Skip to main content

Vision Restoration with Implants

  • Chapter
  • First Online:
Mobility of Visually Impaired People

Abstract

Up until now there has been no available treatment for diseases causing the permanent impairment of retinal photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Br J Ophthalmol 96:614–618

    Article  Google Scholar 

  2. Schulze Schwering M (2007) Global blindness. Ophthalmologe 104:845–848

    Article  Google Scholar 

  3. Stevens GA, White RA, Flaxman SR, Price H, Jonas JB, Keeffe J, Leasher J, Naidoo K, Pesudovs K, Resnikoff S, Taylor H, Bourne RRA, on behalf of the Vision Loss Expert Group (2013) Global prevalence of vision impairment and blindness. Magnitude and temporal trends, 1990e2010. Ophthalmology 120:2377–2384

    Google Scholar 

  4. Lewis PM, Lauren NA, Robyn H (2016) Advances in implantable bionic devices for blindness: a review. ANZ J Surg 86:654–659

    Article  Google Scholar 

  5. Nayar A (2010) World gets 2020 vision for conservation. Nature 468:14

    Article  Google Scholar 

  6. Németh J, Süveges I (2001) Vision 2020-Worldwide program for the elimination of avoidable blindness. Szemészet 138:115–117

    Google Scholar 

  7. Gehrs KM, Anderson DH, Johnson LV et al (2006) Age-related macular degeneration–emerging pathogenetic and therapeutic concepts. Ann Med 38:450–471

    Article  Google Scholar 

  8. Tassicker GE (1956) Preliminary report on a retinal stimulator. Br J Physiol Opt 13:102–105

    Google Scholar 

  9. Normann RA, Greger B, House P et al (2009) Toward the development of a cortically based visual neuroprosthesis. J Neural Eng 6:035001

    Article  Google Scholar 

  10. Bhandari R, Negi S, Rieth L et al (2008) A novel method of fabricating convoluted shaped electrode arrays for neural and retinal prostheses. Sens Actuators, A Phys 145–146:123–130

    Article  Google Scholar 

  11. Warren DJ, Normann RA (2005) Functional reorganization of primary visual cortex induced by electrical stimulation in the cat. Vision Res 45:551–565

    Article  Google Scholar 

  12. Mahowald MA, Mead C (1991) The silicon retina. Sci Am 264:76–82

    Article  Google Scholar 

  13. Werblin F, Roska T, Chua LO (1995) The analogic cellular neural network as a bionic eye. Int J Circ Theor Appl 23:541–69

    Google Scholar 

  14. Humayun MS, Juan De, Jr E, Dagnelie G et al (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114:40–46

    Article  Google Scholar 

  15. Roska B, Werblin F (2001) Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410:583–587

    Article  Google Scholar 

  16. Balya D, Roska B, Roska T, Werblin F (2002) A CNN framework for modeling parallel processing in a mammalian retina. Int J Circ Theor Appl 30:363–93

    Google Scholar 

  17. Chen J, Shah HA, Herbert C et al (2009) Extraction of a chronically implanted, microfabricated, subretinal electrode array. Ophthalmic Res 42:128–137

    Article  Google Scholar 

  18. Gekeler F, Kopp A, Sachs H et al (2010) Visualisation of active subretinal implants with external connections by high-resolution CT. Br J Ophthalmol 94:843–847

    Article  Google Scholar 

  19. Li L, Cao P, Sun M et al (2009) Intraorbital optic nerve stimulation with penetrating electrodes: in vivo electrophysiology study in rabbits. Graefes Arch Clin Exp Ophthalmol 247:349–361

    Article  Google Scholar 

  20. Pezaris JS, Reid RC (2007) Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc Natl Acad Sci USA 104:7670–7675

    Google Scholar 

  21. Pezaris JS, Reid RC (2009) Simulations of electrode placement for a thalamic visual prosthesis. IEEE Trans Biomed Eng 56:172–178

    Article  Google Scholar 

  22. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    Article  Google Scholar 

  23. Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576

    Article  Google Scholar 

  24. Lewis PM, Ackland HM, Lowery AJ (2015) Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Res 1595:51–73

    Article  Google Scholar 

  25. Dobelle WH, Mladejovsky MG, Evans JR et al (1976) “Braille” reading by a blind volunteer by visual cortex stimulation. Nature 259:111–112

    Article  Google Scholar 

  26. Humayun M, de Juan E, Jr Dagnelie G (2016) The bionic eye: a quarter century of retinal prosthesis research and development. Ophthalmology 123:S89–S97

    Article  Google Scholar 

  27. Kusnyerik A, Greppmaier U, Wilke R (2012) Positioning of electronic subretinal implants in blind retinitis pigmentosa patients through multimodal assessment of retinal structures. Invest Ophthalmol Vis Sci 53:3748–3755

    Article  Google Scholar 

  28. Kahán Á, Sipos M (1951) Die Feinstruktur der Maculagegend im Lichte der Funktionsprüfung von zentralen Tapetoretinal-Degenerationsfällen. Albrecht v Graefes Arch Ophthal 151:476–499

    Article  Google Scholar 

  29. Francois J (1977) A diffúz chorioretális heredodystrophiák, vagy perifériás tapetoretinalis dystrophiák osztályozása. Újabb eredmények a szemészetben 1977; Országos Szemészeti Intézet 2:7–13

    Google Scholar 

  30. Sahel J, Bonnel S, Mrejen S, Paques M (2010) Retinitis pigmentosa and other dystrophies. Dev Ophthalmol 47:160–167

    Article  Google Scholar 

  31. Janáky M (1989) Combined electroretinography and visual evoked potential for the differential diagnosis of retinitis pigmentosa. Szemészet 126:203–208

    Google Scholar 

  32. Stingl K, Zrenner E (2013) Electronic approaches to restitute vision in patients with neurodegenerative diseases of the retina. Ophthalmic Res 50:215–220

    Google Scholar 

  33. Tsai D, Morley JW, Suaning GJ, Lovell NH (2009) Direct activation of retinal ganglion cells with subretinal stimulation. In: Proceedings of IEEE engineering in medicine and biology society, pp 618–621

    Google Scholar 

  34. Shivdasani MN, Luu CD, Cicione R et al (2010) Evaluation of stimulus parameters and electrode geometry for an effective suprachoroidal retinal prosthesis. J Neural Eng 7:036008

    Article  Google Scholar 

  35. Chai X, Li L, Wu K et al (2008) C-sight visual prostheses for the blind. IEEE Eng Med Biol Mag 27:20–28

    Article  Google Scholar 

  36. Cai C, Li L, Li X et al (2009) Response properties of electrically evoked potential elicited by multi-channel penetrative optic nerve stimulation in rabbits. Doc Ophthalmol 118:191–204

    Article  Google Scholar 

  37. Shire DB, Kelly SK, Chen J et al (2009) Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans Biomed Eng 56:2502–2511

    Article  Google Scholar 

  38. Rizzo JF 3rd1, Shire DB, Kelly SK, Troyk P et al (2011) Development of the boston retinal prosthesis. In: Conference proceedings of IEEE engineering in medicine and biology society, 3135–3138.

    Google Scholar 

  39. Kelly SK, Shire DB, Chen J et al (2009) Realization of a 15-channel, hermetically-encased wireless subretinal prosthesis for the blind. In: Proceedings of IEEE engineering in medicine and biology society, pp 200–203

    Google Scholar 

  40. Palanker D, Vankov A, Huie P, Baccus S (2005) Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2:S105–S120

    Article  Google Scholar 

  41. Lorach H, Goetz G, Smith R (2015) Photovoltaic restoration of sight with high visual acuity. Nature Med 21:476–482

    Google Scholar 

  42. Butterwick A, Huie P, Jones BW et al (2009) Effect of shape and coating of a subretinal prosthesis on its integration with the retina. Exp Eye Res 88:22–29

    Article  Google Scholar 

  43. Lee SW, Seo JM, Ha S et al (2009) Development of microelectrode arrays for artificial retinal implants using liquid crystal polymers. Invest Ophthalmol Vis Sci 50:5859–5866

    Article  Google Scholar 

  44. Ryu SB, Ye JH, Lee JS et al (2009) Characterization of retinal ganglion cell activities evoked by temporally patterned electrical stimulation for the development of stimulus encoding strategies for retinal implants. Brain Res 1275:33–42

    Article  Google Scholar 

  45. Nakauchi K, Fujikado T, Kanda H et al (2005) Transretinal electrical stimulation by an intrascleral multichannel electrode array in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 243:169–174

    Article  Google Scholar 

  46. Nishida K, Kamei M, Kondo M et al (2010) Efficacy of suprachoroidal-transretinal stimulation in a rabbit model of retinal degeneration. Invest Ophthalmol Vis Sci 51:2263–2268

    Google Scholar 

  47. Lin TC, Chang HM, Hsu CC (2015) Retinal prostheses in degenerative retinal diseases. J Chin Med Assoc 78:501–505

    Article  Google Scholar 

  48. Fujikado T, Kamei M, Sakaguchi H (2016) One-year outcome of 49-channel suprachoroidal-transretinal stimulation prosthesis in patients with advanced retinitis pigmentosa. Invest Ophthalmol Vis Sci 57:6147–6157

    Article  Google Scholar 

  49. Fujikado T et al (2011) Testing of semichronically implanted retinal prosthesis by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 52:4726–4733

    Google Scholar 

  50. Ahuja AK, Dorn JD, Caspi A et al (2010) Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol 95:539–543

    Article  Google Scholar 

  51. Humayun MS, Dorn JD, Ahuja AK et al (2009) Preliminary 6 month results from the Argus II epiretinal prosthesis feasibility study. In: Proceedings of IEEE engineering in medicine and biology society, pp 4566–4568

    Google Scholar 

  52. Roessler G, Laube T, Brockmann C et al (2009) Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci 50:3003–3008

    Article  Google Scholar 

  53. Kelly SH, Shire D, Chen J et al (2011) A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans Biomed Eng 11:3197–3205

    Google Scholar 

  54. Klauke S, Goertz M, Rein S et al (2010) Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans: results from stimulation tests during the EPIRET3 prospective clinical trial. Invest Ophthalmol Vis Sci 52:449–455

    Article  Google Scholar 

  55. Kusnyerik Á, Resch M, Csákány B et al (2010) Ultrasound reproducibility measurements in defining the dimensions of the human eyeball’s equatorial and axial length. Szemészet 147:5–12

    Google Scholar 

  56. Zrenner E, Bartz-Schmidt KU, Benav H et al (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 1711:1489–1497

    Google Scholar 

  57. Stingl K, Bartz-Schmidt KU, Besch D et al (2013) Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc Biol Sci 280:1757

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janos Nemeth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kusnyerik, A., Resch, M., Kiss, H.J., Nemeth, J. (2018). Vision Restoration with Implants. In: Pissaloux, E., Velazquez, R. (eds) Mobility of Visually Impaired People. Springer, Cham. https://doi.org/10.1007/978-3-319-54446-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54446-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54444-1

  • Online ISBN: 978-3-319-54446-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics