Skip to main content

Advertisement

Log in

Response properties of electrically evoked potential elicited by multi-channel penetrative optic nerve stimulation in rabbits

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Visual prosthesis is a potential way to restore partial vision for the patients with degenerative retinal diseases such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Optic nerve stimulation with penetrating microelectrode array has been suggested as a possible method for visual prosthesis. The purpose of this study was to investigate the feasibility and basic response properties of cortical responses elicited by optic nerve stimulation with penetrating electrodes in rabbits. In this study, three triangularly or linearly configured platinum–iridium wire electrodes were inserted into the optic nerves of rabbits for electrical stimulation. The charge-balanced current pulses with amplitudes ranging from 10 to 100 μA at 0.5 ms pulse duration were used as the electrical stimuli. The electrically evoked potentials (EEPs) were recorded with a 16-channel silver-ball electrode array in the rabbit visual cortex. Our experimental results showed that the activities of visual cortex could be effectively evoked by the optic nerve stimulation with penetrating electrodes. The threshold of current and charge density to elicit EEPs under optic nerve stimulation at 0.5 ms pulse duration was 20.3 ± 7.5 μA and 37.8 ± 13.9 μC/cm2, respectively. Current stimuli with cathode-first pulses elicited larger cortical responses than that with anode-first pulses. The amplitude of P1 and extent of EEPs increased as the stimulating current amplitude increased, while the latency of P1 decreased. The spatial distributions of multi-channel EEPs in visual cortex demonstrated distinctively different properties under stimulation with different orientations of the stimulating electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zrenner E (2002) Will retinal implants restore vision. Science 295:1022–1025

    Article  PubMed  CAS  Google Scholar 

  2. Humayun MS, Weiland JD, Fujii GY, Greenberg R, Williamson R, Little J, Mech B, Cimmarusti V, Van Boemel G, Dagnelie G, de Juan E (2003) Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Res 43:2573–2581

    Article  PubMed  Google Scholar 

  3. Rizzo JF, Wyatt J (1997) Prospects for a visual prosthesis. Neuroscientist 3:251–262

    Article  Google Scholar 

  4. Eckmiller R (1997) Learning retina implants with epiretinal contacts. Ophthalmic Res 29:281–289

    PubMed  CAS  Google Scholar 

  5. Liu W, Vichienchom K, Clements M, De Marco SC, Hughes C, McGucken E, Humayun MS, De Juan E, Weiland JD, Greenberg R (2000) A neuro-stimulus chip with telemetry unit for retinal prosthesis device. IEEE J Solid-State Cir 35:1487–1497

    Article  Google Scholar 

  6. Chow AY, Chow VY (1997) Subretinal electrical stimulation of the rabbit retina. Neurosci Lett 225:13–16

    Article  PubMed  CAS  Google Scholar 

  7. Fang X, Sakaguchi H, Fujikado T, Osanai M, Kanda H, Ikuno Y, Kamei M, Ohji M, Gan D, Choi J, Yagi T, Tano Y (2005) Direct stimulation of optic nerve by electrodes implanted in optic disc of rabbit eyes. Graefes Arch Clin Exp Ophthalmol 243:49–56

    Article  PubMed  Google Scholar 

  8. Sakaguchi H, Fujikado T, Kanda H, Osanai M, Fang X, Nakauchi K, Ikuno Y, Kamei M, Ohji M, Yagi T, Tano Y (2004) Electrical stimulation with a needle-type electrode inserted into the optic nerve in rabbit eyes. Jpn J Ophthalmol 48:552–557

    Article  PubMed  Google Scholar 

  9. Chowdhury V, Morley JW, Coroneo MT (2005) Feasibility of extraocular stimulation for a retinal prosthesis. Can J Ophthalmol 40:563–572

    PubMed  Google Scholar 

  10. Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque M (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813:181–186

    Article  PubMed  CAS  Google Scholar 

  11. Li L, Hayashida Y, Yagi T (2005) Temporal properties of retinal ganglion cell responses to local transretinal current stimuli in the frog retina. Vision Res 45:263–273

    Article  PubMed  Google Scholar 

  12. Brindley GS, Lewin WS (1968) The sensations produced by electrical stimulation of the visual cortex. J Physiol 196:479–493

    PubMed  CAS  Google Scholar 

  13. Dobelle WH, Mladejovsky MG (1974) Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind. J Physiol 243:553–576

    PubMed  CAS  Google Scholar 

  14. Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119:507–522

    Article  PubMed  Google Scholar 

  15. Normann RA, Maynard EM, Guillory KS, Warren DJ (1996) Cortical implants for the blind. IEEE Spectr 33:54–59

    Article  Google Scholar 

  16. Humayun MS, Propst R, de Juan E Jr, McCormick K, Hickingbotham D (1994) Bipolar surface electrical stimulation of the vertebrate retina. Arch Ophthalmol 112:110–116

    PubMed  CAS  Google Scholar 

  17. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. Invest Ophthalmol Vis Sci 44:5355–5361

    Article  PubMed  Google Scholar 

  18. Rizzo JF, Wyatt J, Loewenstein J, Kelly S, Shire D (2003) Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci 44:5362–5369

    Article  PubMed  Google Scholar 

  19. Walter P, Szurman P, Vobig M, Berk H, Lüdtke-Handjery HC, Richter H, Mittermayer C, Heimann K, Sellhaus B (1999) Successful long-term implantation of electrically inactive epiretinal microelectrode arrays in rabbits. Retina 19:546–552

    Article  PubMed  CAS  Google Scholar 

  20. Walter P, Heimann K (2000) Evoked cortical potentials after electrical stimulation of the inner retina in rabbits. Graefes Arch Clin Exp Ophthalmol 238:315–318

    Article  PubMed  CAS  Google Scholar 

  21. Chow AY, Chow VY, Packo KH, Pollack JS, Peyman GA, Schuchard R (2004) The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol 122:460–469

    Article  PubMed  Google Scholar 

  22. Zrenner E, Miliczek KD, Gabel VP, Graf HG, Guenther E, Haemmerle H, Hoefflinger B, Kohler K, Nisch W, Schubert M, Stett A, Weiss S (1997) The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res 29:269–280

    Article  PubMed  CAS  Google Scholar 

  23. Zrenner E, Stett A, Weiss S, Aramant RB, Guenther E, Kohler K, Miliczek KD, Seiler MJ, Haemmerle H (1999) Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res 39:2555–2567

    Article  PubMed  CAS  Google Scholar 

  24. Zrenner E, Gekeler F, Gabel VP, Graf HG, Graf M, Guenther E, Haemmerle H, Hoefflinger B, Kobuch K, Kohler K, Nisch W, Sachs H, Schlosshauer B, Schubert M, Schwahn H, Stelzle M, Stett A, Troeger B, Weiss S (2001) Subretinal microphotodiode array as replacement for degenerated photoreceptors? Ophthalmologe 98:357–363

    Article  PubMed  CAS  Google Scholar 

  25. Stett A, Barth W, Weiss S, Haemmerle H, Zrenner E (2000) Electrical multisite stimulation of the isolated chicken retina. Vision Res 40:1785–1795

    Article  PubMed  CAS  Google Scholar 

  26. Fang X, Sakaguchi H, Fujikado T, Osanai M, Ikuno Y, Kamei M, Ohji M, Yagi T, Tano Y (2005) Electrophysiological and histological studies of chronically implanted intrapapillary microelectrodes in rabbit eyes. Graefes Arch Clin Exp Ophthalmol 244:364–375

    Article  PubMed  Google Scholar 

  27. Sakaguchi H, Fujikado T, Kanda H, Osanai M, Fang X, Nakauchi K, Ikuno Y, Kamei M, Ohji M, Yagi T, Tano Y (2004) Transretinal electrical stimulation with a suprachoroidal multichannel electrode in rabbit eyes. Jpn J Ophthalmol 48:256–261

    Article  PubMed  Google Scholar 

  28. Kanda H, Morimoto T, Fujikado T, Tano Y, Fukuda Y, Sawai H (2004) Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats. Invest Ophthalmol Vis Sci 45:560–566

    Article  PubMed  Google Scholar 

  29. Ohta J, Tokuda T, Kagawa K, Sugitani S, Taniyama M, Uehara A, Terasawa Y, Nakauchi K, Fujikado T, Tano Y (2007) Laboratory investigation of microelectronics-based stimulators for large-scale suprachoroidal transretinal stimulation (STS). J Neural Eng 4:85–91

    Article  Google Scholar 

  30. Chowdhury V, Morley JW, Coroneo MT (2005) Stimulation of the retina with a multielectrode extraocular visual prosthesis. ANZ J Surg 75:697–704

    Article  PubMed  Google Scholar 

  31. Chowdhury V, Morley JW, Coroneo MT (2005) Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex. J Clin Neurosci 12:574–579

    Article  PubMed  Google Scholar 

  32. Pezaris JS, Reid RC (2007) Demonstration of artificial visual percepts generated through thalamic microstimulation. PNAS 104:7670–7675

    Article  PubMed  CAS  Google Scholar 

  33. Delbeke J, Oozeer M, Veraart C (2003) Position, size and luminosity of phosphenes generated by direct optic nerve stimulation. Vision Res 43:1091–1102

    Article  PubMed  Google Scholar 

  34. Veraart C, Wanet-Defalque M, Gérard B, Vanlierde A, Delbeke J (2003) Pattern recognition with the optic nerve visual prosthesis. Artif Organs 27:996–1004

    Article  PubMed  Google Scholar 

  35. Ren Q, Chai X, Wu K, Zhou C, C-Sight Study Group (2007) Development of C-Sight visual prosthesis based on optical nerve stimulation with penetrating electrode array. Invest Ophthalmol Vis Sci 48 E-Abstract 661

  36. Choudhury BP (1987) Visual cortex in the albino rabbit. Exp Brain Res 66:565–571

    Article  PubMed  CAS  Google Scholar 

  37. Walter P, Kisvarday ZF, Gortz M, Alteheld N, Rossler G, Stieglitz T, Eysel UT (2005) Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 46:1780–1785

    Article  PubMed  Google Scholar 

  38. Chowdhury V, Morley JW, Coroneo MT (2004) An in-vivo paradigm for the evaluation of stimulating electrodes for use with a visual prosthesis. ANZ J Surg 74:372–378

    Article  PubMed  Google Scholar 

  39. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324:361–364

    Article  PubMed  CAS  Google Scholar 

  40. Schwahn HN, Gekeler F, Kohler K, Kobuch K, Sachs HG, Schulmeyer F, Jakob W, Gabel VP, Zrenner E (2001) Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit. Graefes Arch Clin Exp Ophthalmol 239:961–967

    Article  PubMed  CAS  Google Scholar 

  41. Wang K, Li X, Jiang Y, Dong J (2007) Influential factors of thresholds for electrically evoked potentials elicited by intraorbital electrical stimulation of the optic nerve in rabbit eyes. Vision Res 47:3012–3024

    Article  PubMed  Google Scholar 

  42. Banck JB (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440

    Article  Google Scholar 

  43. Rattay F, Resatz S (2004) Effective electrode configuration for selective stimulation with inner eye prostheses. IEEE Trans Biomed Eng 51(9):1659–1664

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Yuxiu Liu and Ting Liang for their contributions to the performance of animal surgery. This research is supported by the National Basic Research Program of China (973 Program, 2005CB724302), National Science Fund for Distinguished Young Scholars from the National Natural Science Foundation of China (60588101), Shanghai Pujiang Program (07PJ14050), The National Natural Science Foundation of China (60871091), National High Technology Research and Development Program of China (863 Program, 2006AA04Z356), Shanghai Commission of Science and Technology (064119540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiushi Ren.

Additional information

Changsi Cai and Liming Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, C., Li, L., Li, X. et al. Response properties of electrically evoked potential elicited by multi-channel penetrative optic nerve stimulation in rabbits. Doc Ophthalmol 118, 191–204 (2009). https://doi.org/10.1007/s10633-008-9157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-008-9157-2

Keywords

Navigation