Skip to main content

Advertisement

Log in

Dihydromyricetin Ameliorates Behavioral Deficits and Reverses Neuropathology of Transgenic Mouse Models of Alzheimer’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

An Erratum to this article was published on 25 June 2014

Abstract

Alzheimer’s disease (AD) is the leading progressive neurodegenerative disorder afflicting 35.6 million people worldwide. There is no therapeutic agent that can slow or stop the progression of AD. Human studies show that besides loss of cognition/learning ability, neuropsychological symptoms such as anxiety and seizures are seen as high as 70 and 17 % respectively in AD patients, suggesting dysfunction of GABAergic neurotransmission contributes to pathogenesis of AD. Dihydromyricetin (DHM) is a plant flavonoid and a positive allosteric modulator of GABAARs we developed recently (Shen et al. in J Neurosci 32(1):390–401, 2012 [1]). In this study, transgenic (TG2576) and Swedish transgenic (TG-SwDI) mice with AD-like pathology were treated with DHM (2 mg/kg) for 3 months. Behaviorally, DHM-treated mice show improved cognition, reduced anxiety level and seizure susceptibility. Pathologically, DHM has high efficacy to reduce amyloid-β (Aβ) peptides in TG-SwDI brain. Further, patch-clamp recordings from dentate gyrus neurons in hippocampal slices from TG-SwDI mice showed reduced frequency and amplitude of GABAAR-mediated miniature inhibitory postsynaptic currents, and decreased extrasynaptic tonic inhibitory current, while DHM restored these GABAAR-mediated currents in TG-SwDI. We found that gephyrin, a postsynaptic GABAAR anchor protein that regulates the formation and plasticity of GABAergic synapses, decreased in hippocampus and cortex in TG-SwDI. DHM treatment restored gephyrin levels. These results suggest that DHM treatment not only improves symptoms, but also reverses progressive neuropathology of mouse models of AD including reducing Aβ peptides, while restoring gephyrin levels, GABAergic transmission and functional synapses. Therefore DHM is a promising candidate medication for AD. We propose a novel target, gephyrin, for treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shen Y, Lindemeyer AK, Gonzalez C, Shao XM, Spigelman I, Olsen RW, Liang J (2012) Dihydromyricetin as a novel anti-alcohol intoxication medication. J Neurosci 32(1):390–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. James B, Leurgans S, Hebert L, Scherr P, Yaffe K, Bennett D (2014) Contribution of Alzheimer disease to mortality in the United States. Neurology 82:821–905

    Article  Google Scholar 

  3. Areosa S, Sherriff F, McShane R (2005) Memantine for dementia. Cochrane Database Syst Rev (3):CD003154. http://www.ncbinlmnihgov/pubmed/16034889

  4. Mount C, Downton C (2006) Alzheimer disease: progress or profit? Nat Med 12(7):780–784

    Article  CAS  PubMed  Google Scholar 

  5. Honig LS, Mayeux R (2001) Natural history of Alzheimer’s disease. Aging (Milano) 13(3):171–182

    CAS  Google Scholar 

  6. Selkoe D (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  7. Hashimoto M, Rockenstein E, Crews L, Masliah E (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. NeuroMol Med 4:21–36

    Article  CAS  Google Scholar 

  8. Parameshwaran K, Dhanasekaran M, Suppiramaniam V (2008) Amyloid-β peptides and glutamatergic synaptic dysregulation. Exp Neurol 210:7–13

    Article  CAS  PubMed  Google Scholar 

  9. Robinson S, Bishop G (2002) Ab as a bioflocculant: implications for the amyloid hypothesis of Alzheimer’s disease. Neurobiol Aging 23:1051–1072

    Article  CAS  PubMed  Google Scholar 

  10. Tiraboschi P, Hansen L, Thal L, Corey-Bloom J (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62:1984–1989

    Article  CAS  PubMed  Google Scholar 

  11. Teich A, Arancio O (2012) Is the amyloid hypothesis of Alzheimer’s disease therapeutically relevant? Biochem J 446(2):165–177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Vellas B, Black R, Thal L, Fox N, Daniels M, McLennan G, Tompkins C, Leibman C, Pomfret M, Team. GMAQ–S (2009) Long-term follow-up of patients immunized with AN1792: reduced functional decline in antibody responders. Curr Alzheimer Res 6(2):144–151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Birks J, Grimley Evans J, Iakovidou V, Tsolaki M (2000) Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev (4):CD001191. doi:10.1002/14651858.CD001191

  14. NIH (2011) Effects of rivastigmine patch on activities of daily living and cognition in patients with severe dementia of the Alzheimer’s type. http://www.clinicaltrialsgov/show/NCT00948766

  15. Rive B, Gauthier S, Costello S, Marre C, François C (2013) Synthesis and comparison of the meta-analyses evaluating the efficacy of memantine in moderate to severe stages of Alzheimer’s disease. CNS Drugs 27(7):573–582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. McShane R, Areosa Sastre A, Minakaran N (2006) Memantine for dementia. Cochrane Database Syst Rev (2):CD003154. http://www.onlinelibrarywileycom/doi/101002/14651858CD003154pub5/pdf

  17. Tricco A, Soobiah C, Berliner S, Ho J, Ng C, Ashoor H, Chen M, Hemmelgarn B, Straus S (2013) Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis. CMAJ 185(16):1393–1401

    Article  PubMed Central  PubMed  Google Scholar 

  18. Schaeffer E, Figueiro M, GattazI W (2011) Insights into Alzheimer disease pathogenesis from studies in transgenic animal models. Clinics 66(S1):45–54

    Article  PubMed Central  PubMed  Google Scholar 

  19. Teri L, Ferretti L, Gibbons L, Logsdon R, McCurry S, Kukull W, McCormick W, Bowen J, Larson E (1999) Anxiety of Alzheimer’s disease: prevalence, and comorbidity. J Gerontol A Biol Sci Med Sci 54(7):M348–M352

    Article  CAS  PubMed  Google Scholar 

  20. Chemerinski E, Petracca G, Manes F, Leiguarda R, Starkstein S (1998) Prevalence and correlates of anxiety in Alzheimer’s disease. Depress Anxiety 7(4):166–170

    Article  CAS  PubMed  Google Scholar 

  21. Mendez M, Catanzaro P, Doss R, Arguello R, Frey WH (1994) Seizures in Alzheimer’s disease: clinicopathologic study. J Geriatr Psychiatry Neurol 7(4):230–233

    Article  CAS  PubMed  Google Scholar 

  22. Palop J, Mucke L (2009) Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol 66(4):435–440

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lanctôt KL, Herrmann N, Mazzotta P, Khan LR, Ingber N (2004) GABAergic function in Alzheimer’s disease: evidence for dysfunction and potential as a therapeutic target for the treatment of behavioural and psychological symptoms of dementia. Can J Psychiatry 49:439–453

    PubMed  Google Scholar 

  24. Rissman R, Mobley W (2011) Implications for treatment: GABAA receptors in aging, down syndrome and Alzheimer’s disease. J Neurochem 117:613–622

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Palop J, Chin J, Roberson E, Wang J, Thwin M, Bien-Ly N, Yoo J, Ho KO, Yu GQ, Kreitzer A, Finkbeiner S, Noebels JL, Mucke L (2007) Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 5:697–711

    Article  Google Scholar 

  26. Paula-Lima A, Brito-Moreira J, Ferreira S (2013) Deregulation of excitatory neurotransmission underlying synapse failure in Alzheimer’s disease. J Neurochem 126(2):191–202

    Article  CAS  PubMed  Google Scholar 

  27. Glykys J, Mody I (2006) Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABAA receptor α5 subunit-deficient mice. J Neurophysiol 95(5):2796–2807

    Article  CAS  PubMed  Google Scholar 

  28. Collingridge G, Isaac J, Wang Y (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5(12):952–962

    Article  CAS  PubMed  Google Scholar 

  29. Louzada P, Paula Lima A, Mendonca-Silva D, Noël F, De Mello F, Ferreira S (2004) Taurine prevents the neurotoxicity of β-amyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders. FASEB J 18(3):511–518

    Article  CAS  PubMed  Google Scholar 

  30. Limon A, Reyes-Ruiz J, Miledi R (2012) Loss of functional GABAA receptors in the Alzheimer diseased brain. PNAS 109:10071–10076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Fatt P, Katz B (1952) Spontaneous subthreshold activity at motor nerve endings. J Physiol 117(1):109–128

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Collingridge G, Gage P, Robertson B (1984) Inhibitory post-synaptic currents in rat hippocampal CA1 neurones. J Physiol 356:551–564

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Ropert N, Miles R, Korn H (1990) Characteristics of miniature inhibitory postsynaptic currents in CA1 pyramidal neurones of rat hippocampus. J Physiol 428:707–722

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Liang J, Cagetti E, Olsen RW, Spigelman I (2004) Altered pharmacology of synaptic and extrasynaptic GABAA receptors on CA1 hippocampal neurons is consistent with subunit changes in a model of alcohol withdrawal and dependence. J Pharmacol Exp Ther 310(3):1234–1245

    Article  CAS  PubMed  Google Scholar 

  35. Liang J, Spigelman I, Olsen R (2009) Tolerance to sedative/hypnotic actions of GABAergic drugs correlates with tolerance to potentiation of extrasynaptic tonic currents of alcohol-dependent rats. J Neurophysiol 102(1):224–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Liang J, Suryanarayanan A, Abriam A, Snyder B, Olsen RW, Spigelman I (2007) Mechanisms of reversible GABAA receptor plasticity after ethanol intoxication. J Neurosci 27(45):12367–12377

    Article  CAS  PubMed  Google Scholar 

  37. Liang J, Suryanarayanan A, Chandra D, Homanics GE, Olsen RW, Spigelman I (2008) Functional consequences of GABAA receptor α4 subunit deletion on synaptic and extrasynaptic currents in mouse dentate granule cells. Alcohol Clin Exp Res 32(1):19–26

    Article  CAS  PubMed  Google Scholar 

  38. Heine M, Karpova A, Gundelfinger E (2013) Counting gephyrins, one at a time: a nanoscale view on the inhibitory postsynapse. Neuron 79(2):213–216

    Article  CAS  PubMed  Google Scholar 

  39. Tyagarajan S, Fritschy J (2014) Gephyrin: a master regulator of neuronal function? Nat Rev Neurosci 15(3):141–156

    Article  CAS  PubMed  Google Scholar 

  40. Tretter H, Mukherjee J, Maric H-M, Schindelin H, Sieghart W, Moss S (2012) Gephyrin, the enigmatic organizer at GABAergic synapses. Front Cell Neurosci 1:1–16

    Google Scholar 

  41. Herweg J, Schwarz G (2012) Splice-specific glycine receptor binding, folding, and phosphorylation of the scaffolding protein gephyrin. J Biol Chem 287(16):12645–12656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kirsch J, Malosio M, Wolters I, Betz H (1993) Distribution of gephyrin transcripts in the adult and developing rat brain. Eur J Neurosci 5(9):1109–1117

    Article  CAS  PubMed  Google Scholar 

  43. Feng G, Tintrup H, Kirsch J, Nichol M, Kuhse J, Betz H, Sanes J (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282(5392):1321–1324

    Article  CAS  PubMed  Google Scholar 

  44. Kneussel M, Brandstätter J, Laube B, Stahl S, Müller U, Betz H (1999) Loss of postsynaptic GABAA receptor clustering in gephyrin-deficient mice. J Neurosci 19(21):9289–9297

    CAS  PubMed  Google Scholar 

  45. Hales C, Rees H, Seyfried N, Dammer EB, Duong DM, Gearing M, Montine TJ, Troncoso JC, Thambisetty M, Levey AI, Lah JJ, Wingo TS (2013) Abnormal gephyrin immunoreactivity associated with Alzheimer disease pathologic changes. J Neuropathol Exp Neurol 72(11):1009–1015

    Article  CAS  PubMed  Google Scholar 

  46. Duthey B (2013) Background paper 6.11 Alzheimer disease and other dementias. http://www.hoint/medicines/areas/priority_medicines/BP6_11Alzheimerpdf

  47. Carrasco J, Adlard P, Cotman C, Quintana A, Penkowa M, Xu F, Van Nostrand W, Hidalgo J (2006) Metallothionein-I and -III expression in animal models of Alzheimer disease. Neuroscience 143(4):911–922

    Article  CAS  PubMed  Google Scholar 

  48. Chandra D, Werner D, Liang J, Suryanarayanan A, Harrison N, Spigelman I, Olsen R, Homanics G (2008) Normal acute behavioral responses to moderate/high dose ethanol in GABAA receptor α4 subunit knockout mice. Alcohol Clin Exp Res 32(1):10–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T (2013) Object recognition test in mice. Nat Protoc (12):2531–2537. doi:10.1038/nprot.2013.155

  50. Davis J, Xu F, Deane R, Romanov G, Previti M, Zeigler K, Zlokovic B, Van Nostrand W (2004) Early-onset and robust cerebral microvascular accumulation of amyloid β-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa Mutant form of amyloid β-protein precursor. J Biol Chem 279(19):20296–20306

    Article  CAS  PubMed  Google Scholar 

  51. Rosenberg P, Lanctôt K, Drye L, Herrmann N, Scherer R, Bachman D, Mintzer J (2013) Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. J Clin Psychiatry 74(8):810–816

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Mintzer J, Faison W, Street J, Sutton V, Breier A (2001) Olanzapine in the treatment of anxiety symptoms due to Alzheimer’s disease: a post hoc analysis. Int J Geriatr Psychiatry 16(S1):S71–S77

    Article  PubMed  Google Scholar 

  53. Porter V, Buxton W, Fairbanks L, Strickland T, O’Connor SM, Rosenberg-Thompson S, Cummings JL (2001) Frequency and characteristics of anxiety among patients with Alzheimer’s disease and related dementias. J Neuropsychiatry Clin Neurosci 15:180–186

    Article  Google Scholar 

  54. Francis P, Palmer A, Snape M, Wilcock G (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Demuro A, Smith M, Parker I (2011) Single-channel Ca2+ imaging implicates Aβ1-42 amyloid pores in Alzheimer’s disease pathology. J Cell Biol 195:515–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Anekonda T, Quinn J (2011) Calcium channel blocking as a therapeutic strategy for Alzheimer’s disease: the case for isradipine. Biochim Biophys Acta 12:1584–1590

    Article  Google Scholar 

  57. Kim S, Rhim H (2011) Effects of amyloid-β peptides on voltage-gated L-type Ca(V)1.2 and Ca(V)1.3 Ca(2+) channels. Mol Cells 32:289–294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Sun B, Halabisky B, Zhou Y, Palop J, Yu G, Mucke L, Gan L (2009) Imbalance between GABAergic and glutamatergic transmission impairs adult neurogenesis in an animal model of Alzheimer’s disease. Cell Stem Cell 5(6):624–633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Luchetti S, Huitinga I, Swaab D (2011) Neurosteroid and GABAA receptor alterations in Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. Neuroscience 191:6–21

    Article  CAS  PubMed  Google Scholar 

  60. Mizukami K, Ikonomovic M, Grayson DR, Sheffield R, Armstrong DM (1998) Immunohistochemical study of GABAA receptor α1 subunit in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Brain Res 799(1):148–155

    Article  CAS  PubMed  Google Scholar 

  61. Mizukami K, Ikonomovic M, Grayson D, Rubin R, Warde D, Sheffield R, Hamilton R, Davies P, Armstrong D (1997) Immunohistochemical study of GABAA receptor β2/3 subunits in the hippocampal formation of aged brains with Alzheimer-related neuropathologic changes. Exp Neurol 147(2):333–345

    Article  CAS  PubMed  Google Scholar 

  62. Mizukami K, Grayson D, Ikonomovic M, Sheffield R, Armstrong D (1998) GABAA receptor β2 and β3 subunits mRNA in the hippocampal formation of aged human brain with Alzheimer-related neuropathology. Brain Res Mol Brain Res 56:268–272

    Article  CAS  PubMed  Google Scholar 

  63. Agarwal A, Tannenberg R, Dodd P (2008) Reduced expression of the inhibitory synapse scaffolding protein gephyrin in Alzheimer’s disease. J Alzheimers Dis 14(3):313–321

    CAS  PubMed  Google Scholar 

  64. Tretter V, Jacob T, Mukherjee J, Fritschy J, Pangalos M, Moss S (2008) The clustering of GABAA receptor subtypes at inhibitory synapses is facilitated via the direct binding of receptor α2 subunits to gephyrin. J Neurosci 6:1356–1365

    Article  Google Scholar 

  65. Ahmed F, Ghalib R, Sasikala P, Ahmed K (2013) Cholinesterase inhibitors from botanicals. Pharmacogn Rev 7(14):121–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wang Z, Wan H, Li J, Zhang H, Tian M (2013) Molecular imaging in traditional Chinese medicine therapy for neurological diseases. Biomed Res Int 608430. doi:10.1155/2013/608430

  67. Jia J, Zhao Q, Liu Y, Gui Y, Liu G, Zhu D, Yu C, Hong Z (2013) Phase I study on the pharmacokinetics and tolerance of ZT-1, a prodrug of huperzine A, for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 34(7):976–982. doi:10.1038/aps.2013.7

    Article  CAS  PubMed  Google Scholar 

  68. Möhler H (2011) The rise of a new GABA pharmacology. Neuropharmacology 60(7–8):1042–1049

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Kerstin Lindemeyer, A., Shen, Y. et al. Dihydromyricetin Ameliorates Behavioral Deficits and Reverses Neuropathology of Transgenic Mouse Models of Alzheimer’s Disease . Neurochem Res 39, 1171–1181 (2014). https://doi.org/10.1007/s11064-014-1304-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1304-4

Keywords

Navigation