Skip to main content

Neurocognitive Improvement Through Plant Food Bioactives: A Particular Approach to Alzheimer’s Disease

  • Chapter
  • First Online:
Food Bioactives

Abstract

Alzheimer’s disease (AD) is currently one of the most prevalent neurodegenerative disorders , directly related to increasing rates of morbidity and autonomy impairment between worldwide citizens. Social and demographical changes are direct contributors; notwithstanding, modern lifestyle, oxidative stress and its related diseases, and, consequently, premature aging are also important triggering factors (Sun et al. 2008; Ngo and Li 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adewusi EA, Steenkamp V (2015) Medicinal plants and their derivatives with amyloid beta inhibitory activity as potential targets for drug discovery. Asian Pacific J Trop Dis 5:430–440. doi:10.1016/S2222-1808(15)60810-6

    Article  CAS  Google Scholar 

  • Ahmed A, van der Marck M, van den Elsen G, Rikkert MO (2015) Cannabinoids in late-onset Alzheimer’s disease. Clin Pharmacol Ther 97:597–606. doi:10.1002/cpt.117

    Article  CAS  Google Scholar 

  • Alza NP, Richmond V, Baier CJ et al (2014) Synthesis and cholinesterase inhibition of cativic acid derivatives. Bioorganic Med Chem 22:3838–3849. doi:10.1016/j.bmc.2014.06.030

    Article  CAS  Google Scholar 

  • Bagheri M, Roghani M, Joghataei MT, Mohseni S (2012) Genistein inhibits aggregation of exogenous amyloid-beta 1–40 and alleviates astrogliosis in the hippocampus of rats. Brain Res 1429:145–154. doi:10.1016/j.brainres.2011.10.020

    Article  CAS  Google Scholar 

  • Bai Y, Tohda C, Zhu S et al (2011) Active components from Siberian ginseng (Eleutherococcus senticosus) for protection of amyloid b(25–35)-induced neuritic atrophy in cultured rat cortical neurons. J Nat Med 65:417–423. doi:10.1007/s11418-011-0509-y

    Article  CAS  Google Scholar 

  • Berry EM, Mechoulam R (2002) Tetrahydrocannabinol and endocannabinoids in feeding and appetite. Pharmacol Ther 95:185–190. doi:10.1016/S0163-7258(02)00257-7

    Article  CAS  Google Scholar 

  • Chaturvedi RK, Beal MF (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29. doi:10.1016/j.freeradbiomed.2013.03.018

    Article  CAS  Google Scholar 

  • Chen F, Eckman E, Eckman CB (2006) Reductions in levels of the Alzheimer’s amyloid beta peptide after oral administration of ginsenosides. FASEB J 20:1269–1271. doi:10.1096/fj.05-5530fje

    Article  CAS  Google Scholar 

  • Chen J, Sun M, Wang X et al (2014) The herbal compound geniposide rescues formaldehyde-induced apoptosis in N2a neuroblastoma cells. Sci China Life Sci 57:412–421. doi:10.1007/s11427-014-4643-0

    Article  CAS  Google Scholar 

  • Choi S-M, Kim BC, Cho Y et al (2014) Effects of flavonoid compounds on β-amyloid-peptide-induced neuronal death in cultured mouse cortical neurons. Chonnam Med J 50:45–51

    Article  CAS  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–82

    CAS  Google Scholar 

  • Dinamarca MC, Cerpa W, Garrido J et al (2006) Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer’s amyloid-beta-deposits. Mol Psychiatry 11:1032–1048. doi:10.1038/sj.mp.4001866

    Article  CAS  Google Scholar 

  • Dragicevic N, Smith A, Lin X et al (2011) Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer’s amyloid-induced mitochondrial dysfunction. J Alzheimer’s Dis 26:507–521. doi:10.3233/JAD-2011-101629

    CAS  Google Scholar 

  • Elmann A, Telerman A, Erlank H et al (2013) Protective and antioxidant effects of a chalconoid from Pulicaria incisa on brain astrocytes. Oxid Med Cell Longev 2013:1–10. doi:10.1155/2013/694398

    Article  Google Scholar 

  • Elmann A, Telerman A, Mordechay S et al (2014) 3,5,4′-Trihydroxy-6,7,3′-trimethoxyflavone protects astrocytes against oxidative stress via interference with cell signaling and by reducing the levels of intracellular reactive oxygen species. Neurochem Int 78:67–75. doi:10.1016/j.neuint.2014.09.003

    Article  CAS  Google Scholar 

  • Essa MM, Vijayan RK, Castellano-Gonzalez G et al (2012) Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 37:1829–1842. doi:10.1007/s11064-012-0799-9

    Article  CAS  Google Scholar 

  • Ferchichi L, Derbré S, Mahmood K et al (2012) Bioguided fractionation and isolation of natural inhibitors of advanced glycation end-products (AGEs) from Calophyllum flavoramulum. Phytochemistry 78:98–106. doi:10.1016/j.phytochem.2012.02.006

    Article  CAS  Google Scholar 

  • Fernandez-Panchon MS, Villano D, Troncoso AM, Garcia-Parrilla MC (2008) Antioxidant activity of phenolic compounds: from in vitro results to in vivo evidence. Crit Rev Food Sci Nutr 48:649–671. doi:10.1080/10408390701761845

    Article  CAS  Google Scholar 

  • Fisar Z (2009) Phytocannabinoids and endocannabinoids. Curr Drug Abuse Rev 2:51–75. doi:10.2174/1874473710902010051

    Article  CAS  Google Scholar 

  • Fu X, Zhang J, Guo L et al (2014) Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav 126:122–130. doi:10.1016/j.pbb.2014.09.005

    Article  CAS  Google Scholar 

  • Fujiwara H, Tabuchi M, Yamaguchi T et al (2009) A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid β proteins in vitro and in vivo. J Neurochem 109:1648–1657. doi:10.1111/j.1471-4159.2009.06069.x

    Article  CAS  Google Scholar 

  • Gauci AJ, Caruana M, Giese A et al (2011) Identification of polyphenolic compounds and black tea extract as potent inhibitors of lipid membrane destabilization by Aβ42 aggregates. J Alzheimer’s Dis 27:767–79. doi:10.3233/JAD-2011-111061

    CAS  Google Scholar 

  • Gong H, He Z, Peng A et al (2014) Effects of several quinones on insulin aggregation. Sci Rep 4:1–8. doi:10.1038/srep05648

    Google Scholar 

  • Goodman M, Bostick RM, Kucuk O, Jones DP (2011) Clinical trials of antioxidants as cancer prevention agents: past, present, and future. Free Radic Biol Med 51:1068–1084. doi:10.1016/j.freeradbiomed.2011.05.018

    Article  CAS  Google Scholar 

  • Grotewold E (2006) The science of flavonoids. The Ohio State University, Colombus

    Book  Google Scholar 

  • Gutierres JM, Carvalho FB, Schetinger MRC et al (2014) Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamine-induced amnesia in rats. Int J Dev Neurosci 33:88–97. doi:10.1016/j.ijdevneu.2013.12.006

    Article  CAS  Google Scholar 

  • Ham A, Kim B, Koo U et al (2010) Spirafolide from bay leaf (Laurus nobilis) prevents dopamine-induced apoptosis by decreasing reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Arch Pharm Res 33:1953–1958. doi:10.1007/s12272-010-1210-5

    Article  CAS  Google Scholar 

  • Han J, Miyamae Y, Shigemori H, Isoda H (2010) Neuroprotective effect of 3,5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience 169:1039–1045. doi:10.1016/j.neuroscience.2010.05.049

    Article  CAS  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584. doi:10.1016/S0955-2863(02)00208-5

    Article  CAS  Google Scholar 

  • Hoggard N, Cruickshank M, Moar K-M et al (2013) A single supplement of a standardised bilberry (Vaccinium myrtillus L.) extract (36% wet weight anthocyanins) modifies glycaemic response in individuals with type 2 diabetes controlled by diet and lifestyle. J Nutr Sci 2:1–9. doi:10.1017/jns.2013.16

    Article  Google Scholar 

  • Holst B, Williamson G (2008) Nutrients and phytochemicals: from bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol 19:73–82. doi:10.1016/j.copbio.2008.03.003

    Article  CAS  Google Scholar 

  • Horvath TL (2006) Synaptic plasticity mediating leptin’s effect on metabolism

    Google Scholar 

  • Jang SI, Pae HO, Choi BM et al (2003) Salidroside from Rhodiola sachalinensis protects neuronal PC12 cells against cytotoxicity induced by amyloid-β. Immunopharmacol Immunotoxicol 25:295–304. doi:10.1081/IPH-120024498

    Article  CAS  Google Scholar 

  • Jeon SJ, Bak H, Seo J et al (2010) Synergistic increase of BDNF release from rat primary cortical neuron by combination of several medicinal plant-derived compounds. Biomol Ther 18:39–47. doi:10.4062/biomolther.2010.18.1.039

    Article  CAS  Google Scholar 

  • Katalini M, Bosak A, Kovarik Z (2014) Flavonoids as inhibitors of human butyrylcholinesterase variants. Food Technol Biotechnol 52:64–67

    Google Scholar 

  • Kaushik G, Satya S, Khandelwal RK, Naik SN (2010) Commonly consumed Indian plant food materials in the management of diabetes mellitus. Diabetes Metab Syndr Clin Res Rev 4:21–40. doi:10.1016/j.dsx.2008.02.006

    Article  Google Scholar 

  • Kim HJ, Lee KW, Lee HJ (2007) Protective effects of piceatannol against beta-amyloid-induced neuronal cell death. Ann N Y Acad Sci 1095:473–482. doi:10.1196/annals.1397.051

    Article  CAS  Google Scholar 

  • Kim JK, Shin E-C, Kim CR et al (2013) Effects of brussels sprouts and their phytochemical components on oxidative stress-induced neuronal damages in PC12 cells and ICR mice. J Med Food 16:1057–1061. doi:10.1089/jmf.2012.0280

    Article  CAS  Google Scholar 

  • Kim JY, Lim HJ, Lee DY et al (2009) In vitro anti-inflammatory activity of lignans isolated from Magnolia fargesii. Bioorganic Med Chem Lett 19:937–940. doi:10.1016/j.bmcl.2008.11.103

    Article  CAS  Google Scholar 

  • Konrath EL, Passos CDS, Klein-Júnior LC, Henriques AT (2013) Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J Pharm Pharmacol 65:1701–1725. doi:10.1111/jphp.12090

    Article  CAS  Google Scholar 

  • Kumar NS, Nisha N (2014) Phytomedicines as potential inhibitors of β amyloid aggregation: significance to Alzheimer’s disease. Chin J Nat Med 12:801–818. doi:10.1016/S1875-5364(14)60122-9

    CAS  Google Scholar 

  • Kurisu M, Miyamae Y, Murakami K et al (2013) Inhibition of amyloid β aggregation by acteoside, a phenylethanoid glycoside. Biosci Biotechnol Biochem 77:1329–1332. doi:10.1271/bbb.130101

    Article  CAS  Google Scholar 

  • Kwon HC, Cha JW, Park J-S et al (2011) Rapid identification of bioactive compounds reducing the production of amyloid β-peptide (Aβ) from south African plants using an automated HPLC/SPE/HPLC coupling system. Biomol Ther 19:90–96. doi:10.4062/biomolther.2011.19.1.090

    Article  CAS  Google Scholar 

  • Larrosa M, García-Conesa MT, Espín JC, Tomás-Barberán FA (2010) Ellagitannins, ellagic acid and vascular health. Mol Aspects Med 31:513–539. doi:10.1016/j.mam.2010.09.005

    Article  CAS  Google Scholar 

  • Lee MH, Kim JY, Ryu J-H (2005) Prenylflavones from Psoralea corylifolia inhibit nitric oxide synthase expression through the inhibition of I-kB-α degradation in activated microglial cells. Biol Pharm Bull 28:2253–2257. doi:10.1248/bpb.28.2253

    Article  CAS  Google Scholar 

  • Li A, Li S, Zhang Y et al (2014) Resources and biological activities of natural polyphenols. Nutrients 6:6020–6047. doi:10.3390/nu6126020

    Article  Google Scholar 

  • Liang J, Lindemeyer AK, Shen Y et al (2014) Dihydromyricetin ameliorates behavioral deficits and reverses neuropathology of transgenic mouse models of Alzheimer’s disease. Neurochem Res 39:1171–1181. doi:10.1007/s11064-014-1304-4

    Article  CAS  Google Scholar 

  • Lim HJ, Lee H-S, Ryu J-H (2008) Suppression of inducible nitric oxide synthase and cyclooxygenase-2 expression by tussilagone from farfarae flos in BV-2 microglial cells. Arch Pharm Res 31:645–652. doi:10.1007/s12272-001-1207-4

    Article  CAS  Google Scholar 

  • Marco L, Carreiras MC (2006) Galanthamine, a natural product for the treatment of Alzheimer’s disease. Recent Patents CNS Drug Discov 1:105–111. doi:10.2174/157488906775245246

  • Matsui N, Kido Y, Okada H et al (2012) Phenylbutenoid dimers isolated from Zingiber purpureum exert neurotrophic effects on cultured neurons and enhance hippocampal neurogenesis in olfactory bulbectomized mice. Neurosci Lett 513:72–77. doi:10.1016/j.neulet.2012.02.010

    Article  CAS  Google Scholar 

  • Matsui N, Takahashi K, Takeichi M et al (2009) Magnolol and honokiol prevent learning and memory impairment and cholinergic deficit in SAMP8 mice. Brain Res 1305:108–117. doi:10.1016/j.brainres.2009.09.107

    Article  CAS  Google Scholar 

  • McCoy PA, Huang HS, Philpot BD (2009) Advances in understanding visual cortex plasticity. Curr Opin Neurobiol 19:298–304. doi:10.1016/j.conb.2009.05.010

    Article  CAS  Google Scholar 

  • McKay DL, Chen C-YO, Zampariello CA, Blumberg JB (2015) Flavonoids and phenolic acids from cranberry juice are bioavailable and bioactive in healthy older adults. Food Chem 168:233–240. doi:10.1016/j.foodchem.2014.07.062

    Article  CAS  Google Scholar 

  • Moon M, Kim HG, Choi JG et al (2014) 6-Shogaol, an active constituent of ginger, attenuates neuroinflammation and cognitive deficits in animal models of dementia. Biochem Biophys Res Commun 449:8–13. doi:10.1016/j.bbrc.2014.04.121

    Article  CAS  Google Scholar 

  • Mori T, Koyama N, Guillot-Sestier MV et al (2013) Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and Alzheimer-like pathology in transgenic mice. PLoS ONE. doi:10.1371/journal.pone.0055774

    Google Scholar 

  • Murray MT (2004) The healing power of herbs, 2nd edn. Random House, New York

    Google Scholar 

  • Murray MT, Pizzorno J (2012) The encyclopedia of natural medicine. Atria Books, New York

    Google Scholar 

  • Murray MT, Pizzorno J (2005) The Encyclopedia of healing foods. Atria Book, New York

    Google Scholar 

  • Na CS, Hong SS, Choi YH et al (2010) Neuroprotective effects of constituents of Eragrostis ferruginea against Aβ-induced toxicity in PC12 cells. Arch Pharm Res 33:999–1003. doi:10.1007/s12272-010-0704-5

    Article  CAS  Google Scholar 

  • Nadim F, Bucher D (2014) Neuromodulation of neurons and synapses. Curr Opin Neurobiol 29:48–56. doi:10.1016/j.conb.2014.05.003

    Article  CAS  Google Scholar 

  • Nelson DL, Cox MM (2000) Lehninger principles of biochemistry, 3rd edn. Worth Publishers Inc, New York

    Google Scholar 

  • Ngo ST, Li MS (2013) Top-leads from natural products for treatment of Alzheimer’s disease: docking and molecular dynamics study. Mol Simul 39:279–291. doi:10.1080/08927022.2012.718769

    Article  CAS  Google Scholar 

  • Norberto S, Silva S, Meireles M et al (2013) Blueberry anthocyanins in health promotion: a metabolic overview. J Funct Foods 5:1518–1528. doi:10.1016/j.jff.2013.08.015

    Article  CAS  Google Scholar 

  • Park SY, Kim DSHL (2002) Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer’s disease. J Nat Prod 65:1227–1231. doi:10.1021/np010039x

    Article  CAS  Google Scholar 

  • Patil SP, Maki S, Khedkar SA et al (2010) Withanolide A and asiatic acid modulate multiple targets associated with amyloid-β precursor protein processing and amyloid-β protein clearance. J Nat Prod 73:1196–1202. doi:10.1021/np900633j

    Article  CAS  Google Scholar 

  • van Praag H (2009) Exercise and the brain: something to chew on. Trends Neurosci 32:283–290. doi:10.1016/j.tins.2008.12.007

    Article  Google Scholar 

  • Rein MJ, Renouf M, Cruz-Hernandez C et al (2013) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 75:588–602. doi:10.1111/j.1365-2125.2012.04425.x

    CAS  Google Scholar 

  • Richetti SK, Blank M, Capiotti KM et al (2011) Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav Brain Res 217:10–15. doi:10.1016/j.bbr.2010.09.027

    Article  CAS  Google Scholar 

  • Roth A, Schaffner W, Hertel C (1999) Phytoestrogen kaempferol (3,4′,5,7-tetrahydroxyflavone) protects PC12 and T47D cells from β-amyloid-induced toxicity. J Neurosci Res 57:399–404. doi:10.1002/(SICI)1097-4547(19990801)57:3<399:AID-JNR12>3.0.CO;2-W

    Article  CAS  Google Scholar 

  • Sasaki K, El Omri A, Kondo S et al (2013) Rosmarinus officinalis polyphenols produce anti-depressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 238:86–94. doi:10.1016/j.bbr.2012.10.010

    Article  CAS  Google Scholar 

  • Shiao YJ, Wang CN, Wang WY, Lin YL (2005) Neuroprotective flavonoids from Flemingia macrophylla. Planta Med 71:835–840. doi:10.1055/s-2005-871297

    Article  CAS  Google Scholar 

  • Smid SD, Maag JL, Musgrave IF (2012) Dietary polyphenol-derived protection against neurotoxic β-amyloid protein: from molecular to clinical. Food Funct 3:1242–1250. doi:10.1039/c2fo30075c

    Article  Google Scholar 

  • Spencer JPE, Vafeiadou K, Williams RJ, Vauzour D (2012) Neuroinflammation: Modulation by flavonoids and mechanisms of action. Mol Aspects Med 33:83–97. doi:10.1016/j.mam.2011.10.016

    Article  CAS  Google Scholar 

  • Sun A, Xu X, Lin J et al (2015) Neuroprotection by saponins. Phyther Res 29:187–200

    Article  CAS  Google Scholar 

  • Sun AY, Wang Q, Simonyi A, Sun GY (2008) Botanical phenolics and brain health. NeuroMol Med 10:259–274. doi:10.1007/s12017-008-8052-z

    Article  CAS  Google Scholar 

  • Sun Y, Wang M, Ren Q et al (2014) Two novel clerodane diterpenenes with NGF-potentiating activities from the twigs of Croton yanhuii. Fitoterapia 95:229–233. doi:10.1016/j.fitote.2014.03.012

    Article  CAS  Google Scholar 

  • Thampithak A, Jaisin Y, Meesarapee B et al (2009) Transcriptional regulation of iNOS and COX-2 by a novel compound from Curcuma comosa in lipopolysaccharide-induced microglial activation. Neurosci Lett 462:171–175. doi:10.1016/j.neulet.2009.06.094

    Article  CAS  Google Scholar 

  • Tulipani S, Alvarez-Suarez JM, Busco F et al (2011) Strawberry consumption improves plasma antioxidant status and erythrocyte resistance to oxidative haemolysis in humans. Food Chem 128:180–186. doi:10.1016/j.foodchem.2011.03.025

    Article  CAS  Google Scholar 

  • Vanaclocha B, Cañigueral S (2003) Fitoterapia: Vademecum de Prescripción, 4th edn. Barcelona

    Google Scholar 

  • Vauzour D (2014) Effect of flavonoids on learning, memory and neurocognitive performance: relevance and potential implications for Alzheimer’s disease pathophysiology. J Sci Food Agric 94:1042–1056. doi:10.1002/jsfa.6473

    Article  CAS  Google Scholar 

  • Velderrain-Rodríguez GR, Palafox-Carlos H, Wall-Medrano A et al (2014) Phenolic compounds: their journey after intake. Food Funct 5:189–197. doi:10.1039/c3fo60361j

    Article  Google Scholar 

  • Vepsäläinen S, Koivisto H, Pekkarinen E et al (2013) Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer’s disease. J Nutr Biochem 24:360–370. doi:10.1016/j.jnutbio.2012.07.006

    Article  Google Scholar 

  • Wang C, Xiao Y, Yang B et al (2014a) Isolation and screened neuroprotective active constituents from the roots and rhizomes of Valeriana amurensis. Fitoterapia 96:48–55. doi:10.1016/j.fitote.2014.04.007

    Article  CAS  Google Scholar 

  • Wang Q, Wang C, Zuo Y et al (2012) Compounds from the roots and rhizomes of valeriana amurensis protect against neurotoxicity in PC12 cells. Molecules 17:15013–15021. doi:10.3390/molecules171215013

    Article  CAS  Google Scholar 

  • Wang T, Yang YJ, Wu PF et al (2011) Tetrahydroxystilbene glucoside, a plant-derived cognitive enhancer, promotes hippocampal synaptic plasticity. Eur J Pharmacol 650:206–214. doi:10.1016/j.ejphar.2010.10.002

    Article  CAS  Google Scholar 

  • Wang X, Kim JR, Lee S-B et al (2014b) Effects of curcuminoids identified in rhizomes of Curcuma longa on BACE-1 inhibitory and behavioral activity and lifespan of Alzheimer’s disease Drosophila models. BMC Complement Altern Med 14:88. doi:10.1186/1472-6882-14-88

    Article  Google Scholar 

  • Weon JB, Ko H-J, Ma CJ (2013) The ameliorating effects of 2,3-dihydroxy-4-methoxyacetophenone on scopolamine-induced memory impairment in mice and its neuroprotective activity. Bioorganic Med Chem Lett 23:6732–6736. doi:10.1016/j.bmcl.2013.10.032

    Article  CAS  Google Scholar 

  • Wester JC, McBain CJ (2014) Behavioral state-dependent modulation of distinct interneuron subtypes and consequences for circuit function. Curr Opin Neurobiol 29:118–125. doi:10.1016/j.conb.2014.07.007

    Article  CAS  Google Scholar 

  • Xie H, Wang JR, Yau LF et al (2014) Quantitative analysis of the flavonoid glycosides and terpene trilactones in the extract of Ginkgo biloba and evaluation of their inhibitory activity towards fibril formation of β-amyloid peptide. Molecules 19:4466–4478. doi:10.3390/molecules19044466

    Article  Google Scholar 

  • Yang S-G, Zhang X, Sun X-S et al (2010) Diverse ecdysterones show different effects on amyloid-β42 aggregation but all uniformly inhibit amyloid-β42-induced cytotoxicity. J Alzheimer’s Dis 22:107–117. doi:10.3233/JAD-2010-100621

    Article  CAS  Google Scholar 

  • Yoo K-Y, Park S-Y (2012) Terpenoids as potential anti-alzheimer’s disease therapeutics. Molecules 17:3524–3538. doi:10.3390/molecules17033524

    Article  CAS  Google Scholar 

  • Yoon J-H, Youn K, Ho C-T et al (2014) p-Coumaric acid and ursolic acid from Corni fructus attenuated β-amyloid 25–35-induced toxicity through regulation of the NF-κB signaling pathway in PC12 Cells. J Agric Food Chem 62:4911–4916

    Article  CAS  Google Scholar 

  • Yoon M-Y, Hwang J-H, Park J-H et al (2011) Neuroprotective effects of SG-168 against oxidative-stress induced apoptosis in PC12 cells. J Med Food 14:120–127

    Article  Google Scholar 

  • Yoshida H, Meng P, Matsumiya T et al (2014) Carnosic acid suppresses the production of amyloid-β 1-42 and 1-43 by inducing an α-secretase TACE/ADAM17 in U373MG human astrocytoma cells. Neurosci Res 79:83–93. doi:10.1016/j.neures.2013.11.004

    Article  CAS  Google Scholar 

  • Zhan P-Y, Peng C-X, Zhang L-H (2014) Berberine rescues d-galactose-induced synaptic/memory impairment by regulating the levels of Arc. Pharmacol Biochem Behav 117:47–51. doi:10.1016/j.pbb.2013.12.006

    Article  CAS  Google Scholar 

  • Zhang L, Yu H, Zhao X et al (2010) Neuroprotective effects of salidroside against beta-amyloid-induced oxidative stress in SH-SY5Y human neuroblastoma cells. Neurochem Int 57:547–555. doi:10.1016/j.neuint.2010.06.021

    Article  CAS  Google Scholar 

  • Zhou Y, Li W, Xu L, Chen L (2011) In Salvia miltiorrhiza, phenolic acids possess protective properties against amyloid β-induced cytotoxicity, and tanshinones act as acetylcholinesterase inhibitors. Environ Toxicol Pharmacol 31:443–452. doi:10.1016/j.etap.2011.02.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel C. F. R. Ferreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Martins, N., Ferreira, I.C.F.R. (2017). Neurocognitive Improvement Through Plant Food Bioactives: A Particular Approach to Alzheimer’s Disease. In: Puri, M. (eds) Food Bioactives. Springer, Cham. https://doi.org/10.1007/978-3-319-51639-4_11

Download citation

Publish with us

Policies and ethics