Skip to main content
Log in

Local tensor valuations on convex polytopes

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Local versions of the Minkowski tensors of convex bodies in \(n\)-dimensional Euclidean space are introduced. An extension of Hadwiger’s characterization theorem for the intrinsic volumes, due to Alesker, states that the continuous, isometry covariant valuations on the space of convex bodies with values in the vector space of symmetric \(p\)-tensors are linear combinations of modified Minkowski tensors. We ask for a local analogue of this characterization, and we prove a classification result for local tensor valuations on polytopes, without a continuity assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alesker, S.: Continuous valuations on convex sets. Geom. Funct. Anal. 8, 402–409 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alesker, S.: Continuous rotation invariant valuations on convex sets. Ann. Math. 149, 977–1005 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alesker, S.: Description of continuous isometry covariant valuations on convex sets. Geom. Dedicata 74, 241–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beisbart, C., Barbosa, M.S., Wagner, H., Costa, L. da F.: Extended morphometric analysis of neuronal cells with Minkowski valuations. Eur. Phys. J. B. Condens. Matter Phys. 52, 531–546 (2006)

  5. Beisbart, C., Dahlke, R., Mecke, K., Wagner, H.: Vector- and tensor-valued descriptors for spatial patterns. In: Mecke, K., Stoyan, D. (eds). Morphology of Condensed Matter, Lecture Notes in Physics, vol. 600, pp. 238–260. Springer, Berlin (2002)

  6. Glasauer, S.: A generalization of intersection formulae of integral geometry. Geom. Dedicata 68, 101–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Greub, W.H.: Multilinear Algebra. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  8. Hug, D., Schneider, R., Schuster, R.: The space of isometry covariant tensor valuations. Algebra i Analiz 19, 194–224 (2007), St. Petersburg Math. J. 19, 137–158 (2008)

    Google Scholar 

  9. Hug, D., Schneider, R., Schuster, R.: Integral geometry of tensor valuations. Adv. Appl. Math. 41, 482–509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Klain, D.A.: A short proof of Hadwiger’s characterization theorem. Mathematika 42, 329–339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  12. McMullen, P.: Isometry covariant valuations on convex bodies. Rend. Circ. Mat. Palermo 2(Suppl. 50), 259–271 (1997)

    MathSciNet  Google Scholar 

  13. Schneider, R.: Kinematische Berührmaße für konvexe Körper. Abh. Math. Sem. Univ. Hamburg 44, 12–23 (1975)

    Article  MathSciNet  Google Scholar 

  14. Schneider, R.: Curvature measures of convex bodies. Ann. Mat. Pura Appl. 116, 101–134 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  16. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  17. Schröder-Turk, G.E., Kapfer, S., Breidenbach, B., Beisbart, C., Mecke, K.: Tensorial Minkowski functionals and anisotropy measures for planar patterns. J. Microscopy 238, 57–74 (2010)

    Article  Google Scholar 

  18. Schröder-Turk, G.E., Mickel, W., Kapfer, S.C., Klatt, M.A., Schaller, F.M., Hoffmann, M.J.F., Kleppmann, N., Armstrong, P., Inayat, A., Hug, D., Reichelsdorfer, M., Peukert, W., Schwieger, W., Mecke, K.: Minkowski tensor shape analysis of cellular, granular and porous structures. Adv Mater. (Special Issue: Hierarchical Structures Towards Functionality) 23, 2535–2553 (2011)

    Google Scholar 

  19. Schröder-Turk, G.E., Mickel, W., Kapfer, S.C., Schaller, F. M., Breidenbach, B., Hug, D., Mecke, K.: Minkowski Tensors of Anisotropic Spatial Structure, arXiv:1009.2340v1

  20. Sporer, S., Goll, C., Mecke, K.: Motion by stopping: rectifying Brownian motion of nonspherical particles. Phys. Rev. E 78, 011917 (2008)

    Article  Google Scholar 

  21. Zähle, M.: Approximation and characterization of generalized Lipschitz-Killing curvatures. Ann. Global Anal. Geom. 8, 249–260 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Schneider.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, R. Local tensor valuations on convex polytopes. Monatsh Math 171, 459–479 (2013). https://doi.org/10.1007/s00605-012-0430-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-012-0430-9

Keywords

Mathematics Subject Classification (2000)

Navigation