Skip to main content
Log in

TNF-α, IL-6, and Leptin Increase the Expression of miR-378, an Adipogenesis-Related microRNA in Human Adipocytes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Obesity has become a global public health problem associated with complications including type 2 diabetes, cardiovascular disease, and several cancers. Adipocyte differentiation (adipogenesis) plays an important role in obesity and energy homeostasis. Adipose tissue secretes multiple cytokines and adipokines which can cause the complications of obesity, especially insulin resistance. TNF-α, IL-6, leptin, and resistin have been identified as the main regulators of obesity and insulin activity. miR-378 is highly induced during adipogenesis and has been reported to be positively regulated in adipogenesis. In the current study, matured human adipocytes were treated with TNF-α, IL-6, leptin, or resistin on the 15th day after the induction of human pre-adipocyte differentiation. We demonstrated that TNF-α, IL-6, and leptin upregulated miR-378 expression indicating that miR-378 probably is a novel mediator in the development of insulin resistance related to obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science, 259, 87–91.

    Article  PubMed  CAS  Google Scholar 

  2. Vozarova, B., Weyer, C., Hanson, K., Tataranni, P. A., Bogardus, C., & Pratley, R. E. (2001). Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obesity Research, 9, 414–417.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen, B., Novick, D., & Rubinstein, M. (1996). Modulation of insulin activities by leptin. Science, 274, 1185–1188.

    Article  PubMed  CAS  Google Scholar 

  4. Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., et al. (2001). The hormone resistin links obesity to diabetes. Nature, 409, 307–312.

    Article  PubMed  CAS  Google Scholar 

  5. Ono, K. (2011). MicroRNA links obesity and impaired glucose metabolism. Cell Research, 21, 864–866.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Gerin, I., Bommer, G. T., McCoin, C. S., Sousa, K. M., Krishnan, V., & MacDougald, O. A. (2010). Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. The American Journal of Physiology - Endocrinology and Metabolism, 299, E198–E206.

    CAS  Google Scholar 

  7. Zhao, Y. P., Zhang, C. M., Zhu, C., Chen, X. H., Wang, J. L., Ji, C. B., et al. (2010). NYGGF4 homologous gene expression in 3T3-L1 adipocytes: Regulation by FFA and adipokines. Molecular Biology Reports, 37, 3291–3296.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, X., Zhu, C., Ji, C., Zhao, Y., Zhang, C., Chen, F., et al. (2010). STEAP4, a gene associated with insulin sensitivity, is regulated by several adipokines in human adipocytes. International Journal of Molecular Medicine, 25, 361–367.

    PubMed  CAS  Google Scholar 

  9. Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3, 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  10. Neville, M. J., Collins, J. M., Gloyn, A. L., McCarthy, M. I., & Karpe, F. (2011). Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring), 19, 888–892.

    Article  CAS  Google Scholar 

  11. Chu, N. F., Spiegelman, D., Hotamisligil, G. S., Rifai, N., Stampfer, M., & Rimm, E. B. (2001). Plasma insulin, leptin, and soluble TNF receptors levels in relation to obesity-related atherogenic and thrombogenic cardiovascular disease risk factors among men. Atherosclerosis, 157, 495–503.

    Article  PubMed  CAS  Google Scholar 

  12. Ran, J., Hirano, T., Fukui, T., Saito, K., Kageyama, H., Okada, K., et al. (2006). Angiotensin II infusion decreases plasma adiponectin level via its type 1 receptor in rats: An implication for hypertension-related insulin resistance. Metabolism, 55, 478–488.

    Article  PubMed  CAS  Google Scholar 

  13. Wellen, K. E., & Hotamisligil, G. S. (2005). Inflammation, stress, and diabetes. Journal of Clinical Investigation, 115, 1111–1119.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Kahai, S., Lee, S. C., Lee, D. Y., Yang, J., Li, M., Wang, C. H., et al. (2009). MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. PLoS ONE, 4, e7535.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gerin, I., Bommer, G. T., McCoin, C. S., Sousa, K. M., Krishnan, V., & MacDougald, O. A. (2010). Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis. The American Journal of Physiology - Endocrinology and Metabolism, 299, E198–E206.

    CAS  Google Scholar 

  16. Lee, D. Y., Deng, Z., Wang, C. H., & Yang, B. B. (2007). MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proceedings of the National Academy of Sciences of the United States of America, 104, 20350–20355.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Zaragosi, L. E., Wdziekonski, B., Brigand, K. L., Villageois, P., Mari, B., Waldmann, R., et al. (2011). Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biology, 12, R64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Stephens, J. M., Lee, J., & Pilch, P. F. (1997). Tumor necrosis factor-alpha-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. Journal of Biological Chemistry, 272, 971–976.

    Article  PubMed  CAS  Google Scholar 

  19. Mohamed-Ali, V., Goodrick, S., Rawesh, A., Katz, D. R., Miles, J. M., Yudkin, J. S., et al. (1997). Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. Journal of Clinical Endocrinology and Metabolism, 82, 4196–4200.

    PubMed  CAS  Google Scholar 

  20. Muller, S., Martin, S., Koenig, W., Hanifi-Moghaddam, P., Rathmann, W., Haastert, B., et al. (2002). Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors. Diabetologia, 45, 805–812.

    Article  PubMed  CAS  Google Scholar 

  21. Steensberg, A., Fischer, C. P., Sacchetti, M., Keller, C., Osada, T., Schjerling, P., et al. (2003). Acute interleukin-6 administration does not impair muscle glucose uptake or whole-body glucose disposal in healthy humans. Journal of Physiology, 548, 631–638.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Glund, S., Deshmukh, A., Long, Y. C., Moller, T., Koistinen, H. A., Caidahl, K., et al. (2007). Interleukin-6 directly increases glucose metabolism in resting human skeletal muscle. Diabetes, 56, 1630–1637.

    Article  PubMed  CAS  Google Scholar 

  23. Friedman, J. M., & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395, 763–770.

    Article  PubMed  CAS  Google Scholar 

  24. Elmquist, J. K., Elias, C. F., & Saper, C. B. (1999). From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron, 22, 221–232.

    Article  PubMed  CAS  Google Scholar 

  25. Havel, P. J., Kasim-Karakas, S., Mueller, W., Johnson, P. R., Gingerich, R. L., & Stern, J. S. (1996). Relationship of plasma leptin to plasma insulin and adiposity in normal weight and overweight women: effects of dietary fat content and sustained weight loss. Journal of clinical endocrinology and metabolism, 81, 4406–4413.

    PubMed  CAS  Google Scholar 

  26. Muller, G., Ertl, J., Gerl, M., & Preibisch, G. (1997). Leptin impairs metabolic actions of insulin in isolated rat adipocytes. Journal of Biological Chemistry, 272, 10585–10593.

    Article  PubMed  CAS  Google Scholar 

  27. Muller, G., Ertl, J., Gerl, M., & Preibisch, G. (2001). The hormone resistin links obesity to diabetes. Nature, 409, 307–312.

    Article  Google Scholar 

  28. Rajala, M. W., Qi, Y., Patel, H. R., Takahashi, N., Banerjee, R., Pajvani, U. B., et al. (2004). Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes, 53, 1671–1679.

    Article  PubMed  CAS  Google Scholar 

  29. Way, J. M., Gorgun, C. Z., Tong, Q., Uysal, K. T., Brown, K. K., Harrington, W. W., et al. (2001). Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. Journal of Biological Chemistry, 276, 25651–25653.

    Article  PubMed  CAS  Google Scholar 

  30. Haluzik, M. M., Lacinova, Z., Dolinkova, M., Haluzikova, D., Housa, D., Horinek, A., et al. (2006). Improvement of insulin sensitivity after peroxisome proliferator-activated receptor-alpha agonist treatment is accompanied by paradoxical increase of circulating resistin levels. Endocrinology, 147, 4517–4524.

    Article  PubMed  CAS  Google Scholar 

  31. Degawa-Yamauchi, M., Bovenkerk, J. E., Juliar, B. E., Watson, W., Kerr, K., Jones, R., et al. (2003). Serum resistin (FIZZ3) protein is increased in obese humans. Journal of Clinical Endocrinology and Metabolism, 88, 5452–5455.

    Article  PubMed  CAS  Google Scholar 

  32. Anderlova, K., Dolezalova, R., Housova, J., Bosanska, L., Haluzikova, D., Kremen, J., et al. (2007). Influence of PPAR-alpha agonist fenofibrate on insulin sensitivity and selected adipose tissue-derived hormones in obese women with type 2 diabetes. Physiological Research, 56, 579–586.

    PubMed  CAS  Google Scholar 

  33. Ramji, D. P., & Foka, P. (2002). CCAAT/enhancer-binding proteins: structure, function and regulation. Biochemical Journal, 365, 561–575.

    PubMed  CAS  PubMed Central  Google Scholar 

  34. Choi, J. J., Park, M. Y., Lee, H. J., Yoon, D. Y., Lim, Y., Hyun, J. W., et al. (2012). TNF-alpha increases lipogenesis via JNK and PI3K/Akt pathways in SZ95 human sebocytes. Journal of Dermatological Science, 65, 179–188.

    Article  PubMed  CAS  Google Scholar 

  35. Gierens, H., Nauck, M., Roth, M., Schinker, R., Schurmann, C., Scharnagl, H., et al. (2000). Interleukin-6 stimulates LDL receptor gene expression via activation of sterol-responsive and Sp1 binding elements. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1777–1783.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Key Basic Research Program of China (2013CB530604), the National Natural Science Foundation of China (81270928), the Program for Innovative Research Teams of Jiangsu Province (LJ201108), the Natural Science Foundation of Jiangsu Province (BK2011107), and Nanjing Technological Development Program (201104013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei-yu Xu or Chen-bo Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Ll., Shi, Cm., Xu, Gf. et al. TNF-α, IL-6, and Leptin Increase the Expression of miR-378, an Adipogenesis-Related microRNA in Human Adipocytes. Cell Biochem Biophys 70, 771–776 (2014). https://doi.org/10.1007/s12013-014-9980-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-9980-x

Keywords

Navigation