Skip to main content
Log in

Local Tensor Valuations

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

The local Minkowski tensors are valuations on the space of convex bodies in Euclidean space with values in a space of tensor measures. They generalize at the same time the intrinsic volumes, the curvature measures and the isometry covariant Minkowski tensors that were introduced by McMullen and characterized by Alesker. In analogy to the characterization theorems of Hadwiger and Alesker, we give here a complete classification of all locally defined tensor measures on convex bodies that share with the local Minkowski tensors the basic geometric properties of isometry covariance and weak continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alesker S.: Continuous rotation invariant valuations on convex sets. Annals of Mathematics, 149, 977–1005 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alesker S.: Description of continuous isometry covariant valuations on convex sets. Geometriae Dedicata, 74, 241–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Beisbart, R. Dahlke, K. Mecke, and H. Wagner. Vector- and tensor-valued descriptors for spatial patterns. In: K. Mecke, D. Stoyan (eds.), Morphology of Condensed Matter, Lecture Notes in Physics, Vol. 600. Springer, Berlin (2002), pp. 238–260.

  4. A. Bernig. Algebraic integral geometry. In: C. Bär, J. Lohkamp, M. Schwarz (eds.), Global Differential Geometry. Springer, Berlin (2012), pp. 107–145. arXiv:1004.3145v3.

  5. Bernig A., Fu J.H.G.: Hermitian integral geometry. Annals of Mathematics, 173, 907–945 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernig A., Fu J.H.G., Solanes G.: Integral geometry of complex space forms. Geometric and Functional Analysis, 24, 403–492 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bernig and D. Hug. Kinematic formulas for tensor valuations. arXiv:1402.2750v1.

  8. W. Blaschke. Vorlesungen über Integralgeometrie. 3rd edn, VEB Deutsch. Verl. d. Wiss., Berlin (1955) (1st edn: Part I, 1935; Part II, 1937).

  9. Devadoss S.L., O’Rourke J.: Discrete and Computational Geometry. Princeton University Press, Princeton (2011)

    MATH  Google Scholar 

  10. Federer H.: Curvature measures. Transactions of the American Mathematical Society, 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Federer H.: Geometric Measure Theory. Springer, Berlin (1969)

    MATH  Google Scholar 

  12. S. Fortune. Voronoi diagrams and Delaunay triangulations. In: J.E. Goodman, J. O’Rourke (eds.), Handbook of Discrete and Computational Geometry, 2nd edn., Chapman & Hall/CRC, Boca Raton (2004), pp. 513–528.

  13. J.H.G. Fu. Algebraic integral geometry. (Advanced Course on Integral Geometry and Valuation Theory), Notes of the Course. Centre de Recerca Matemà àtica, Bellaterra (2010), pp. 35–82. arXiv:1103.6256v1, http://www.crm.es/Publications/quaderns/Quadern6.

  14. Glasauer S.: A generalization of intersection formulae of integral geometry. Geometriae Dedicata, 68, 101–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hadwiger H.: Einige Anwendungen eines Funktionalsatzes in der räumlichen Integralgeometrie. Monatshefte für Mathematik, 54, 345–353 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hadwiger H.: Beweis eines Funktionalsatzes für konvexe Körper. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 17, 69–76 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hadwiger H.: Additive Funktionale k-dimensionaler Eikörper I. Archiv der Mathematik, 3, 470–478 (1952)

    Article  MATH  Google Scholar 

  18. Hadwiger H.: Integralsätze im Konvexring. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 20, 136–154 (1956)

    MathSciNet  MATH  Google Scholar 

  19. Hadwiger H.: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Berlin (1957)

    Book  MATH  Google Scholar 

  20. Hadwiger H., Schneider R.: Vektorielle Integralgeometrie. Elementary Mathematics, 26, 49–57 (1971)

    MathSciNet  MATH  Google Scholar 

  21. Hörrmann J., Hug D., Klatt M., Mecke K.: Minkowski tensor density formulas for Boolean models. Advances in Applied Mathematics, 55, 48–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hug D.: On the mean number of normals through a point in the interior of a convex body. Geometriae Dedicata, 55, 319–340 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hug D.: Generalized curvature measures and singularities of sets with positive reach. Forum Mathematicum, 100, 699–728 (1998)

    MathSciNet  Google Scholar 

  24. Hug D.: Absolute continuity for curvature measures of convex sets I. Mathematische Nachrichten, 195, 139–158 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Hug, G. Last, and M. Schulte. Second order properties and central limit theorems for geometric functionals of Boolean models. arXiv:1308.6519v1.

  26. D. Hug and R. Schneider. Hölder continuity of normal cycles and of support measures of convex bodies (in preparation).

  27. D. Hug, R. Schneider, and R. Schuster. The space of isometry covariant tensor valuations. Algebra i Analiz, 19 (2007), 194–224 (St. Petersburg Mathematical Journal, 19 (2008), 137–158).

  28. Hug D., Schneider R., Schuster R.: Integral geometry of tensor valuations. Advances in Applied Mathematics, 41, 482–509 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Joswig M., Theobald T.: Polyhedral and Algebraic Methods in Computational Geometry. Springer, London (2013)

    Book  MATH  Google Scholar 

  30. Klain D.A.: A short proof of Hadwiger’s characterization theorem. Mathematika, 42, 329–339 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Klain D.A., Rota G.-C.: Introduction to Geometric Probability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  32. P. McMullen. Valuations and dissections. In: P.M. Gruber, J.M. Wills (eds.), Handbook of Convex Geometry, Vol. B, pp. 933–988. North-Holland, Amsterdam (1993).

  33. McMullen P.: Isometry covariant valuations on convex bodies. Rendiconti del Circolo Matematico di Palermo Series II, Suppl., 50, 259–271 (1997)

    MathSciNet  Google Scholar 

  34. P. McMullen and R. Schneider. Valuations on convex bodies. In: P.M. Gruber, J.M. Wills (eds.) Convexity and its Applications, Birkhäuser, Basel, pp. 170–247 (1983).

  35. K.R. Mecke. Additivity, convexity, and beyond: Applications of Minkowski functionals in statistical physics. In: K.R. Mecke, D. Stoyan (eds.), Statistical Physics and Spatial Statistics, Lecture Notes in Physics, Vol. 554. Springer, Berlin, pp. 111–184 (2000).

  36. Rataj J., Zähle M.: Curvatures and currents for unions of sets with positive reach, II. Annals of Global Analysis and Geometry, 20, 1–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rataj J., Zähle M.: General normal cycles and Lipschitz manifolds of bounded curvature. Annals of Global Analysis and Geometry, 27, 135–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rota G.-C.: Geometric probability. Mathematical Intelligencer, 20, 11–16 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sallee G.T.: Polytopes, valuations, and the Euler relation. Canadian Journal of Mathematics, 20, 1412–1424 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  40. I. Satake. Linear Algebra. Marcel Dekker, New York (1975).

  41. R. Schneider. Krümmungsschwerpunkte konvexer Körper, II. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 37 (1972), 204–217.

  42. R. Schneider. Kinematische Berührmaße für konvexe Körper. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 44 (1975), 12–23.

  43. Schneider R.: Curvature measures of convex bodies. Annali di Matematica Pura ed Applicata, 116, 101–134 (1978)

    Article  MATH  Google Scholar 

  44. R. Schneider. Convex bodies in exceptional relative positions. Journal of the London Mathematical Society (2), 60 (1999), 617–629.

  45. R. Schneider. Tensor valuations on convex bodies and integral geometry. Rendiconti del Circolo Matematico di Palermo Series II, Suppl., 65 (2000), 295–316.

  46. R. Schneider. Local tensor valuations on convex polytopes. Monatshefte für Mathematik, 171 (2013), 459–479.

  47. R. Schneider. Convex Bodies: The Brunn-Minkowski Theory, 2nd edn, Encyclopedia of Mathematics and Its Applications, Vol. 151. Cambridge University Press, Cambridge (2014).

  48. R. Schneider and W. Weil. Stochastic and Integral Geometry. Springer, Berlin (2008).

  49. G.E. Schröder–Turk, S. Kapfer, B. Breidenbach, C. Beisbart, and K. Mecke. Tensorial Minkowski functionals and anisotropy measures for planar patterns. Journal of Microscopy, 238 (2010), 57–74.

  50. G.E. Schröder–Turk, W. Mickel, S.C. Kapfer, M.A. Klatt, F.M. Schaller, M.J.F. Hoffmann, N. Kleppmann, P. Armstrong, A. Inayat, D. Hug, M. Reichelsdorfer, W. Peukert, W. Schwieger, and K. Mecke. Minkowski tensor shape analysis of cellular, granular and porous structures. Advanced Materials, Special Issue: Hierarchical Structures Towards Functionality, 23 (2011), 2535–2553.

  51. G.E. Schröder-Turk, W. Mickel, S.C. Kapfer, F.M. Schaller, B. Breidenbach, D. Hug, and K. Mecke. Minkowski tensors of anisotropic spatial structure. New Journal of Physics, 15 (2013), 083028.

  52. Wannerer T.: The module of unitarily invariant area measures. Journal of Differential Geometry, 96, 141–182 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Zähle M.: Integral and current representation of Federer’s curvature measures. Archiv der Mathematik, 46, 557–567 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Schneider.

Additional information

We acknowledge the support of the German Research Foundation (DFG) through the Research Unit ‘Geometry and Physics of Spatial Random Systems’ under the grant HU 1874/2-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hug, D., Schneider, R. Local Tensor Valuations. Geom. Funct. Anal. 24, 1516–1564 (2014). https://doi.org/10.1007/s00039-014-0289-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-014-0289-0

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation