–182

    Article  CAS  PubMed  Google Scholar 

  • Quirk J, Andrews MY, Leake JR, Banwart SA, Beerling DJ (2014) Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral weathering through increased below-ground carbon-energy fluxes. Biol Lett 10:20140375

    Article  PubMed Central  CAS  Google Scholar 

  • Raven PH, Axelrod DI (1974) Angiosperm biogeography and past continental movements. Ann Mo Bot Gard 61:539–673

    Article  Google Scholar 

  • Ray N, Adams J (2001) A GIS-based vegetation map of the world at the last glacial maximum (25,000-15,000 BP). Intern Archaeol 11:1–45

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Read D, Leake JR, Perez-Moreno J (2004) Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomes. Can J Bot 82:1243–1263

    Article  CAS  Google Scholar 

  • Rejmanek M, Richardson DS (2011) Eucalypts. In: Simberloff D, Rejmanek M (eds) Encyclopedia of biological invasions. University of California Press, London, pp 228–234

    Google Scholar 

  • Rejmanek M, Richardson DM (2013) Trees and shrubs as invasive alien species—2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Richardson DM (1997) Forestry trees as invasive aliens. Conserv Biol 12:18–26

    Article  Google Scholar 

  • Richardson DM (2000) Ecology and biogeography of Pinus. Cambridge University Press, New York

    Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio C, Milton SJ, Rejmanek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93

    Article  CAS  PubMed  Google Scholar 

  • Richardson DM, Carruthers J, Hui C, Impson FA, Miller JT, Robertson MP, Rouget M, Le Roux JJ, Wilson JR (2011) Human-mediated introductions of Australian acacias–a global experiment in biogeography. Divers Distrib 17:771–787

    Article  Google Scholar 

  • Richardson DM, PyÅ¡ek P (2012) Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol 196:383–396

    Article  PubMed  Google Scholar 

  • Richardson DM, Rejmanek M (2004) Conifers as invasive aliens: a global survey and predictive framework. Divers Distrib 10:321–331

    Article  Google Scholar 

  • Richardson DM, Rejmánek M (2011) Trees and shrubs as invasive alien species—a global review. Divers Distrib 17:788–809

    Article  Google Scholar 

  • Richardson JE, Whitlock BA, Meerow A, Madriñán S (2015) The age of chocolate: a biogeographic history of Theobroma and Malvaceae. Front Ecol Evol 3:120

    Article  Google Scholar 

  • Richter SL, LePage BA (2005) A high-resolution palynological analysis, Axel Heiberg Island, Canadian High Arctic. In: LePage BA, Williams CJ, Yang W (eds) The geobiology and ecology of Metasequoia. Springer, Amsterdam, pp 137–158

    Chapter  Google Scholar 

  • Rizzo DM (2011) Phytophthora. In: Simberloff D, Rejmanek M (eds) Encyclopedia of biological invasions. University of California Press, London, pp 568–571

    Google Scholar 

  • Rodriguez-Echeverria S (2010) Rhizobial hitchhikers from down under: invasional melt-down in a plant-bacteria mutualism? J Biogeogr 37:1611–1622

    Google Scholar 

  • Rundel PW, Dickie IA, Richardson DM (2014) Tree invasions into treeless areas: mechanisms and ecosystem processes. Biol Invas 16:663–675

    Article  Google Scholar 

  • Schmidt-Lebuhn AN, Knerr NJ, Miller JT, Mishler BD (2015) Phylogenetic diversity and endemism of Australian daisies (Asteraceae). J Biogeogr 42:1114–1422

    Article  Google Scholar 

  • Schrire BD, Lavin M, Lewis GP (2005) Global distribution patterns of the Leguminosae: insights from recent phylogenies. Biol Skr 55:375–422

    Google Scholar 

  • Schuster TM, Setaro SD, Kron KA (2013) Age estimates for the buckwheat family Polygonaceae based on sequence data calibrated by fossils and with a focus on the amphi-pacific Muehlenbeckia. PLoS ONE 8:e61261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Schwery O, Onstein RE, Bouchenak-Khelladi Y, Xing Y, Carter RJ, Linder HP (2015) As old as the mountains: the radiations of the Ericaceae. New Phytol 207:355–367

    Article  PubMed  Google Scholar 

  • Senut B, Pickford M, Ségalen L (2009) Neogene desertification of Africa. C R Geosci 341:591–602

    Article  CAS  Google Scholar 

  • Simberloff D, Nuñez MA, Ledgard NJ, Pauchard A, Richardson DM, Sarasola M, Van Wilgen BW, Zalba SM, Zenni RD, Bustamante R, Peña E (2010) Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Aust Ecol 35:489–504

    Article  Google Scholar 

  • Simberloff D, Rejmanek M (2011) Encyclopedia of biological invasions. University of California Press, London

    Google Scholar 

  • Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invas 1:21–32

    Article  Google Scholar 

  • Skrede I, Eidesen PB, Portela RP, Brochmann C (2006) Refugia, differentiation and postglacial migration in arctic-alpine Eurasia, exemplified by the mountain avens (Dryas octopetala L.) Mol Ecol 15:1827–1840

    Article  CAS  PubMed  Google Scholar 

  • Smith SY, Stockey RA, Rothwell GW, Little SA (2016) A new species of Pityostrobus (Pinaceae) from the Cretaceous of California: moving towards understanding the Cretaceous radiation of Pinaceae. J Syst Palaeontol 1:1–13

    Google Scholar 

  • Sniderman JM, Jordan GJ (2011) Extent and timing of floristic exchange between Australian and Asian rain forests. J Biogeogr 38:1445–1455

    Article  Google Scholar 

  • Song Z-C, Wei-Ming W, Fei H (2004) Fossil pollen records of extant angiosperms in China. Bot Rev 70:425–458

    Article  Google Scholar 

  • Soudzilovskaia N, van der Heijden MGA, Cornelissen JHC, Makarov MI, Onipchenko VG, Maslov MN, Akhmetzanova AA, van Bodegom PM (2015) Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling. New Phytol 208:280–293

    Article  CAS  PubMed  Google Scholar 

  • St. John H (1951) The distribution of Pisonia grandis (Nyctaginaceae). Webbia 8:225–229

    Article  Google Scholar 

  • Starr JR, Harris SA, Simpson DA (2004) Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae I: generic relationships and evolutionary scenarios. Syst Bot 29:528–544

    Article  Google Scholar 

  • Stehli FG, Webb SD (2013) The great American biotic interchange. Springer, New York, NY

    Google Scholar 

  • Stocker TF, Qin D, Plattner K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, Climate Change (2013) The physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Streiblova E, Gryndlerová H, Gryndler M (2012) Truffle brûlé: an efficient fungal life strategy. FEMS Microbiol Ecol 80:1–8

    Article  CAS  PubMed  Google Scholar 

  • Svenning JC (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecol Lett 6:646–653

    Article  Google Scholar 

  • Taggart RE, Cross AT (2009) Global greenhouse to icehouse and back again: the origin and future of the boreal forest biome. Glob Planet Change 65:115–121

    Article  Google Scholar 

  • Tedersoo L, Bahram M, Põlme S et al (2014a) Global diversity and geography of soil fungi. Science 346:1078

    Article  CAS  Google Scholar 

  • Tedersoo L, Bahram M, Ryberg M, Otsing E, Kõljalg U, Abarenkov K (2014b) Global biogeography of the ectomycorrhizal /sebacina lineage (Fungi, Sebacinales) as revealed from comparative phylogenetics analyses. Mol Ecol 23:4168–4183

    Article  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fung Biol Rev 27:83–99

    Article  Google Scholar 

  • Tedersoo L, Suvi T, Beaver K, Kõljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytol 175:321–333

    Article  CAS  PubMed  Google Scholar 

  • Ter Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, Castilho CV, Magnusson WE, Molino JF, Monteagudo A (2013) Hyperdominance in the Amazonian tree flora. Science 342:1243092

    Article  PubMed  CAS  Google Scholar 

  • Terrer C, Vicca S, Hungate BA, Phillips RP, Prentice IC (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74

    Article  CAS  PubMed  Google Scholar 

  • Thompson J (1989) A revision of the genus Leptospermum (Myrtaceae). Telopea 3:301–448

    Article  Google Scholar 

  • Thornhill AH, Ho SY, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Mol Phyl Evol 93:29–43

    Article  Google Scholar 

  • Thornhill AH, Macphail M (2012) Fossil myrtaceous pollen as evidence for the evolutionary history of Myrtaceae: A review of fossil Myrtaceidites species. Rev Palaeobot Palynol 176:1–23

    Article  Google Scholar 

  • Thuiller W, Richardson DM, Midgley GF (2007) Will climate change promote alien plant invasions? Ecol Stud 193:197–211

    Article  Google Scholar 

  • Tiffney BH, Manchester SR (2001) The use of geological and palaeontological evidence in evaluating plant phylogeographical hypotheses in the Northern Hemisphere Tertiary. Int J Plant Sci 162:S3–S17

    Article  Google Scholar 

  • Toon A, Cook LG, Crisp MD (2014) Evolutionary consequences of shifts to bird-pollination in the Australian pea-flowered legumes (Mirbelieae and Bossiaeeae). BMC Evol Biol 14:1

    Article  Google Scholar 

  • Torti SD, Coley PD, Kursar T (2001) Causes and consequences of monodominance in tropical lowland forests. Am Nat 157:141–153

    Article  CAS  PubMed  Google Scholar 

  • Traveset A, Richardson DM (2014) Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst 45:89–113

    Article  Google Scholar 

  • Truswell EM (1993) Vegetation in the Australian Tertiary in response to climatic and phytogeographic forcing factors. Aust Syst Bot 6:533–557

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Tzedakis PC, Channell JE, Hodell DA, Kleiven HF, Skinner LC (2012) Determining the natural length of the current interglacial. Nat Geosci 5:138–141

    Article  CAS  Google Scholar 

  • Unruh JR (1991) The uplift of the Sierra Nevada and implications for late Cenozoic epeirogeny in the western Cordillera. Geol Soc Am Bull 103:1395–1404

    Article  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573

    Article  CAS  PubMed  Google Scholar 

  • van der Hammen T (1974) The Pleistocene changes of vegetation and climate in tropical South America. J Biogeogr 1:3–26

    Article  Google Scholar 

  • Veblen TT, Hill RS, Read J (1996) The ecology and biogeography of Nothofagus forests. Yale University Press, London

    Google Scholar 

  • Vorontsova MS, Hoffmann P, Maurin O, Chase MW (2007) Molecular phylogenetics of tribe Poranthereae (Phyllanthaceae; Euphorbiaceae sensu lato). Am J Bot 94:2026–2040

    Article  PubMed  Google Scholar 

  • Wallis GP, Trewick SA (2009) New Zealand phylogeography: evolution on a small continent. Mol Ecol 18:3548–3580

    Article  PubMed  Google Scholar 

  • Wang XQ, Ran JH (2014) Evolution and biogeography of gymnosperms. Mol Phyl Evol 75:24–40

    Article  Google Scholar 

  • Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET (2014) A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat Commun 5:4087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmore TC (1981) Wallace’s line and some other plants. In: Whitmore TC (ed) Wallace’s line and plate tectonics. Clarendon Press, Oxford

    Google Scholar 

  • Wilf P, Cúneo NR, Escapa IH, Pol D, Woodburne MO (2013) Splendid and seldom isolated: the paleobiogeography of Patagonia. Annu Rev Earth Planet Sci 41:561–603

    Article  CAS  Google Scholar 

  • Wilson AW, Binder M, Hibbett DS (2012) Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota). New Phytol 194:1079–1095

    Article  PubMed  Google Scholar 

  • Wolfe BE, Pringle A (2012) Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus. ISME J 6:745–755

    Article  CAS  PubMed  Google Scholar 

  • Won H, Renner SS (2006) Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)—clock calibration when outgroup relationships are uncertain. Syst Biol 55:610–622

    Article  PubMed  Google Scholar 

  • Ya T, Ren Z (1996) Geographical distribution of Tilia L. Acta Phytotaxon Sin 34:254–264

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  CAS  PubMed  Google Scholar 

  • Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG et al (2014) Three keys to the radiation of angiosperms into freezing environments. Nature 506:89–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank the five reviewers A. Corrales, I.A. Dickie, M. Pärtel, N.A. Soudzilovskaia and A. Thornhill for constructive comments. The author received support from the Estonian Science Foundation grant 1399PUT and MOBERC1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leho Tedersoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tedersoo, L. (2017). Global Biogeography and Invasions of Ectomycorrhizal Plants: Past, Present and Future. In: Tedersoo, L. (eds) Biogeography of Mycorrhizal Symbiosis. Ecological Studies, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-56363-3_20

Download citation

Publish with us

Policies and ethics