Skip to main content

MicroRNAs in Diabetes and Its Vascular Complications

  • Chapter
  • First Online:
Non-coding RNAs in the Vasculature

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 2))

  • 447 Accesses

Abstract

Diabetes is a complex, metabolic disorder that is characterised by chronic hyperglycaemia and is widely recognised as a major health threat worldwide. The major causes of morbidity and mortality in diabetes result from vascular complications. These can be both microvascular, resulting in retinopathy, nephropathy and neuropathy, and macrovascular, affecting the heart and peripheral vessels. In this chapter, the roles of microRNAs in the development of diabetes are described. In addition, we show how microRNA-mediated mechanisms in diabetes result in an impaired vascular reparative potential, acting via the bone marrow and both stem and progenitor cells. Finally, we discuss the roles of microRNAs in the development of specific microvascular and macrovascular complications in the context of diabetes, and describe the potential of microRNAs as circulating biomarkers of diabetic cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol JASN. 2013;24(2):302–8.

    Article  CAS  PubMed  Google Scholar 

  • Amann B, Ludemann C, Ruckert R, et al. Design and rationale of a randomized, double-blind, placebo-controlled phase III study for autologous bone marrow cell transplantation in critical limb ischemia: the BONe Marrow Outcomes Trial in Critical Limb Ischemia (BONMOT-CLI). Vasa. 2008;37(4):319–25.

    Article  CAS  PubMed  Google Scholar 

  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2005;28(Suppl 1):37–42.

    Article  Google Scholar 

  • American Diabetes Association. Standards of medical care in diabetes – 2014. Diabetes Care. 2014;37(Suppl 1):S14–80.

    Article  Google Scholar 

  • Arnold JM, Yusuf S, Young J, et al. Prevention of heart failure in patients in the heart outcomes prevention evaluation (HOPE) study. Circulation. 2003;107(9):1284–90.

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  • Assmus B, Schachinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation. 2002;106(24):3009–17.

    Article  PubMed  Google Scholar 

  • Bell DS. Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care. 2003a;26(8):2433–41.

    Article  PubMed  Google Scholar 

  • Bell DS. Diabetic cardiomyopathy. Diabetes Care. 2003b;26(10):2949–51.

    Article  PubMed  Google Scholar 

  • Beller GA. Coronary heart disease in the first 30 years of the 21st century: challenges and opportunities: The 33rd Annual James B. Herrick Lecture of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2001;103(20):2428–35.

    Article  CAS  PubMed  Google Scholar 

  • Beltrami C, Angelini TG, Emanueli C. Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol. 2014;89:42–50.

    Article  PubMed  CAS  Google Scholar 

  • Boyer JK, Thanigaraj S, Schechtman KB, et al. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol. 2004;93(7):870–5.

    Article  PubMed  Google Scholar 

  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  CAS  PubMed  Google Scholar 

  • Busik JV, Tikhonenko M, Bhatwadekar A, et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med. 2009;206(13):2897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporali A, Emanueli C. MicroRNA regulation in angiogenesis. Vasc Pharmacol. 2011;55(4):79–86.

    Article  CAS  Google Scholar 

  • Caporali A, Emanueli C. MicroRNA-503 and the extended microRNA-16 family in angiogenesis. Trends Cardiovasc Med. 2012;21:162–6.

    Article  CAS  Google Scholar 

  • Caporali A, Meloni M, Vollenkle C, et al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation. 2011;123(3):282–91.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty C, Doss CG, Bandyopadhyay S, et al. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA. 2014;5(5):697–712.

    Article  CAS  PubMed  Google Scholar 

  • Chamorro-Jorganes A, Araldi E, Penalva LO, et al. MicroRNA-16 and microRNA-424 regulate cell-autonomous angiogenic functions in endothelial cells via targeting vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1. Arterioscler Thromb Vasc Biol. 2011;31(11):2595–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610–21.

    Article  CAS  PubMed  Google Scholar 

  • Chavali V, Tyagi SC, Mishra PK. MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun. 2012;425(3):668–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YQ, Wang XX, Yao XM, et al. MicroRNA-195 promotes apoptosis in mouse podocytes via enhanced caspase activity driven by BCL2 insufficiency. Am J Nephrol. 2011;34(6):549–59.

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Zhong X, Huang XR, et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol Ther. 2014a;22(4):842–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen S, Puthanveetil P, Feng B, et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med. 2014b;18(3):415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccacci C, Morganti R, Di Fusco D, et al. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol. 2014;51(4):663–71.

    Article  CAS  PubMed  Google Scholar 

  • Collino F, Deregibus MC, Bruno S, et al. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One. 2010;5(7):e11803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Condorelli G, Latronico MV, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol. 2014;63(21):2177–87.

    Article  CAS  PubMed  Google Scholar 

  • Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110(3):483–95.

    Article  CAS  PubMed  Google Scholar 

  • Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007;110(7):2440–8.

    Article  CAS  PubMed  Google Scholar 

  • Deshpande SD, Putta S, Wang M, et al. Transforming growth factor-beta-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes. 2013;62(9):3151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dey N, Das F, Mariappan MM, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem. 2011;286(29):25586–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiPersio JF. Diabetic stem-cell “mobilopathy”. N Engl J Med. 2011;365(26):2536–8.

    Article  CAS  PubMed  Google Scholar 

  • Donners MM, Wolfs IM, Stoger LJ, et al. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS One. 2012;7(4):e35877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Ouaamari A, Baroukh N, Martens GA, et al. miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes. 2008;57(10):2708–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerging Risk Factors Coalition, Sarwar N, Gao P, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

    Article  CAS  Google Scholar 

  • Esau C, Kang X, Peralta E, et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004;279(50):52361–5.

    Article  CAS  PubMed  Google Scholar 

  • Esguerra JL, Bolmeson C, Cilio CM, et al. Differential glucose-regulation of micrornas in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One. 2011;6(4):e18613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 2003;26 Suppl 1:S5–20.

    Article  Google Scholar 

  • Fadini GP, Miorin M, Facco M, et al. Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol. 2005;45(9):1449–57.

    Article  CAS  PubMed  Google Scholar 

  • Fadini GP, Sartore S, Albiero M, et al. Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol. 2006;26(9):2140–6.

    Article  CAS  PubMed  Google Scholar 

  • Fadini GP, Agostini C, Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis. 2009;209(1):10–7.

    Article  PubMed  CAS  Google Scholar 

  • Fadini GP, Boscaro E, de Kreutzenberg S, et al. Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care. 2010;33(5):1097–102.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faglia E. Characteristics of peripheral arterial disease and its relevance to the diabetic population. Int J Low Extrem Wounds. 2011;10(3):152–66.

    Article  PubMed  Google Scholar 

  • Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25(4):543–67.

    Article  CAS  PubMed  Google Scholar 

  • Ferraro F, Lymperi S, Mendez-Ferrer S, et al. Diabetes impairs hematopoietic stem cell mobilization by altering niche function. Sci Transl Med. 2011;3(104):104ra01.

    Article  CAS  Google Scholar 

  • Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677–84.

    Article  CAS  PubMed  Google Scholar 

  • Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol. 2011;31(11):2383–90.

    Article  CAS  PubMed  Google Scholar 

  • Fiordaliso F, Li B, Latini R, et al. Myocyte death in streptozotocin-induced diabetes in rats in angiotensin II- dependent. Lab Investig. 2000;80(4):513–27.

    Article  CAS  PubMed  Google Scholar 

  • Fish JE, Santoro MM, Morton SU, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 2008;15(2):272–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87(12):1123–32.

    Article  CAS  PubMed  Google Scholar 

  • Georgantas 3rd RW, Hildreth R, Morisot S, et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A. 2007;104(8):2750–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Granjon A, Gustin MP, Rieusset J, et al. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes. 2009;58(11):2555–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greco S, Fasanaro P, Castelvecchio S, et al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes. 2012;61(6):1633–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Losordo DW. Cell therapy for critical limb ischemia. Circulation Cardiovas Interv. 2011;4(1):2–5.

    Article  Google Scholar 

  • He A, Zhu L, Gupta N, et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3 T3-L1 adipocytes. Mol Endocrinol. 2007;21(11):2785–94.

    Article  CAS  PubMed  Google Scholar 

  • Heeschen C, Lehmann R, Honold J, et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004;109(13):1615–22.

    Article  PubMed  Google Scholar 

  • Heneghan HM, Miller N, McAnena OJ, et al. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab. 2011;96(5):E846–50.

    Article  CAS  PubMed  Google Scholar 

  • Herrera BM, Lockstone HE, Taylor JM, et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia. 2010;53(6):1099–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard L, Kane NM, Milligan G, et al. MicroRNAs regulating cell pluripotency and vascular differentiation. Vasc Pharmacol. 2011;55(4):69–78.

    Article  CAS  Google Scholar 

  • Hullinger TG, Montgomery RL, Seto AG, et al. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res. 2012;110(1):71–81.

    Article  CAS  PubMed  Google Scholar 

  • Ilonen J, Akerblom HK. New technologies and genetics of type 1 diabetes. Diabetes Technol Ther. 1999;1(2):205–7.

    Article  CAS  PubMed  Google Scholar 

  • International Diabetes Federation, 2013. http://www.idf.org/diabetesatlas. Secondary International Diabetes Federation, 2013. http://www.idf.org/diabetesatlas.

  • Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kahn SE. Clinical review 135: The importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab. 2001;86(9):4047–58.

    CAS  PubMed  Google Scholar 

  • Kajstura J, Fiordaliso F, Andreoli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes. 2001;50(6):1414–24.

    Article  CAS  PubMed  Google Scholar 

  • Kane NM, Howard L, Descamps B, et al. Role of microRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells. 2012;30(4):643–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol. 1974;34(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  • Katare R, Riu F, Mitchell K, et al. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res. 2011a;109(8):894–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katare R, Caporali A, Zentilin L, et al. Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res. 2011b;108(10):1238–51.

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104(9):3432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs B, Lumayag S, Cowan C, et al. microRNAs in early diabetic retinopathy in streptozotocin-induced diabetic rats. Invest Ophthalmol Vis Sci. 2011;52(7):4402–9.

    Article  CAS  PubMed  Google Scholar 

  • Kowluru RA, Koppolu P, Chakrabarti S, et al. Diabetes-induced activation of nuclear transcriptional factor in the retina, and its inhibition by antioxidants. Free Radic Res. 2003;37(11):1169–80.

    Article  CAS  PubMed  Google Scholar 

  • Krankel N, Katare RG, Siragusa M, et al. Role of kinin B2 receptor signaling in the recruitment of circulating progenitor cells with neovascularization potential. Circ Res. 2008;103(11):1335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar AH, Caplice NM. Clinical potential of adult vascular progenitor cells. Arterioscler Thromb Vasc Biol. 2010;30(6):1080–7.

    Article  CAS  PubMed  Google Scholar 

  • Ling HY, Ou HS, Feng SD, et al. Changes in microRNA profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes. Clin Exp Pharmacol Physiol. 2009;36:e32–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu JE, Robbins DC, Palmieri V, et al. Association of albuminuria with systolic and diastolic left ventricular dysfunction in type 2 diabetes: the Strong Heart Study. J Am Coll Cardiol. 2003;41(11):2022–8.

    Article  CAS  PubMed  Google Scholar 

  • Locke JM, da Silva XG, Dawe HR, et al. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion. Diabetologia. 2014;57(1):122–8.

    Article  CAS  PubMed  Google Scholar 

  • Long J, Wang Y, Wang W, et al. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem. 2010;285(30):23457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes. 2008;57(10):2728–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lustig Y, Barhod E, Ashwal-Fluss R, et al. RNA-binding protein PTB and microRNA-221 coregulate AdipoR1 translation and adiponectin signaling. Diabetes. 2014;63(2):433–45.

    Article  CAS  PubMed  Google Scholar 

  • Lynn FC, Skewes-Cox P, Kosaka Y, et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007;56(12):2938–45.

    Article  CAS  PubMed  Google Scholar 

  • Marwick TH. Diabetic heart disease. Heart. 2006;92(3):296–300.

    CAS  PubMed  Google Scholar 

  • McArthur K, Feng B, Wu Y, et al. MicroRNA-200b regulates vascular endothelial growth factor-mediated alterations in diabetic retinopathy. Diabetes. 2011;60(4):1314–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng S, Cao JT, Zhang B, et al. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol. 2012;53(1):64–72.

    Article  CAS  PubMed  Google Scholar 

  • Mocharla P, Briand S, Giannotti G, et al. AngiomiR-126 expression and secretion from circulating CD34+ and CD14+ PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood. 2013;121(1):226–36.

    Article  CAS  PubMed  Google Scholar 

  • Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–9.

    Article  CAS  PubMed  Google Scholar 

  • Norgren L, Hiatt WR, Dormandy JA, et al. Inter-society consensus for the management of peripheral arterial disease (TASC II). European Journal of Vascular and Endovascular Surgery. 2007;33(1 Suppl):S1–S75.

    Article  PubMed  Google Scholar 

  • O'Connell RM, Chaudhuri AA, Rao DS, et al. MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci U S A. 2010;107(32):14235–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oikawa A, Siragusa M, Quaini F, et al. diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol. 2010;30(3):498–508.

    Article  CAS  PubMed  Google Scholar 

  • Ozcan S. Minireview: microRNA function in pancreatic beta cells. Mol Endocrinol. 2014;28(12):1922–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parra P, Serra F, Palou A. Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS One. 2010;5(9):e13005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Plaisance V, Abderrahmani A, Perret-Menoud V, et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem. 2006;281(37):26932–42.

    Article  CAS  PubMed  Google Scholar 

  • Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res. 2006;98(5):596–605.

    Article  CAS  PubMed  Google Scholar 

  • Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–30.

    Article  CAS  PubMed  Google Scholar 

  • Poy MN, Hausser J, Trajkovski M, et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A. 2009;106(14):5813–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puigserver P, Rodgers JT. Foxa2, a novel transcriptional regulator of insulin sensitivity. Nat Med. 2006;12(1):38–9.

    Article  CAS  PubMed  Google Scholar 

  • Qin W, Chung AC, Huang XR, et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol JASN. 2011;22(8):1462–74.

    Article  CAS  PubMed  Google Scholar 

  • Qing S, Yuan S, Yun C, et al. Serum miRNA biomarkers serve as a fingerprint for proliferative diabetic retinopathy. Cell Physiol Biochem. 2014;34(5):1733–40.

    Article  CAS  PubMed  Google Scholar 

  • Rajan SK, Gokhale SM. Cardiovascular function in patients with insulin-dependent diabetes mellitus: a study using noninvasive methods. Ann N Y Acad Sci. 2002;958:425–30.

    Article  CAS  PubMed  Google Scholar 

  • Rawal S, Manning P, Katare R. Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovasc Diabetol. 2014;13:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Record M, Subra C, Silvente-Poirot S, et al. Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol. 2011;81(10):1171–82.

    Article  CAS  PubMed  Google Scholar 

  • Redfield MM, Jacobsen SJ, Burnett Jr JC, et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202.

    Article  PubMed  Google Scholar 

  • Rossing P, Breum L, Major-Pedersen A, et al. Prolonged QTc interval predicts mortality in patients with Type 1 diabetes mellitus. Diabet Med. 2001;18(3):199–205.

    Article  CAS  PubMed  Google Scholar 

  • Rota M, LeCapitaine N, Hosoda T, et al. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res. 2006;99(1):42–52.

    Article  CAS  PubMed  Google Scholar 

  • Ryu HS, Park SY, Ma D, et al. The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes. PLoS One. 2011;6(3):e17343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahoo S, Klychko E, Thorne T, et al. Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res. 2011;109(7):724–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito H, Yamamoto Y, Yamamoto H. Diabetes alters subsets of endothelial progenitor cells that reside in blood, bone marrow, and spleen. Am J Physiol Cell Physiol. 2012;302(6):C892–901.

    Article  CAS  PubMed  Google Scholar 

  • Schaible TF, Malhotra A, Bauman WA, et al. Left ventricular function after chronic insulin treatment in diabetic and normal rats. J Mol Cell Cardiol. 1983;15(7):445–58.

    Article  CAS  PubMed  Google Scholar 

  • Schannwell CM, Zimmermann T, Schneppenheim M, et al. Left ventricular hypertrophy and diastolic dysfunction in healthy pregnant women. Cardiology. 2002;97(2):73–8.

    Article  PubMed  Google Scholar 

  • Sebastiani G, Nigi L, Spagnuolo I, et al. MicroRNA profiling in sera of patients with type 2 diabetes mellitus reveals an upregulation of miR-31 expression in subjects with microvascular complications. J Biomed Sci Eng. 2013;6(5):58–64.

    Article  CAS  Google Scholar 

  • Segal MS, Shah R, Afzal A, et al. Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes. 2006;55(1):102–9.

    Article  CAS  PubMed  Google Scholar 

  • Shan ZX, Lin QX, Deng CY, et al. miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett. 2010;584(16):3592–600.

    Article  CAS  PubMed  Google Scholar 

  • Shantikumar S, Caporali A, Emanueli C. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc Res. 2012;93(4):583–93.

    Article  CAS  PubMed  Google Scholar 

  • Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  • Shi B, Sepp-Lorenzino L, Prisco M, et al. Micro RNA 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem. 2007;282(45):32582–90.

    Article  CAS  PubMed  Google Scholar 

  • Shi Z, Zhao C, Guo X, et al. Differential expression of microRNAs in omental adipose tissue from gestational diabetes mellitus subjects reveals miR-222 as a regulator of ERalpha expression in estrogen-induced insulin resistance. Endocrinology. 2014;155(5):1982–90.

    Article  PubMed  CAS  Google Scholar 

  • Spinetti G, Cordella D, Fortunato O, et al. Global remodeling of the vascular stem cell niche in bone marrow of diabetic patients: implication of the microRNA-155/FOXO3a signaling pathway. Circ Res. 2013a;112(3):510–22.

    Article  CAS  PubMed  Google Scholar 

  • Spinetti G, Fortunato O, Caporali A, et al. MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res. 2013b;112(2):335–46.

    Article  CAS  PubMed  Google Scholar 

  • Sprengers RW, Moll FL, Teraa M, et al. Rationale and design of the JUVENTAS trial for repeated intra-arterial infusion of autologous bone marrow-derived mononuclear cells in patients with critical limb ischemia. J Vasc Surg. 2010;51(6):1564–8.

    Article  PubMed  Google Scholar 

  • Stamler J, Vaccaro O, Neaton JD, et al. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16(2):434–44.

    Article  CAS  PubMed  Google Scholar 

  • Stefanowicz M, Straczkowski M, Karczewska-Kupczewska M. The role of SIRT1 in the pathogenesis of insulin resistance in skeletal muscle. Postepy Hig Med Dosw. 2015;69:63.

    Article  Google Scholar 

  • Strum JC, Johnson JH, Ward J, et al. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol. 2009;23(11):1876–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabak O, Gelisgen R, Erman H, et al. Oxidative lipid, protein, and DNA damage as oxidative stress markers in vascular complications of diabetes mellitus. Clin Invest Med. 2011;34(3):E163–71.

    Article  CAS  PubMed  Google Scholar 

  • Tepper OM, Galiano RD, Capla JM, et al. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002;106(22):2781–6.

    Article  PubMed  Google Scholar 

  • Tetta C, Bruno S, Fonsato V, et al. The role of microvesicles in tissue repair. Organogenesis. 2011;7(2):105–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thery C, Ostrowski M, Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009;9(8):581–93.

    Article  CAS  PubMed  Google Scholar 

  • Trajkovski M, Hausser J, Soutschek J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature. 2011;474(7353):649–53.

    Article  CAS  PubMed  Google Scholar 

  • Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  • van Rooij E. The art of microRNA research. Circ Res. 2011;108(2):219–34.

    Article  PubMed  CAS  Google Scholar 

  • Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89(1):e1–7.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Olson EN. AngiomiRs--key regulators of angiogenesis. Curr Opin Genet Dev. 2009;19(3):205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Wang Y, Minto AW, et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J Off Publ Fed Am Soc Exp Biol. 2008;22(12):4126–35.

    CAS  Google Scholar 

  • Wang J, Gao Y, Ma M, et al. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice. Cell Biochem Biophys. 2013;67(2):537–46.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chopp M, Szalad A, et al. The role of miR-146a in dorsal root ganglia neurons of experimental diabetic peripheral neuropathy. Neuroscience. 2014a;259:155–63.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Huang W, Liu G, et al. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol. 2014b;74:139–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warley A, Powell JM, Skepper JN. Capillary surface area is reduced and tissue thickness from capillaries to myocytes is increased in the left ventricle of streptozotocin-diabetic rats. Diabetologia. 1995;38(4):413–21.

    Article  CAS  PubMed  Google Scholar 

  • Winer N, Sowers JR. Epidemiology of diabetes. J Clin Pharmacol. 2004;44(4):397–405.

    Article  PubMed  Google Scholar 

  • Xiao J, Luo X, Lin H, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem. 2007;282(17):12363–7.

    Article  CAS  PubMed  Google Scholar 

  • Xiao F, Yu J, Liu B, et al. A novel function of microRNA 130a-3p in hepatic insulin sensitivity and liver steatosis. Diabetes. 2014;63(8):2631–42.

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes. 2009;58(5):1050–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Seeger FH, Castillo J, et al. Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J Am Coll Cardiol. 2012;59(23):2107–17.

    Article  CAS  PubMed  Google Scholar 

  • Xu LL, Shi CM, Xu GF, et al. TNF-alpha, IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes. Cell Biochem Biophys. 2014;70(2):771–6.

    Article  CAS  PubMed  Google Scholar 

  • Yildirim SS, Akman D, Catalucci D, et al. Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of miR-1. Cell Biochem Biophys. 2013;67(3):1397–408.

    Article  CAS  PubMed  Google Scholar 

  • Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation. 2005;111(16):2073–85.

    Article  CAS  PubMed  Google Scholar 

  • Yu XY, Song YH, Geng YJ, et al. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun. 2008;376(3):548–52.

    Article  CAS  PubMed  Google Scholar 

  • Zabalgoitia M, Ismaeil MF, Anderson L, et al. Prevalence of diastolic dysfunction in normotensive, asymptomatic patients with well-controlled type 2 diabetes mellitus. Am J Cardiol. 2001;87(3):320–3.

    Article  CAS  PubMed  Google Scholar 

  • Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107(6):810–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Kandic I, Kutryk MJ. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem Biophys Res Commun. 2011;405(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Li C, Qi W, et al. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia. 2012;55(7):2032–43.

    Article  CAS  PubMed  Google Scholar 

  • Zhu W, Huang L, Li Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett. 2012;315(1):28–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Costanza Emanueli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shantikumar, S., Rovira-Llopis, S., Spinetti, G., Emanueli, C. (2017). MicroRNAs in Diabetes and Its Vascular Complications. In: Thum, T., Dimmeler, S. (eds) Non-coding RNAs in the Vasculature. Cardiac and Vascular Biology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-52945-5_3

Download citation

Publish with us

Policies and ethics