Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2177))

Abstract

The intrinsic volumes, recalled in the previous chapter, provide an array of size measurements for a convex body, one for each integer degree of homogeneity from 0 to n. For measurements and descriptions of other aspects, such as position, moments of the volume and of other size functionals, or anisotropy, tensor-valued functionals on convex bodies are useful. The classical approach leading to the intrinsic volumes, namely the Steiner formula for parallel bodies, can be extended by replacing the volume by higher moments of the volume. This leads, in a natural way, to a series of tensor-valued valuations. These so-called Minkowski tensors are introduced in the present chapter, and their properties are studied. A version of Hadwiger’s theorem for tensor valuations is stated. The next natural step is a localization of the Minkowski tensors, in the form of tensor-valued measures. The essential valuation, equivariance and continuity properties of these local Minkowski tensors are collected. The main goal is then a description of the vector space of all tensor valuations on convex bodies sharing these properties. Continuity properties of local Minkowski tensors and of support measures follow from continuity properties of normal cycles of convex bodies. We establish Hölder continuity of the normal cycles of convex bodies, which provides a quantitative improvement of the aforementioned continuity property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Alesker, Description of continuous isometry covariant valuations on convex sets. Geom. Dedicata. 74, 241–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Alesker, J.H.G. Fu, Theory of valuations on manifolds, III. Multiplicative structure in the general case. Trans. Am. Math. Soc. 360, 1951–1981 (2008)

    Article  MATH  Google Scholar 

  3. D. Cohen-Steiner, J.-M. Morvan, Second fundamental measure of geometric sets and local approximation of curvatures. J. Differ. Geom. 74, 363–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Federer, Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Federer, Geometric Measure Theory (Springer, Berlin, 1969)

    MATH  Google Scholar 

  6. J.H.G. Fu, Algebraic integral geometry, in S. Alesker, J.H.G. Fu Integral Geometry and Valuations, ed. by E. Gallego, G. Solanes. Advanced Courses in Mathematics CRM Barcelona (Springer, Basel, 2014), pp. 47–112

    Google Scholar 

  7. H. Hadwiger, R. Schneider, Vektorielle Integralgeometrie. Elem. Math. 26, 49–57 (1971)

    Google Scholar 

  8. D. Hug, R. Schneider, Local tensor valuations. Geom. Funct. Anal. 24, 1516–1564 (2014)

    Article  MathSciNet  Google Scholar 

  9. D. Hug, R. Schneider, R. Schuster, The space of isometry covariant tensor valuations. St. Petersburg Math. J. 19, 137–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Hug, R. Schneider, R. Schuster, Integral geometry of tensor valuations. Adv. Appl. Math. 41, 482–509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Hug, M. Kiderlen, A.M. Svane, Voronoi-based estimation of Minkowski tensors. Discrete Comput. Geom. 57, 545–570 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. McMullen, Isometry covariant valuations on convex bodies. Rend. Circ. Mat. Palermo (2) Suppl. 50, 259–271 (1997)

    Google Scholar 

  13. Q. Mérigot, M. Ovsjanikov, L. Guibas, Voronoi-based curvature and feature estimation from point clouds. IEEE Trans. Vis. Comput. Graph. 17, 743–756 (2010)

    Article  Google Scholar 

  14. J. Rataj, M. Zähle, Curvatures and currents for unions of sets with positive reach, II. Ann. Glob. Anal. Geom. 20, 1–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Rataj, M. Zähle, General normal cycles and Lipschitz manifolds of bounded curvature. Ann. Global Anal. Geom. 27, 135–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Schneider, Local tensor valuations on convex polytopes. Monatsh. Math. 171, 459–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Schneider, Convex Bodies: The Brunn–Minkowski Theory, 2nd edn. Encyclopedia of Mathematics and Its Applications, vol. 151 (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  18. M. Zähle, Integral and current representation of Federer’s curvature measures. Arch. Math. 46, 557–567 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Zähle, Approximation and characterization of generalised Lipschitz–Killing curvatures. Ann. Glob. Anal. Geom. 8, 249–260 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Hug .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hug, D., Schneider, R. (2017). Tensor Valuations and Their Local Versions. In: Jensen, E., Kiderlen, M. (eds) Tensor Valuations and Their Applications in Stochastic Geometry and Imaging. Lecture Notes in Mathematics, vol 2177. Springer, Cham. https://doi.org/10.1007/978-3-319-51951-7_2

Download citation

Publish with us

Policies and ethics