Skip to main content

The past, present, and future importance of fire in tropical rainforests

  • Chapter
  • First Online:
Tropical Rainforest Responses to Climatic Change

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

The tropics bring to mind picturesque beaches and idyllic visions of seemingly endless tropical rainforests. Often overlooked, however, is that the tropics are also comprised of vast areas of savanna, montane grasslands, dry deciduous and dry thorn forests, as well as mangroves, deserts, wetlands, and a multitude of other ecosystems; many of these ecosystems burn frequently. The tropics cover one-third (33.7%) of the planet’s land surface. They contain over 40% of the world’s forests, the vast majority of all species, and are home to over 35% of the human population (Cochrane, 2009a). Satellite detections of thermal anomalies also show that the tropics experience more fires per year than anywhere else on Earth (Figure 7.1). In this region, where fire dominates many landcover types, sit the world’s richest storehouse of biodiversity within what appear to be nearly fire-immune tropical rainforests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T., and Malingreau, J. P. (2002) Determination of deforestation rates of the world’s humid tropical forests. Science, 297, 999–1002.

    Article  CAS  Google Scholar 

  • Alencar, A., Nepstad, D. C., and Vera Diaz, M. D. C. (2006) Forest understory fire in the Brazilian Amazon in ENSO and no-ENSO years: Area burned and committed carbon emissions. Earth Interactions, 10, Art. No. 6.

    Google Scholar 

  • Alves, D. S., Pereira, J. L. G., De Sousa, C. L., Soares, J. V., and Yamaguchi, F. (1999) Characterizing landscape changes in central Rondonia using Landsat TM imagery. Int. J. Remote Sensing, 20, 2877–2882.

    Article  Google Scholar 

  • Asner, G. P., Knapp, D., Broadbent, E., Oliveira, P., Keller, M., and Silva, J. (2005) Selective logging in the Brazilian Amazon. Science, 310, 480–482.

    Article  CAS  Google Scholar 

  • Aubre´ ville, A. M. A. (1947) The disappearance of the tropical forests of Africa. Unasylva, 1, 5–11. Avissar, R. and Liu, Y. (1996) A three-dimensional numerical study of shallow convective

    Google Scholar 

  • clouds and precipitation induced by land-surface forcing. J. Geophys. Res., 101, 7499–7518. Avissar, R., Silva Dias, P., Silva Dias, M., and Nobre, C. (2002) The Large-scale Biosphere–

    Google Scholar 

  • Atmosphere Experiment in Amazonia (LBA): Insights and future research needs. J. Geophys. Res., 107, doi: 10.1029/2002JD002704.

  • Baidya Roy, S. and Avissar, R. (2000) Scales of response of the convective boundary layer to land-surface heterogeneity. Geophys. Res. Lett., 27, 533–536.

    Article  Google Scholar 

  • Baidya Roy, S. and Avissar, R. (2002) Impact of land use/land cover change on regional hydrometeorology in the Amazon. J. Geophys. Res., 107, doi: 10.1029/2000JD00266.

  • Baker, P. J. and Bunyavejchewin, S. (2009) Fire behavior and fire effects across the forest landscape mosaics of continental Southeast Asia. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 311–334. Springer/ Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Higuchi, N., Killeen, T. J., Laurance, S. G. et al. (2004) Increasing biomass in Amazonian forest plots. Philosophical Trans. Royal Society London B, 359, 353–365.

    Article  Google Scholar 

  • Barber, C. V. and Schweithelm, J. (2000) Trial by Fire: Forest Fire and Forestry Policy in Indonesia’s Era of Crisis and Reform. World Resources Institute, Washington, D.C.

    Google Scholar 

  • Barlow, J. and Peres, C. A. (2004) Ecological responses to El Nin˜ o-induced surface fires in central Brazilian Amazonia: Management implications for flammable tropical forests. Philosophical Trans. Royal Society London B, 359, 367–380.

    Article  Google Scholar 

  • Barlow, J. and Peres, C. A. (2006) Effects of single and recurrent wildfires on fruit production and large vertebrate abundance in a central Amazonian forest. Biodiversity Conservation, 15, 985–1012. Sec. 7.7] 7.7 References 233

    Google Scholar 

  • Barlow, J. and Peres, C. A. (2008) Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Trans. Royal Society London B, 363, 1787–1794.

    Article  Google Scholar 

  • Barlow, J. and Silveira, J. M. (2009) The consequences of fire for the fauna of humid tropical forests. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 543–556. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Barlow, J., Peres, C. A., Lagan, B., and Haugaasen, T. (2003) Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett., 6, 6–8.

    Article  Google Scholar 

  • Barreto, P., Amaral, P., Vidal, E., and Uhl, C. (1998) Costs and benefits of forest management for timber production in eastern Amazonia. Forest Ecology and Management, 108, 9–26.

    Article  Google Scholar 

  • Beerling, D. J. and Mayle, F. E. (2006) Contrasting effects of climate and CO2 on Amazonian ecosystems since the Last Glacial Maximum. Global Change Biology, 12, 1977–1984; doi: 10.1111/j.1365-2486.2006.01228.7.

    Article  Google Scholar 

  • Betts, R. A., Cox, P. A., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D. (2004) The role of ecosystem–atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theoretical and Applied Climatology, 78, 157–175.

    Article  Google Scholar 

  • Bond, W. J. and van Wilgen, B. W. (1996) Fire and Plants. Chapman & Hall. London (263 pp.).

    Google Scholar 

  • Bond, W. J., Woodward, F. I., and Midgley, G. F. (2005) The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525–537.

    Article  CAS  Google Scholar 

  • Bowman, D. M. J. S. (2000) Australian Rainforests: Islands of Green in a Land of Fire. Cambridge University Press, New York (345 pp.).

    Google Scholar 

  • Brncic, T. M., Willis, K. J., Harris, D. J., and Washington, R. (2007) Culture or climate? The relative influences of past processes on the composition of the lowland Congo rainforest. Philosophical Trans. Royal Society London B, 362, 229–242.

    Google Scholar 

  • Brncic, T. M., Willis, K. J., Harris, D. J., Telfer, M. W., and Bailey, R. M. (2009) Fire and climate change impacts on lowland forest composition in northern Congo during the last 2580 years from palaeoecological analyses of a seasonally flooded swamp. The Holocene, 19, 79–89.

    Article  Google Scholar 

  • Bucini, G. and Lambin, E. F. (2002) Fire impacts on vegetation in Central Africa: A remotesensing- based statistical analysis. Applied Geography, 22, 27–48.

    Article  Google Scholar 

  • Bush, M.B. and Silman, M. R. (2007) Amazonian exploitation revisited: Ecological assymetry and the policy pendulum. Frontiers in Ecology and the Environment, 5, 457–465. doi: 10.1890/070018.

    Article  Google Scholar 

  • Bush, M. B., Silman, M. R., McMichael, C., and Saatchi, S. (2008) Fire, climate change and biodiversity in Amazonia: A Late-Holocene perspective. Philosophical Trans. Royal Society London B, 363, 1795–1802.

    Article  CAS  Google Scholar 

  • Chokkalingam, U., Kurniawan, I., Suyanto, Permana, R. P., Buitenzorgy, M., and Susanto, R. H. (2009) Fire and land use effects on biodiversity and livelihoods in the southern Sumatran wetlands. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 355–385. Springer/Praxis, Heidelberg, Germany/Chichester

    Google Scholar 

  • U.K.

    Google Scholar 

  • Clark, D. A., Piper, S. C., Keeling, C. D., and Clark, D. B. (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the National Academy of Sciences U.S.A, 100, 5852– 5857.

    Article  CAS  Google Scholar 

  • Cochrane, M. A. (2001a) Synergistic interactions between habitat fragmentation and fire in evergreen tropical forests. Conserv. Biol., 15, 1515–1521.

    Article  Google Scholar 

  • Cochrane, M. A. (2001b) In the line of fire: Understanding the impacts of tropical forest fires. Environment, 43, 28–38.

    Article  Google Scholar 

  • Cochrane, M. A. (2003) Fire science for rainforests. Nature, 421, 913–919.

    Article  CAS  Google Scholar 

  • Cochrane, M. A. (2009a) Fire in the tropics. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 1–23. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Cochrane, M. A. (2009b) Fire, landuse, landcover dynamics and climate change in the Brazilian Amazon. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 389–426. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Cochrane, M. A. and Barber, C. P. (2009) Future fire regimes of the Amazon: Climate change and human land use. Global Change Biology, 15, 601–612.

    Article  Google Scholar 

  • Cochrane, M. A. and Laurance, W. F. (2002) Fire as a large-scale edge effect in Amazonian forests. J. Trop. Ecol., 18, 311–325.

    Article  Google Scholar 

  • Cochrane, M. A. and Laurance, W. F. (2008) Synergisms among fire, land use, and climate change in the Amazon. Ambio, 37, 522–527.

    Article  Google Scholar 

  • Cochrane, M. A. and Schulze, M. D. (1999) Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica, 31, 2–16.

    Google Scholar 

  • Cochrane, M. A., Alencar, A., Schulze, M. D., Souza Jr., C. M., Nepstad, D. C., Lefebvre, P., and Davidson, E. (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832–1835.

    Article  CAS  Google Scholar 

  • Cochrane, M. A., Skole, D., Matricardi, E., Barber, C., and Chomentowski, W. (2004) Selective logging, forest fragmentation and fire disturbance: Implications of interaction and synergy. In: D. Zarin (Ed.), Working Forests in the Neotropics: Conservation through Sustainable Management?, pp. 310–324. Columbia University Press, New York.

    Google Scholar 

  • Collins, M. (2005) The CMIP modeling groups, El Nin˜ o or La Nin˜ a-like climate change? Climate Dynamics, 24, 89–104.

    Article  Google Scholar 

  • Cook, K. H. and Vizy, E. K. (2006) South American climate during the Last Glacial Maximum: Delayed onset of the South American monsoon. J. Geophys. Res., 111, D02110, doi: 10.1029/2005JD005980.

    Article  CAS  Google Scholar 

  • Covey, C., AchutaRao, K. M., Cubasch, U., Jones, P., Lambert, S. J., Mann, M. E., Phillips, T. J., and Taylor, K. E. (2003) An overview of results from the Coupled Model Intercomparison Project. Global and Planetary Change, 37, 103–133.

    Article  Google Scholar 

  • Cowling, S. A. and Shin, Y. (2006) Simulated ecosystem threshold responses to co-varying temperature, precipitation and atmospheric CO2 within a region of Amazonia. Global Ecology and Biogeography, 15, 553–566.

    Article  Google Scholar 

  • Cox, P. M. (2001) Description of the TRIFFID Dynamic Global Vegetation Model (Technical Note 24). Hadley Centre, Met Office, London (16 pp.).

    Google Scholar 

  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., and Totterdell, I. J. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.

    Article  CAS  Google Scholar 

  • Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C., and Jones, C. D. (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology, 78, 137–156.

    Article  Google Scholar 

  • Cox, P. M., Harris, P., Huntingford, C., Betts, R. A., Collins, M., Jones, C. D., Jupp, T. E., Marengo, J. A., and Nobre, C. A. (2008) Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature, 453, 212–215.

    Article  CAS  Google Scholar 

  • Dickinson, R. and Kennedy, P. (1992) Impacts on regional climate of Amazon deforestation. Geophys. Res. Lett., 19, 1947–1950.

    Article  Google Scholar 

  • Eltahir, E. A. B. and Bras, R. L. (1996) Precipitation recycling. Rev. Geophysics, 34, 367–378.

    Google Scholar 

  • Freitas, S., Silva Dias, M., and Silva Dias, P. (2000) Modeling the convective transport of trace gases by deep and moist convection. Hybrid Methods in Engineering, 3, 317–330.

    Google Scholar 

  • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I. et al. (2006) Climate carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Climate, 19, 3337–3353.

    Article  Google Scholar 

  • Gandu, A. W., Cohen, J. C. P., and de Souza, J. R. S. (2004) Simulation of deforestation in eastern Amazonia using a high-resolution model. Theoretical and Applied Climatology, 78, 123–135.

    Article  Google Scholar 

  • Gascon, C., Williamson, G. B., and Fonseca, G. A. B. (2000) Receding edges and vanishing fragments. Science, 288, 1356–1358.

    Article  CAS  Google Scholar 

  • Gerwing, J. J. (2002) Degradation of forests through logging and fire in the eastern Brazilian Amazon. For. Ecol. Mgmt., 157, 131–141.

    Article  Google Scholar 

  • Goldammer, J. G. and Seibert, B. (1989) Natural rain-forest fires in Eastern Borneo during Pleistocene and Holocene. Naturwissenschaften, 76, 518–520.

    Article  Google Scholar 

  • Goldammer, J. G. and Seibert, B. (1990) The impact of droughts and forest fires on tropical lowland rain forest of East Kalimantan. In: J. G. Goldammer (Ed.), Fire in the Tropical Biota. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Chapter  Google Scholar 

  • Hammond, D. S. and ter Steege, H. (1998) Propensity for fire in Guianan rainforests. Conserv. Biol., 12, 944–947.

    Google Scholar 

  • Hansen, M. C., Stehman, S. V., and Potapov, P. V. (2010) Quantification of global gross forest cover loss. Proceedings of the National Academy of Sciences U.S.A, 107, 8650–8655.

    Article  CAS  Google Scholar 

  • Hasler, N. and Avissar, R. (2007) What controls evapotranspiration in the Amazon Basin? J. Hydrometeorology, 8, 380–395.

    Article  Google Scholar 

  • Holdsworth, A. R. and Uhl, C. (1997) Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecol. Appls., 7, 713–725.

    Article  Google Scholar 

  • Huntingford, C., Harris, P. P., Gedney, N., Cox, P. M., Betts, R. A., Marengo, J. A., and Gash, J. H. C. (2004) Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology, 78, 177–185.

    Article  Google Scholar 

  • Ichii, K., Hashimoto, H., White, M. A., Potter, C., Hutrya, L. R., Huete, A. R., Myneni, R. B., and Nemani, R. R. (2007) Constraining rooting depths in tropical rainforests using satellite data and ecosystem modeling for accurate simulation of gross primary production seasonality. Global Change Biology, 13, 67–77.

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: The Physical Science Basis (edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor, and H. Miller). Cambridge University Press, U.K. (1009 pp.).

    Google Scholar 

  • Jackson, S. M., Fredericksen, T. S., and Malcolm, J. R. (2002) Area disturbed and residual stand damage following logging in a Bolivian tropical forest. For. Ecol. Mgmt., 166, 271–283.

    Article  Google Scholar 

  • Jipp, P., Nepstad, D., Cassel, K., and de Carvalho, C. (1998) Deep soil moisture storage and transpiration in forests and pastures of seasonally dry Amazoˆ nia. Clim. Change, 39, 395–412.

    Article  Google Scholar 

  • Johnson, L. A. and Dearden, P. (2009) Fire, seasonal evergreen forests, conservation and mainland Southeast Asia. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 290–310. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Jordan, C. F. (1982) The nutrient balance of an Amazonian rain forest. Ecology, 63, 647–654.

    Google Scholar 

  • Kauffman, J. B. (1991) Survival by sprouting following fire in tropical forests of the eastern Amazon. Biotropica, 23, 219–224.

    Article  Google Scholar 

  • Kauffman, J. B. and Uhl, C. (1990) Interactions of anthropogenic activities, fire, and logging in rain forests in the Amazon Basin. In: J. G. Goldammer (Ed.), Fire in the Tropical Biota, pp. 117–134. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Kershaw, A. P., van der Kaars, S., and Flenley, J. R. (2007) The Quaternary history of Far Eastern rainforests. In: M. B. Bush and J. R. Flenley (Eds.), Tropical Rainforest Responses to Climate Change. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Kinnaird, M. F. and O’Brien, T. G. (1998) Ecological effects of wildfire on lowland rainforest in Sumatra. Conservation Biology, 12, 954–956.

    Google Scholar 

  • Kleidon, A. and Lorenz, S. (2001) Deep roots sustain Amazonian rainforest in climate model simulations of the last ice age. Geophys. Res. Lett., 28, 2425–2428.

    Article  Google Scholar 

  • Kodandapani, N., Cochrane, M. A., and Sukumar, R. (2009) Forest fire regimes and their ecological effects in seasonally dry tropical ecosystems in the Western Ghats, India. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 335–354. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Korner, C. (2000) Biosphere responses to CO2 enrichment. Ecological Applications, 10, 1590–1619.

    Google Scholar 

  • Kunii, O. (1999) Basic facts determining downwind exposures and their associated health effects, assessment of health effects in practice: A case study in the 1997 forest fires in Indonesia. In: K. Goh, D. Schwela, J. G. Goldammer, and O. Simpson (Eds.), Health Guidelines for Vegetation Fire Events: Background Papers, pp. 299–316. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • Laporte, N. T, Stabach, J. A., Grosch, R., Lin, T. S., and Goetz, S. J. (2007) Expansion of industrial logging in Central Africa. Science, 316, 1451.

    Article  CAS  Google Scholar 

  • Laurance, W. F., Laurance, S. G., Ferreira, L.V., Rankin-de Merona, J., Gascon, C., and Lovejoy, T. E. (1997) Biomass collapse in Amazonian forest fragments. Science, 278, 1117–1118.

    Article  CAS  Google Scholar 

  • Laurance, W. F., Cochrane, M. A., Bergen, S., Fearnside, P., Delamonica, P., Barber, C., D’Angelo, S., and Fernandes, T. (2001) The future of the Brazilian Amazon. Science, 291, 438–439.

    Article  CAS  Google Scholar 

  • Lean, J. and Rowntree, P. (1993) AGCMsimulation of the impact of Amazonian deforestation on climate using an improved canopy representation. Quart. J. Roy. Meteorol. Soc., 119, 509–530.

    Article  Google Scholar 

  • Levi, P. E., Cannell, M. G. R., and Friend, A. D. (2004) Modeling the impact of future changes in climate, CO2 concentration and land use on natural ecosystems and the terrestrial carbon sink. Global Environmental Change, 14, 21–30.

    Article  Google Scholar 

  • Li, W. and Fu, R. (2004) Transition of the large-scale atmospheric and land surface conditions from dry to wet season over Amazonia as diagnosed by the ECMWF re-analysis. J. Climate, 17, 2637–2651.

    Article  Google Scholar 

  • Li, W., Fu, R., and Dickinson, R. E. (2006) Rainfall and its seasonality over the Amazon in the 21st century as assessed by the coupled models for the IPCC AR4. J. Geophys. Res., 111, D02111, doi: 10.1029/2005JD006355.

    Article  CAS  Google Scholar 

  • Lloyd, J. and Farquhar, G. (2007) Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philosophical Trans. Royal Society London B, 363, 1811–1817.

    Google Scholar 

  • Malhi, Y. and Wright, J. (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Trans. Royal Society London B, 359, 311–329.

    Article  Google Scholar 

  • Marengo, J. A., Nobre, C. A. Tomasella, J., Cardoso, M. F., and Oyama, M. D. (2008a) Hydroclimatic and ecological behaviour of the drought of Amazonia in 2005. Philosophical Trans. Royal Society London B, 363, 1773–1778.

    Google Scholar 

  • Marengo, J. A., Nobre, C. A., and Tomasella, J. (2008b) The drought of Amazonia in 2005. J. Climate, 21, 495–515.

    Article  Google Scholar 

  • Matricardi, E., Skole, D., Cochrane, M., Qi, J., Pedlowski, M., and Chomentowski, W. (2007) Multi-temporal assessment of selective logging in the Brazilian Amazon using Landsat data. Int. J. Remote Sensing, 28, 63–82.

    Article  Google Scholar 

  • Messina, J. P. and Cochrane, M. A. (2007) The forests are bleeding: How land use change is creating a new fire regime in the Ecuadorian Amazon. J. Latin American Geography, 6, 85– 100.

    Article  Google Scholar 

  • Moreira, M. Z., Sternberg, L. D. L., Martinelli, L. A., Victoria, R. L., Barbosa, E. M., Bonates, L. C. M., and Nepstad, D. C. (1997) Contribution of transpiration to forest ambient vapour based on isotopic measurements. Global Change Biology, 3, 439–450.

    Article  Google Scholar 

  • Mueller-Dombois, M. (1981) Fire in tropical ecosystems. Proceedings of the Fire Regimes and Ecosystem Properties Conference (GTR WO-26, pp. 137–176).

    Google Scholar 

  • Nascimento, H. E. M., and Laurance, W. F. (2002) Total aboveground biomass in central Amazonian rainforests: A landscape-scale study. For. Ecol. Mgmt., 168, 311–321.

    Article  Google Scholar 

  • Nepstad, D. C., Carvalho, C., Davidson, E., Jipp, P., Lefebre, P., Negreiros, G., Silva, E., Stone, T., Trumbore, S., and Vieira, S. (1994) The role of deep roots in the hydrological cycles of Amazonian forests and pastures. Nature, 372, 666–669.

    Article  CAS  Google Scholar 

  • Nepstad, D. C., Verı´ssimo, A., Alencar, A., Nobre, C., Lima, E., Lefebvre, P., Schlesinger, P., Potter, C., Moutinho, P., Mendoza, E. et al. (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature, 398, 505–508.

    Article  CAS  Google Scholar 

  • Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P., and Cardinot, G. (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology, 88, 2259–2269.

    Article  Google Scholar 

  • Nobre, C. A., Sellers, P., and Shukla, J. (1991) Amazonian deforestation and regional climate change. J. Climate, 4, 411–413.

    Article  Google Scholar 

  • Page, S. E., Siegert, F., Rieley, J. O., Boehm, H-D. V., Adi, J., and Limin, S. (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420, 61–65.

    Article  CAS  Google Scholar 

  • Page, S., Hoscilo, A., Langer, A., Tansey, K., Siegert, F., Limin, S., and Rieley, J. (2009) Tropical peatland fires in Southeast Asia. In: M. A. Cochrane (Ed.), Tropical Fire Ecology: Climate Change, Land Use and Ecosystem Dynamics, pp. 263–287. Springer/Praxis, Heidelberg, Germany/Chichester, U.K.

    Google Scholar 

  • Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nunez, P. V., Vasquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S. et al. (1998) Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science, 282, 439–442.

    Article  CAS  Google Scholar 

  • Pinard, M. A. and Huffman, J. (1997) Fire resistance and bark properties of trees in a seasonally dry forest in eastern Bolivia. J. Tropical Ecology, 13, 727–740.

    Article  Google Scholar 

  • Pyne, S. J. (1997) World Fire: The Culture of Fire on Earth. University of Washington Press, Seattle, WA (384 pp.).

    Google Scholar 

  • Quintere, J. G. (1993) Canadian mass fire experiment, 1989. J. Fire Protection Engineering, 5, 67–78.

    Article  Google Scholar 

  • Raich, J. W., Russell, A. E., Kitayama, K., Parton, W. J., and Vitousek, P. M. (2006) Temperature influences on carbon accumulation in moist tropical forests. Ecology, 87, 76–87.

    Article  Google Scholar 

  • Rosenfeld, D. (1999)TRMMobserved first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108.

    Google Scholar 

  • Salati, E. and Vose, P. B. (1984) Amazon basin: A system in equilibrium. Science, 225, 129–138.

    Google Scholar 

  • Salazar, L. F., Nobre, C. A., and Oyama, M. D. (2007) Climate change consequences on the biome distribution in tropical South America. Geophys. Res. Lett., 34, L09708, doi: 10.1029/2007/GL029695.

    Article  Google Scholar 

  • Sanford, R. L., Saldarriaga, J., Clark, K., Uhl, C., and Herrera, R. (1985) Amazon rainforest fires. Science, 227, 53–55.

    Article  Google Scholar 

  • Siegert, F. and Ruecker, G. (2000) Use of multitemporal ERS-2 SAR images for identification of burned scars in South East Asian tropical rainforest. Int. J. Remote Sensing, 21, 831–837.

    Article  Google Scholar 

  • Siegert, F., Ruecker, G., Hinrichs, A., and Hoffman, A. A. (2001) Increased damage from fires in logged forests during droughts caused by El Nin˜ o. Nature, 414, 437–440.

    Article  CAS  Google Scholar 

  • Silva Dias, P. L. and Regnier, P. (1996) Simulation of mesoscale circulations in a deforested area of Rondoˆ nia in the dry season. In: J. Gash, C. Nobre, J. Roberts, and R. Victoria (Eds), Amazonian Deforestation and Climate, pp. 531–547. John Wiley & Sons, San Francisco. Sist, P. and Nguyen-The´, N. (2002) Logging damage and the subsequent dynamics of a

    Google Scholar 

  • Sist, P. and Nguyen-The´, N. (2002) Logging damage and the subsequent dynamics of a dipterocarp forest in East Kalimantan. For. Ecol. Mgmt., 165, 85–103.

    Google Scholar 

  • Souza, C. and Barreto, P. (2000) An alternative approach for detecting and monitoring selectively logged forests in the Amazon. Int. J. Remote Sensing, 21, 173–179.

    Article  Google Scholar 

  • Stott, P. (2000) Combustion in tropical biomass fires: A critical review. Progress in Physical Geography, 24, 355–377.

    Google Scholar 

  • Sud, Y., Yang, R., and Walker, G. (1996) Impact of in situ deforestation in Amazonia on the regional climate: General circulation model simulation study. J. Geophys. Res., 101, 7095–7109.

    Article  Google Scholar 

  • Swaine, M. D. (1992) Characteristics of dry forest in West Africa and the influence of fire. J. Veg. Science, 3, 365–374.

    Article  Google Scholar 

  • Tacconi, L. (2003) Fires in Indonesia: Causes, Costs and Policy Implications (CIFOR Occasional Paper No. 38). CIFOR (Center for International Forestry Research), Bogor, Indonesia. 24 pp.

    Google Scholar 

  • Tate, G. H. H. (1932) Life zones at Mount Roraima. Ecology, 13, 235–257.

    Google Scholar 

  • Toniolo, A. and Uhl, C. (1995) Economic and ecological perspectives on agriculture in the eastern Amazon. World Development, 23, 959–973.

    Article  Google Scholar 

  • Tutin, C. E. G., White, L. J. T., and Mackangamissandzou, A. (1996) Lightning strike burns large forest tree in the Lope´ Reserve, Gabon. Global Ecology and Biogeography Letters, 5, 36–41.

    Article  Google Scholar 

  • Uhl, C. and Buschbacher, R. (1985) A disturbing synergism between cattle ranch burning practices and selective tree harvesting in the eastern Amazon. Biotropica, 17, 265–268.

    Article  Google Scholar 

  • Uhl, C. and Kauffman, J. B. (1990) Deforestation, fire susceptibility, and potential tree responses to fire in the eastern Amazon. Ecology, 71, 437–449.

    Article  Google Scholar 

  • Uhl, C., Kauffman, J. B., and Cummings, D. L. (1988) Fire in the Venezuelan Amazon, 2: Environmental conditions necessary for forest fires in the evergreen rainforest of Venezuela. Oikos, 53, 176–184.

    Article  Google Scholar 

  • Uhl, C., Barreto, P., Verı´ssimo, A., Vidal, E., Amaral, P., Barros, A. C., Souza, C., Johns, J., and Gerwing, J. (1997) Natural resource management in the Brazilian Amazon. Bioscience, 47, 160–168.

    Article  Google Scholar 

  • UNEP (2002) Spreading Like Wildfire: Tropical Forest Fires in Latin America and the Caribbean: Prevention, Assessment and Early Warning (edited by M. A. Cochrane). United Nations Environment Program, Mexico City, Mexico. Available at http://www.rolac.unep.mx/dewalac/eng/fire_ingles.pdf

  • Van Nieuwstadt, M. G. L., Sheil, D., and Kartawinata, K. (2001) The ecological consequences of logging in the burned forests of East Kalimantan, Indonesia. Conserv. Biol., 15, 1183–1186.

    Google Scholar 

  • Vayda, A. P. (1999) Finding Causes of the 1997–1998 Indonesian Forest Fires: Problems and Possibilities. World Wide Fund for Nature (WWF), Jakarta, Indonesia.

    Google Scholar 

  • Verı´ssimo, A., Barreto, P., Tarifa, R., and Uhl, C. (1995) Extraction of a high-value natural source from the Amazon: The case of mahogany. For. Ecol. Mgmt., 72, 39–60.

    Article  Google Scholar 

  • Verı´ssimo, A., Cochrane, M. A., Souza Jr., C., and Salomo, R. (2002) Priority areas for establishing national forests in the Brazilian Amazon. Conservation Ecology, 6, 4. Available at http://www.consecol.org/vol6/iss1/art4

  • Walker, G., Sud, Y., and Atlas, R. (1995) Impact of ongoing Amazonian deforestation on local precipitation: A GCM simulation study. Bull. Amer. Meteorol. Society, 76, 346–361.

    Article  Google Scholar 

  • Woods, P. (1989) Effects of logging, drought, and fire on structure and composition of tropical forests in Sabah, Malaysia. Biotropica, 21, 290–298.

    Article  Google Scholar 

  • Wrangham, R. (2009) Catching Fire. Basic Books. New York (309 pp.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Cochrane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Cochrane, M.A. (2011). The past, present, and future importance of fire in tropical rainforests. In: Bush, M., Flenley, J., Gosling, W. (eds) Tropical Rainforest Responses to Climatic Change. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05383-2_7

Download citation

Publish with us

Policies and ethics