Skip to main content

Biochemical Markers of Bone Turnover

  • Chapter
  • First Online:
Bone Toxicology

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

The use of clinically relevant biomarkers provides an important noninvasive, sensitive, rapid, and real-time tool to monitor bone activity at the whole skeleton level and to investigate potential mechanisms. The goal of this chapter is to describe the biochemical markers of bone turnover, consisting of markers of bone formation and bone resorption, considered important when conducting safety assessments in a preclinical setting. The bone formation markers used are osteocalcin, bone alkaline phosphatase, and procollagen type I propeptides, and the bone resorption markers are tartrate-resistant acid phosphatase, deoxypyridinoline, N-telopeptides, and C-telopeptides. Markers can be included in any study type and are available for most animal species routinely used for safety assessments. Changes in bone markers signal perturbations in bone and as such are useful as a screening tool in early drug development or to monitor temporal changes in a chronic setting. When combined with additional (in vivo) end-points such as calcium and phosphorus measures, analysis of the calciotropic hormones , fibroblast growth factor 23, insulin-like growth factor-1, and bone densitometry, they provide important mechanistic information to further characterize the effects of a compound on the skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aliberti G, Pulignano I, Proietta M, Tritapepe L, Cigognetti L, Menichetti A, Russo A, de Michele LV, Corvisieri P, Minisola S. Osteocalcin metabolism in the pulmonary circulation. Clin Physiol. 2000;20(2):122–5.

    Article  CAS  PubMed  Google Scholar 

  • Booth SL, Rajabi A. Determinants of vitamin K status in humans. Vitam Horm. 2008;78:1–22.

    Article  CAS  PubMed  Google Scholar 

  • Boskey AL, Robey PG. The regulatory role of matrix proteins in mineralization of bone. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. New York: Elsevier; 2013. p. 235–58.

    Chapter  Google Scholar 

  • Brehme CS, Roman S, Shaffer J, Wolfert R. Tartrate-resistant acid phosphatase forms complexes with α2-macroglobulin in serum. J Bone Miner Res. 1999;14(2):311–8.

    Article  CAS  PubMed  Google Scholar 

  • Brown JP, Delmas PD, Malaval L, Edouard C, Chapuy MC, Meunier PJ. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet. 1984;1:1091–3.

    Article  CAS  PubMed  Google Scholar 

  • Brown JP, Delmas PD, Arlot M, Meunier PJ. Active bone turnover of the cortico-endosteal envelope in postmenopausal osteoporosis. J Clin Endocrinol Metab. 1987;64:954–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Satterwhite JH, Licata AA, Lewiecki EM, Sipos AA, Misurski DM, Wagman RB. Early changes in biochemical markers of bone formation predict BMD response to teriparatide in postmenopausal women with osteoporosis. J Bone Miner Res. 2005;20(6):962–70.

    Article  CAS  PubMed  Google Scholar 

  • Chenu C, Colucci S, Grano M, Zigrino P, Barattolo R, Zambonin G, Baldini N, Vergnaud P, Delmas PD, Zallone AZ. Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J Cell Biol. 1994;127(4):1149–58.

    Article  CAS  PubMed  Google Scholar 

  • Cloos PAC, Fledelius C. Collagen fragments in urine derived from bone resorption are highly racemized and isomerized: a biological clock of protein aging with clinical potential. Biochem J. 2000;345(3):473–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R. Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone. 2002;30(6):886–90.

    Article  CAS  PubMed  Google Scholar 

  • Colwell A, Eastell R. The renal clearance of free and conjugated pyridinium cross-links of collagen. J Bone Miner Res. 1996;11(12):1976–80.

    Article  CAS  PubMed  Google Scholar 

  • Courtland H-W, Elis S, Wu Y, Sun H, Rosen CJ, Jepsen KJ, Yakar S. Serum IGF-1 affects skeletal acquisition in a temporal and compartment-specific manner. PLoS One. 2011;6(3):e14762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle, N, S. Cotton, E. Lesage, A. Varela, S. Lavallee and S. Y. Smith. Pitfalls in biomarker analyses: lessons learnt using an ELISA assay to measure estradiol levels in ovariectomized female cynomolgus monkeys. Endocrine Society annual meeting (ENDO2016). Poster session: bench to bedside – female reproductive endocrinology and female reproductive tract. Endocr Rev. 2016;37(2):Abstract FRI 191.

    Google Scholar 

  • Eastell R, Delmas PD, Hodgson SF, Eriksen EF, Mann KG, Riggs BL. Bone formation rate in older normal women: concurrent assessment with bone histomorphometry, calcium kinetics, and biochemical markers. J Clin Endocrinol Metab. 1998;67:741–8.

    Article  Google Scholar 

  • Eisman JA, Bone HG, Hosking DJ, McClung MR, Reid IR, Rizzoli R, Resch H, Verbruggen N, Hustad CM, DaSilva C, Petrovic R, Santora AC, Ince BA, Lombardi A. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res. 2011;26(2):242–51.

    Article  CAS  PubMed  Google Scholar 

  • Farrugia W, Melick RA. Metabolism of osteocalcin. Calcif Tissue Int. 1986;39(4):234–8.

    Article  CAS  PubMed  Google Scholar 

  • Fedde KN, Blair L, Silverstein J, Coburn SP, Ryan LM, Weinstein RS, Waymire K, Narisawa S, Millán JL, Macgregor GR, Whyte MP. Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res. 1999;14(12):2015–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishman WH. Alkaline phosphatase isozymes: recent progress. Clin Biochem. 1990;23:99–104.

    Article  CAS  PubMed  Google Scholar 

  • Fox J, Miller MA, Newman MK, Metcalfe AF, Turner CH, Recker RR, Smith SY. Daily treatment of aged ovariectomized rats with human parathyroid hormone (1–84) for 12 months reverses bone loss and enhances trabecular and cortical bone strength. Calcif Tissue Int. 2006;79(4):262–72.

    Article  CAS  PubMed  Google Scholar 

  • Fraser WD. The collagen crosslinks pyridinoline and deoxypyridinoline: a review of their biochemistry, physiology, measurement, and clinical applications. J Clin Ligand Assay. 1998;21(2):102–10.

    Google Scholar 

  • Garnero P, Delmas PD. An immunoassay for type I collagen α1 helicoidal peptide 620–633, a new marker of bone resorption in osteoporosis. Bone. 2003;32(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  • Garnero P, Grimaux M, Seguin P, Delmas PD. Characterization of immunoreactive forms of human osteocalcin generated in vivo and in vitro. J Bone Miner Res. 1994;9:255–64.

    Article  CAS  PubMed  Google Scholar 

  • Garnero P, Gineyts E, Arbault P, Christiansen C, Delmas PD. Different effects of bisphosphonate and estrogen therapy on free and peptide-bound bone cross-links excretion. J Bone Miner Res. 1995;10(4):641–9.

    Article  CAS  PubMed  Google Scholar 

  • Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O, Qvist P, Delmas PD, Foged NT, Delaissé JM. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res. 2003;18(5):859–67.

    Article  CAS  PubMed  Google Scholar 

  • Glover SJ, Eastell R, McCloskey EV, Rogers A, Garnero P, Lowery J, Belleli R, Wright TM, John MR. Rapid and robust response of biochemical markers of bone formation to teriparatide therapy. Bone. 2009;45(6):1053–8.

    Article  CAS  PubMed  Google Scholar 

  • Govoni KE, Lee SK, Chung Y-S, Behringer RR, Wergedal JE, Baylink DJ, Mohan S. Disruption of insulin-like growth factor-I expression in type IIalphaI collagen-expressing cells reduces bone length and width in mice. Physiol Genomics. 2007;30:354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenspan SL, Dresner-Pollak R, Parker RA, London D, Ferguson L. Diurnal variation of bone mineral turnover in elderly men and women. Calcif Tissue Int. 1997;60(5):419–23.

    Article  CAS  PubMed  Google Scholar 

  • Gunson D, Gropp KE, Varela A. Bone and joints. In: Haschek WM, Rousseaux CG, Wallig MA, Bolon B, Ochoa R, editors. Haschek and Rousseaux’s handbook of toxicologic pathology, Systems Toxicologic Pathology, vol. III. 3rd ed. Cambridge: Elsevier; 2013. p. 2761–858.

    Chapter  Google Scholar 

  • Guntur AR, Rosen CJ. Review: IGF-1 regulation of key signaling pathways. BoneKEy Rep. 2013;2:437.

    Article  PubMed  PubMed Central  Google Scholar 

  • Halleen JM, Alatalo SL, Janckila AJ, Woitge HW, Seibel MJ, Väänänen HK. Serum tartrate-resistant acid phosphatase 5b is a specific and sensitive marker of bone resorption. Clin Chem. 2001;47(3):597–600.

    CAS  PubMed  Google Scholar 

  • Hannon R, Blumsohn A, Naylor K, Eastell R. Response of biochemical markers of bone turnover to hormone replacement therapy: impact of biological variability. J Bone Miner Res. 1998;13(7):1124–33.

    Article  CAS  PubMed  Google Scholar 

  • Hanson DA, Weis MAE, Bollen AM, Maslan SL, Singer FR, Eyre DR. A specific immunoassay for monitoring human bone resorption: quantitation of type I collagen cross-linked N-telopeptides in urine. J Bone Miner Res. 1992;7(11):1251–8.

    Article  CAS  PubMed  Google Scholar 

  • Hassager C, Fabbri-Mabelli G, Christiansen C. The effect of the menopause and hormone replacement therapy on serum carboxyterminal propeptide of type I collagen. Osteoporos Int. 1993;3(1):50–2.

    Article  CAS  PubMed  Google Scholar 

  • Hayman AR, Bune AJ, Bradley JR, Rashbass J, Cox TM. Osteoclastic tartrate-resistant acid phosphatase (Acp 5): its localization to dendritic cells and diverse murine tissues. J Histochem Cytochem. 2000;48(2):219–27.

    Article  CAS  PubMed  Google Scholar 

  • Henriksen DB, Alexandersen P, Bjarnason NH, Vilsbøll T, Hartmann B, Henriksen EEG, Byrjalsen I, Krarup T, Holst JJ, Christiansen C. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res. 2003;18(12):2180–9.

    Article  CAS  PubMed  Google Scholar 

  • Hessle L, Johnson AK, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millán JL. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci. 2002;99(14):9445–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino H, Takahashi M, Kushida K, Ohishi T, Inoue T. The relationships between the degree of β-isomerization of type I collagen degradation products in the urine and aging, menopause and osteoporosis with fractures. Osteoporos Int. 1999;9(5):405–9.

    Article  CAS  PubMed  Google Scholar 

  • Ivaska KK, Hentunen TA, Vääräniemi J, Ylipahkala H, Pettersson K, Väänänen HK. Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem. 2004;279:18361–9.

    Article  CAS  PubMed  Google Scholar 

  • Jolette J, Wilker CE, Smith SY, Doyle N, Hardisty JF, Metcalfe AJ, Marriott TB, Fox J, Wells DS. Defining a noncarcinogenic dose of recombinant human parathyroid hormone 1-84 in a 2-year study in Fischer 344 rats. Toxicol Pathol. 2006;34:929–40.

    Article  CAS  PubMed  Google Scholar 

  • Karsenty G. Convergence between bone and energy homeostases: review leptin regulation of bone mass. Cell Metab. 2006;4(5):341–8.

    Article  CAS  PubMed  Google Scholar 

  • Knapen MHJ, Hellemons-Boode BSP, Langenberg-Ledeboer M, Knottnerus JA, Hamulyák K, Price PA, Vermeer C. Effect of oral anticoagulant treatment on markers for calcium and bone metabolism. Haemostasis. 2000;30(6):290–7.

    CAS  PubMed  Google Scholar 

  • Kong QQ, Sun TW, Dou QY, Li F, Tang Q, Pei FX, Tu CQ, Chen ZQ. Beta-CTX and ICTP act as indicators of skeletal metastasis status in male patients with non-small cell lung cancer. Int J Biol Markers. 2007;22(3):214.

    Article  CAS  PubMed  Google Scholar 

  • Kostenuik PJ, Smith SY, Samadfam R, Jolette J, Zhou L, Ominsky MS. Effects of denosumab, alendronate, or denosumab following alendronate on bone turnover, calcium homeostasis, bone mass and bone strength in ovariectomized cynomolgus monkeys. J Bone Miner Res. 2015;30(4):657–69.

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Hoffman SJ, Samadfam R, Mansell P, Jolette J, Smith SY, Guldberg RE, Fitzpatrick LA. The effect of rosiglitazone on bone mass and fragility is reversible and can be attenuated with Alendronate. J Bone Miner Res. 2013;28(7):1653–65.

    Article  CAS  PubMed  Google Scholar 

  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lein M, Miller K, Wirth M, Weißbach L, May C, Schmidt K, Haus U, Schrader M, Jung K. Bone turnover markers as predictive tools for skeletal complications in men with metastatic prostate cancer treated with zoledronic acid. Prostate. 2009;69(6):624–32.

    Article  CAS  PubMed  Google Scholar 

  • Linder CH, Narisawa S, Millán JL, Magnusson P. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone. 2009;45:987–93.

    Article  PubMed Central  Google Scholar 

  • Linder CH, Englund UH, Narisawa S, Millán JL, Magnusson P. Isozyme profile and tissue-origin of alkaline phosphatases in mouse serum. Bone. 2013;53(2):399–408.

    Article  PubMed Central  Google Scholar 

  • Luchavova M, Zikan V, Michalska D, Raska I, Kubena AA, Stepan JJ. The effect of timing of teriparatide treatment on the circadian rhythm of bone turnover in postmenopausal osteoporosis. Eur J Endocrinol. 2011;164(4):643–8.

    Article  CAS  PubMed  Google Scholar 

  • Lynch CC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone. 2011;48(1):44–53.

    Article  CAS  PubMed  Google Scholar 

  • Maceira AM, Barba J, Varo N, Beloqui O, Díez J. Ultrasonic backscatter and serum marker of cardiac fibrosis in hypertensives. Hypertension. 2002;39(4):923–8.

    Article  CAS  PubMed  Google Scholar 

  • Magnusson P, Farley JR. Differences in sialic acid residues among bone alkaline phosphatase isoforms: a physical, biochemical, and immunological characterization. Calcif Tissue Int. 2002;71(6):508–18.

    Article  CAS  PubMed  Google Scholar 

  • Magnusson P, Larsson L, Magnusson M, Davie MWJ, Sharp CA. Isoforms of bone alkaline phosphatase: characterization and origin in human trabecular and cortical bone. J Bone Miner Res. 1999;14(11):1926–33.

    Article  CAS  PubMed  Google Scholar 

  • Magnusson P, Ärlestig L, Paus E, Di Mauro S, Testa MP, Stigbrand T, et al. “Monoclonal antibodies against tissue-nonspecific alkaline phosphatase.” Report of the ISOBM TD9 workshop. Tumour Biol. 2002a;23:228–48.

    Article  CAS  PubMed  Google Scholar 

  • Magnusson P, Sharp CA, Farley JR. Different distributions of human bone alkaline phosphatase isoforms in serum and bone tissue extracts. Clin Chim Acta. 2002b;325:59–70.

    Article  CAS  PubMed  Google Scholar 

  • Marini JC, Hopkins E, Glorieux FH, Chrousos GP, Reynolds JC, Gundberg CM, Reing CM. Positive linear growth and bone responses to growth hormone treatment in children with types III and IV osteogenesis imperfecta: high predictive value of the carboxyterminal propeptide of type I procollagen. J Bone Miner Res. 2003;18(2):237–43.

    Article  CAS  PubMed  Google Scholar 

  • Masarachia PJ, Pennypacker BL, Pickarski M, Scott KR, Wesolowski GA, Smith SY, Samadfam R, Goetzmann JE, Scott BB, Kimmel DB, Duong LT. Odanacatib reduces bone turnover and increases bone mass in the lumbar spine of skeletally mature ovariectomized rhesus monkeys. J Bone Miner Res. 2012;27(3):509–23.

    Article  CAS  PubMed  Google Scholar 

  • Melkko J, Hellevik T, Risteli L, Risteli J, Smedsrod B. Clearance of NH2-terminal propeptides of types I and III procollagen is a physiological function of the scavenger receptor in liver endothelial cells. J Exp Med. 1994;179(2):405–12.

    Article  CAS  PubMed  Google Scholar 

  • Melkko J, Kauppila S, Nlemi S, Rlsteli L, Haukipuro K, Jukkola A, Risteli J. Immunoassay for intact amino-terminal propeptide of human type I procollagen. Clin Chem. 1996;42(6 Suppl):947–54.

    CAS  PubMed  Google Scholar 

  • Mornet E, Stura E, Lia-Baldin AS, Stigbrand T, Menez A, Le DuH MH. Structural evidence for a functional role of human tissue non specific alkaline phosphatase in bone mineralization. J Biol Chem. 2001;276:31171–8.

    Article  CAS  PubMed  Google Scholar 

  • Nenonen A, Cheng S, Ivaska KK, Alatalo SL, Lehtimäki T, Schmidt-Gayk H, Uusi-Rasi K, Heinonen A, Kannus P, Sievänen H, Vuori I, Väänänen HK, Halleen JM. Serum TRACP 5b is a useful marker for monitoring Alendronate treatment: comparison with other markers of bone turnover. J Bone Miner Res. 2005;20(10):1804–12.

    Article  CAS  PubMed  Google Scholar 

  • Nyman JS, Roy A, Acuna RL, Gayle HJ, Reyes MJ, Tyler JH, Dean DD, Wang X. Age-related effect on the concentration of collagen crosslinks in human osteonal and interstitial bone tissue. Bone. 2006;39(6):1210–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oddie GW, Schenk G, Angel NZ, Walsh N, Guddat LW, de Jersey J, Cassady AI, Hamilton SE, Hume DA. Structure, function, and regulation of tartrate-resistant acid phosphatase. Bone. 2000;27(5):575–84.

    Article  CAS  PubMed  Google Scholar 

  • Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, Gong J, Gao Y, Cao J, Graham K, Tipton B, Cai J, Deshpande R, Zhou L, Hale MD, Lightwood DJ, Henry AJ, Popplewell AG, Moore AR, Robinson MK, Lacey DL, Simonet WS, Paszty C. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res. 2010;25(5):948–59.

    Article  CAS  PubMed  Google Scholar 

  • Ominsky MS, Stouch B, Schroeder J, Pyrah I, Stolina M, Smith SY, Kostenuik PJ. Denosumab, a fully human RANKL antibody, reduced bone turnover markers and increased trabecular and cortical bone mass, density, and strength in ovariectomized cynomolgus monkeys. Bone. 2011;49(2):162–73.

    Article  CAS  PubMed  Google Scholar 

  • Ominsky MS, Boyd SK, Varela A, Jolette J, Felx M, Doyle N, Mellal N, Smith SY, Locher K, Buntich S, Pyrah I, Boyce RW. Romosozumab improves bone mass and strength while maintaining bone quality in ovariectomized cynomolgus monkeys. J Bone Miner Res. 2017;32:1–14.

    Article  Google Scholar 

  • Penido MG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol. 2012;27:2039–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peris P, Alvarez L, Monegal A, GuaÑabens N, DurÁn M, Pons F, Martínez de Osaba MJ, Echevarría M, Ballesta AM, Muñoz-Gómez J. Biochemical markers of bone turnover after surgical menopause and hormone replacement therapy. Bone. 1999;25(3):349–53.

    Article  CAS  PubMed  Google Scholar 

  • Price PA, Williamson MK, Lothringer JW. Origin of a vitamin K-dependent bone protein found in plasma and its clearance by kidney and bone. J Biol Chem. 1981;256:12760–6.

    CAS  PubMed  Google Scholar 

  • Querejeta R, López B, González A, Sánchez E, Larman M, Martínez Ubago JL, Díez J. Increased collagen type I synthesis in patients with heart failure of hypertensive origin. Relat Myocardial Fibros. 2004;110(10):1263–8.

    CAS  Google Scholar 

  • Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone. 2002;31(1):57–61.

    Article  CAS  PubMed  Google Scholar 

  • Rosalki SB. Bone-origin alkaline phosphatase in plasma by wheat-germ lectin methods in bone disease. Clin Chim Acta. 1994;226(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  • Rowe PS. A unified model for bone-renal mineral and energy metabolism. Curr Opin Pharmacol. 2015;22:64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito M, Grynpas MD, Burr DB, Allen MR, Smith SY, Doyle N, Amizuka N, Hasegawa T, Kida Y, Marumo K, Saito H. Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone. Bone. 2015;73:8–15.

    Article  CAS  PubMed  Google Scholar 

  • Samadfam R, Xia Q, Goltzman D. Pretreatment with anticatabolic agents blunts but does not eliminate the skeletal anabolic response to parathyroid hormone in oophorectomized mice. Endocrinology. 2007;148(6):2778–87.

    Article  CAS  PubMed  Google Scholar 

  • Samadfam R, Xia Q, Miao D, Hendy GN, Goltzman D. Exogenous PTH and endogenous 1,25-Dihydroxyvitamin D are complementary in inducing an anabolic effect on bone. J Bone Miner Res. 2008;23:1257–66.

    Article  CAS  PubMed  Google Scholar 

  • Samadfam R, Awori M, Bénardeau A, Bauss F, Sebokova E, Wright M, Smith SY. Combination treatment with pioglitazone and fenofibrate attenuates pioglitazone-mediated acceleration of bone loss in ovariectomized rats. J Endocrinol. 2012;212(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  • Samadfam R, Doyle N, Kissner T, Krupp E, Smith SY. Anti-diabetes drug class of SGLT1 inhibitors increases bone mass in young and adult female Sprague-Dawley rats by decreasing bone turnover. Can J Diabetes. 2013;37:S6–S11.

    Article  Google Scholar 

  • Sassi ML, Eriksen H, Risteli L, Niemi S, Mansell J, Gowen M, Risteli J. Immunochemical characterization of assay for carboxyterminal telopeptide of human type I collagen: loss of antigenicity by treatment with cathepsin K. Bone. 2000;26(4):367–73.

    Article  CAS  PubMed  Google Scholar 

  • Schett G, Bozec A. Removing the bone brake. Cell Metab. 2014;20:394–5.

    Article  CAS  PubMed  Google Scholar 

  • Sharma U, Pal D, Prasad R. Alkaline phosphatase: an overview. Indian J Clin Biochem. 2014;29(3):269–78.

    Article  CAS  PubMed  Google Scholar 

  • Smedsrød B, Melkko J, Risteli L, Risteli J. Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J. 1990;271(2):345–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith SY, Recker RR, Hannan M, Muller R, Bauss F. Intermittent intravenous administration of the bisphosphonate ibandronate prevents bone loss and maintains bone strength and quality in ovariectomized cynomolgus monkeys. Bone. 2003;32:45–55.

    Article  CAS  PubMed  Google Scholar 

  • Smith SY, Samadfam R, Chouinard L, Awori M, Bénardeau A, Bauss F, Guldberg RE, Sebokova E. Effects of pioglitazone and fenofibrate co-administration on bone biomechanics and histomorphometry in ovariectomized rat. J Bone Miner Metab. 2015;33(6):625–41.

    Article  CAS  PubMed  Google Scholar 

  • Szulc P, Bauer DC. Biochemical markers of bone turnover. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. New York: Elsevier; 2013. p. 1573–610.

    Chapter  Google Scholar 

  • Szulc P, Seeman E, Delmas PD. Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int. 2000;11(4):281–94.

    Article  CAS  PubMed  Google Scholar 

  • Tähtelä R, Seppänen J, Laitinen K, Katajamäki A, Risteli J, Välimäki MJ. Serum tartrate-resistant acid phosphatase 5b in monitoring bisphosphonate treatment with clodronate: a comparison with urinary N-terminal telopeptide of type I collagen and serum type I procollagen amino-terminal propeptide. Osteoporos Int. 2005;16(9):1109–16.

    Article  PubMed  Google Scholar 

  • Takeda S, Smith SY, Tamura T, Saito H, Takahashi F, Samadfam R, Haile S, Doyle N, Endo K. Long-term treatment with Eldecalcitol (1a, 25-Dihydroxy-2b- (3-hydroxypropyloxy) vitamin D3) suppresses bone turnover and leads to prevention of bone loss and bone fragility in ovariectomized rats. Calcif Tissue Int. 2015;96(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  • Tapanainen P, Knip M, Risteli L, Kemppainen L, Kaar M, Risteli J. Collagen metabolites in the prediction of response to GH therapy in short children. Eur J Endocrinol. 1997;137(6):621–5.

    Article  CAS  PubMed  Google Scholar 

  • TRAP5b Technical Bulletin. http://www.tecomedical.com/en/laboratory-ivd-kits-reagents/bone-and-cartilage-parameters/bone-metabolism/TRAP5b-Human-Quidel. (n.d.).

  • Tsujimoto M, Chen P, Miyauchi A, Sowa H, Krege JH. PINP as an aid for monitoring patients treated with teriparatide. Bone. 2011;48(4):798–803.

    Article  CAS  PubMed  Google Scholar 

  • Varela A, Chouinard L, Lesage E, Smith SY, Hattersley G. One year of abaloparatide, a selective activator of the PTH1 receptor, increased bone formation and bone mass in osteopenic ovariectomized rats without increasing bone resorption. J Bone Miner Res. 2017;32(1):24–33.

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Dutchak PA, Wang X, Wang X, Ding X, Wang X, Bookout AL, Goetz R, Mohammadi M, Gerard RD, Dechow PC, Mangelsdorf DJ, Kliewer SA, Wan Y. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc Natl Acad Sci U S A. 2012;109(8):3143–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wennberg C, Hessle L, Lundberg P, Mauro S, Narisawa S, Lerner UH, Millán JL. Functional characterization of osteoblasts and osteoclasts from alkaline phosphatase knockout mice. J Bone Miner Res. 2000;15(10):1879–88.

    Article  CAS  PubMed  Google Scholar 

  • Whyte MP, Landt M, Ryan LM, Mulivor RA, Henthorn PS, Fedde KN, Mahuren JD, Coburn SP. Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 50-phosphate substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Investig. 1995;95:1440–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wuthier RE, Register T. Role of alkaline phosphatase, a polyfunctional enzyme, in mineralizing tissues. In: Butler WT, editor. Chemistry and biology of mineralized tissues. Birmingham: EBSCO Media; 1995. p. 113–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Y. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Smith, S.Y., Samadfam, R. (2017). Biochemical Markers of Bone Turnover. In: Smith, S., Varela, A., Samadfam, R. (eds) Bone Toxicology. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-56192-9_5

Download citation

Publish with us

Policies and ethics