Skip to main content

Critical Evaluation of Algal Biofuel Production Processes Using Wastewater

  • Chapter
  • First Online:
Algal Biofuels

Abstract

Simultaneous biofuel production and wastewater treatment using microalgae have future prospects for sustainable development. However, cultivation and harvesting system still have challenges to be addressed to make it implementable in large as an energy efficient process. This chapter discusses about different cultivation and harvesting processes with their advantages and drawbacks. There are many approaches for cultivation like open pond and close pond system. As far as harvesting system is concerned centrifugation and sedimentation are the most widely used processes, apart from them filtration, flotation, and flocculation have also gained interest. Inefficient cultivation processes, high energy intensive harvesting systems, and night biomass loss are the main bottleneck in the implementation of algal based simultaneous biofuel production and wastewater treatment system. Recently researchers are looking towards attached immobilization systems, integrated photo-bioelectrochemical system, and electrophoresis harvesting system to address the above issues. However, still more research and development is required to make them applicable in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIWPS:

Advanced Integrated Wastewater Pond System

ATS:

Algal turf scrubbing

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

DAF:

Dissolved air flotation

DW:

Dry weight

FIMP:

Flat inclined modular photobioreactor

GHG:

Green house gas

HRP:

High-rate pond

HRT:

Hydraulic retention time

IPB:

Integrated photo-bioelectrochemical

MFA:

Monounsaturated fatty acids

MFCs:

Microbial fuel cells

N:

Nitrogen

OP:

Open pond

P:

Phosphorus

PAR:

Photosynthetically active radiation

PBRs:

Photobioreactors

PUFA:

Polyunsaturated fatty acid

SFA:

Saturated fatty acids

SS:

Suspended solid

TFF:

Tangential flow filtration

TOC:

Total organic carbon

VF:

Vacuum filter

WSP:

Wastewater stabilization pond

References

  • Adey WH (1982) Algal turf scrubber. United States patent US 4333263.

    Google Scholar 

  • Adey WH (1998a) Algal turf water purification method. United States patent US 5851398

    Google Scholar 

  • Adey WH, Loveland K (second ed.) (1998b) Dynamic aquaria: building living ecosystems, Academic, San Diego, 498

    Google Scholar 

  • Adey WH, Luckett C, Jensen K (1993) Phosphorus removal from natural waters using controlled algal production. Restor Ecol 1:29–39

    Article  Google Scholar 

  • Alexiou GE, Mara DD (2003) Anaerobic waste stabilization ponds, a low cost contribution to a sustainable wastewater reuse cycle. Appl Biochem Biotechnol 241:109–110

    Google Scholar 

  • Al-Hashimi MAI, Hussain HT (2013) Stabilization pond for wastewater treatment. Eur Sci J 9:278–294

    Google Scholar 

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840

    Article  CAS  Google Scholar 

  • An JY, Sim SJ, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191

    Article  CAS  Google Scholar 

  • Arar A (1985) Background to treatment and use of sewage effluent. In: Arar A (ed) Pescod MB. FAO, New York, pp 10–17

    Google Scholar 

  • Arora A, Saxena S (2005) Cultivation of Azolla microphylla biomass on secondary treated Delhi municipal effluents. Biomass Bioenergy 29:60–64

    Article  CAS  Google Scholar 

  • Arthur JP (1983) Notes on the design and operation of waste stabilization ponds in warm climates of developing countries. Technical paper No7.Washington D.C

    Google Scholar 

  • Azov Y, Shelef G (1982) Operation of high-rate oxidation ponds: theory and experiments. Water Res 16:1153–1160

    Article  CAS  Google Scholar 

  • Barbosa MJ, Zijffers JW, Nisworo A, Vaes W, Schoonhoven J, Wijffels RH (2005) Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique. Biotechnol Bioeng 89:233–242

    Article  CAS  Google Scholar 

  • Beardall J, Burger-Wiersma T, Rijkeboer M, Sukenik A, Lemoalle J, Dubinsky Z (1994) Studies on enhanced post-illumination respiration in microalgae. J Plankton Res 16:1401–1410

    Article  Google Scholar 

  • Béchet Q, Shilton A, Guieysse B (2013) Modeling the effects of light and temperature on algae growth: state of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnol Adv 31:1648–1663

    Article  Google Scholar 

  • Benemann JR (1989) The future of microalgal biotechnology. In: Cresswell RC, Rees TAV, Shah N (eds) Algal and Cyanobacterial Biotechnology. Longman Scientific and Technical, New York, pp 317–337

    Google Scholar 

  • Benemann JR (2003) Biofixation of CO2 and greenhouse gas abatement with michroalgae – technology roadmap. Prepared for the U.S. Department of Energy National Energy Technology Laboratory, No. 7010000926.

    Google Scholar 

  • Boichenko VA, Wiessner W, Klimov VV, Mende D, Demeter S (1992) Hydrogen photoevolution indicates an increase in the antenna size of photosystem I in Chlamydobotrys stellata during transition from autotrophic to photoheterotrophic nutrition. Plant Physiol 100:518–524

    Article  CAS  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1–3):313–321

    Article  CAS  Google Scholar 

  • Bosma R, van Spronsen WA, Tramper J, Wijffels RH (2003) Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol 15:143–153

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae: a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  • Burrell ER, Inniss EW, Mayfield IC (1984) Development of an optimal heterotrophic growth medium for Chlorella vulgaris. Appl Microbiol Biotechnol 20(4):281–283

    Article  Google Scholar 

  • Burris JE (1977) Photosynthesis, photorespiration, and dark respiration in eight species of algae. Mar Biol 39:371–379

    Article  CAS  Google Scholar 

  • Cañizares RO, Domínguez AR (1993) Growth of Spirulina maxima on swine waste. Bioresour Technol 45:73–75

    Article  Google Scholar 

  • Cao J, Yuan W, Pei ZJ, Davis T, Cui Y, Beltran MA (2009) Preliminary study of the effect of surface texture on algae cell attachment for a mechanical-biological energy manufacturing system. J Manuf Sci Eng 131:064505

    Article  Google Scholar 

  • Carlsson A, van Beilen J, Möller R, Clayton D, Bowles D (2007) Micro and macro algae- utility for industrial applications bioproducts. In: EPOBIO: realising the economic potential of sustainable resources and bioproducts from non-food crops. CNAP, University of York, p 86

    Google Scholar 

  • Carvalho A, Meireles L, Malcata F (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  CAS  Google Scholar 

  • Chang J, Lee D, Aisyah R, Yeh K, Chen C (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  Google Scholar 

  • Cheng PF, Ji B, Gao L, Zhang W, Wang J, Liu T (2013) The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour Technol 138:95–100

    Article  CAS  Google Scholar 

  • Cheung YH, Wong MH (1981) Properties of animal manure and sewage sludges and their utilization for algal growth. Agric Wastes 3:109–122

    Article  CAS  Google Scholar 

  • Chevalier P, De la Noüe J (1985a) Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzym Microb Technol 7:621–624

    Article  CAS  Google Scholar 

  • Chevalier P, De la Noüe J (1985b) Efficiency of immobilized hyperconcentrated algae for ammonium and orthophosphorus removal from wastewater. Biotechnol Lett 7:395–400

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  Google Scholar 

  • Christenson LB, Sims RC (2012) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuel by-products. Biotechnol Bioeng 109(7):1674–1684

    Article  CAS  Google Scholar 

  • Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM (2011) Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol 45:7554–7560

    Article  CAS  Google Scholar 

  • Cui Y (2013) Fundamentals in microalgae harvesting: from flocculation to self-attachment [PhD Thesis]. Publisher: North Carolina State University; Raleigh

    Google Scholar 

  • Dalrymple OK, Halfhide T, Udom I, Gilles B, Wolan J, Zhang Q (2013) Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquat Biosyst 9:1–11

    Article  Google Scholar 

  • Darzins AL, Pienkos Philip, Edye Les (2010) Current status and potential for algal biofuels production. Report T39-T2. 6 August 2010

    Google Scholar 

  • Davis EA, Dedrick J, French CS, Milner HW, Myers J, Smith JHC, Spoehr HA (1953) Laboratory experiments on Chlorella culture at the Carnegie Institution of Washington Department of Plant Biology. In: Burlew JS (ed) Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, pp 105–153

    Google Scholar 

  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507

    Article  CAS  Google Scholar 

  • Debora CK, Edward JB (2015) Prospects for biodiesel production from algae-based wastewater treatment in Brazil: a review. Renew Sustain Energy Rev 52:1834–1846

    Article  CAS  Google Scholar 

  • da Silva Nascimento JR (2001) (Dissertacao de Mestrado). Lagoas de Alta Taxa de Producao de Algas para Pos-Tratamento de Efluentes de Reatores Anaerobios (High Rate Ponds for Algae Production after pos treatment of Anaerobic Reactors). Porto Alegre: UFRS/Programa de Pos-Graduacao em Engenharia de Recursos Hidricos e Saneamento Ambiental;.p. 166.

    Google Scholar 

  • De-bashan LE, Bashan Y (2010) Immobilized micro for removing pollutants: review of practical aspects. Bioresour Technol 101(6):1611–1627

    Article  CAS  Google Scholar 

  • De-bashan LE, Moreno M, Hernandez JP, Bashan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris co-immobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51:2738–2749

    Article  CAS  Google Scholar 

  • Demirbas A, Fatih Demirbas M (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 52:163–170

    Article  Google Scholar 

  • Doran PM (1995) Bioprocess engineering principles, pp. 129–163

    Book  Google Scholar 

  • Edmundson SJ, Huesemann MH (2015) The dark side of algae cultivation: characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salina and Picochlorum sp. Algal Res 12:470–476

    Article  Google Scholar 

  • El Hamouri B, Rami BA, Vasel JL (2003) The reasons behind the performance superiority of a high rate algal pond over three facultative ponds in series. Water Sci Technol 48:269–276

    CAS  Google Scholar 

  • Elliott DC, Hart TR, Schmidt AJ, Neuenschwander GG, Rotness LJ, Olarte MV (2013) Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor. Algal Res 2:445–454

    Article  Google Scholar 

  • Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30:1525–1536

    Article  CAS  Google Scholar 

  • Falkowski PG, Owens TG (1978) Effects of light intensity on photosynthesis and dark espiration in six species of marine phytoplankton. Mar Biol 45:289–295

    Article  CAS  Google Scholar 

  • Fallowfield HD, Barret MK (1985) The photosynthetic treatment of pig slurry in temperate climatic conditions: a pilot plant study. Agric Wastes 12:111–136

    Article  CAS  Google Scholar 

  • Gao H, Scherson YD, Wells GF (2014) Towards energy neutral wastewater treatment: methodology and state of the art. Environ Sci Process Impacts 16:1223–1246

    Article  CAS  Google Scholar 

  • Geider R, Osborne B (1989) Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New Phytol 112:327–341

    Article  Google Scholar 

  • Godos ID, Blanco S, García-Encina PA, Becares E, Munoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol 100:4332–4339

    Article  CAS  Google Scholar 

  • González C, Marciniak J, Villaverde S, León C, García PA, Muñoz R (2008) Efficient nutrient removal from swine manure in a tubular biofilm photo-bioreactor using algae–bacteria consortia. Water Sci Technol 58:95–102

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Grobbelaar J, Soeder C (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankton Res 7:497–506

    Article  Google Scholar 

  • Gross M, Henry W, Michael C, Wen Z (2013) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour Technol 150:195–201

    Article  CAS  Google Scholar 

  • Guterman H, Ben-Yaakov S, Vonshak A (1989) Automatic on-line growth estimation method for outdoor algal biomass production. Biotechnol Bioeng 34:143–152

    Article  CAS  Google Scholar 

  • Guzzon A, Bohn A, Diociaiuti M, Albertano P (2008) Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res 42:4357–4367

    Article  CAS  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14(3):1037–1047

    Article  CAS  Google Scholar 

  • Hashimoto S, Furukawa K (1989) Nutrient removal from secondary effluent by filamentous algae. J Ferment Bioeng 67:62–69

    Article  CAS  Google Scholar 

  • He S, Xue G (2010) Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP). J Hazard Mater 178:895–899

    Article  CAS  Google Scholar 

  • Henderson RK, Parsons SA, Jefferson B (2008) Surfactants as bubble surface modifiers in the flotation of algae: Dissolved air flotation that utilizes a chemically modified bubble surface. Environ Sci Technol 42:4883–4888

    Article  CAS  Google Scholar 

  • Ho SH, Chen CY, Lee DJ, Chang JS (2011) Perspectives on microalgal CO2-emission mitigation systems – a review. Biotechnol Adv 29(2):189–198

    Article  CAS  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and non-suspended algae. J Phycol 34:757–763

    Article  CAS  Google Scholar 

  • Horan NJ (1996) Biological wastewater treatment systems: theory and operation. Series. John Wiley and Sons

    Google Scholar 

  • Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60

    Article  CAS  Google Scholar 

  • Hu Q, Kurano N, Kawachi M (1998) Ultrahigh-cell-density culture of a marine green alga Chlorococcum littorale in a flat-plate photobioreactor. Appl Microbiol Biotechnol 49:655–662

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Ip SY, Bridger JS, Chin CT, Martin WRB, Raper WGC (1982) Algal growth in primary settled sewage – the effects of five key variables. Water Res 16:621–632

    Article  CAS  Google Scholar 

  • Jacobson MZ (2009) Review of solutions to global warming, air pollution, and energy security. Energy Environ Sci 2:148–173

    Article  CAS  Google Scholar 

  • Jensen KR (1996) Apparatus for water purification by culturing and harvesting attached algal communities. United States patent US 5527456.

    Google Scholar 

  • Jimenez-Perez MV, Sanchez-Castillo P, Romera O, Fernandez-Moreno D, Perez-Martinez C (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enzym Microb Technol 34:392–398

    Article  CAS  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  Google Scholar 

  • Johnson LE (1994) Enhanced settlement on microtopographical high points by the intertidal red alga Halosaccion glandiforme. Limnol Oceanogr 39(8):1893–1902

    Article  Google Scholar 

  • Johnson MB, Wen ZY (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534

    Article  CAS  Google Scholar 

  • Johnson Michael B (2009) Microalgal biodiesel production through a novel attached culture system and conversion parameters. Thesis

    Google Scholar 

  • Kagami M, de Bruin A, Ibelings B, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Katarzyna L, Sai G, Singh OA (2015) Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs. Renew Sust Energ Rev 42:1418–1427

    Article  CAS  Google Scholar 

  • Kebede-Westhead E, Pizarro C, Mulbry WW (2006) Treatment of swine manure effluent using freshwater algae: production, nutrient recovery, and elemental composition of algal biomass at four effluent loading rates. J Appl Phycol 18:41–46

    Article  Google Scholar 

  • Kelly P, He Z (2014) Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 153:351–360

    Article  CAS  Google Scholar 

  • Kligerman DC, Bouwer EJ (2015) Prospects for biodiesel production from algae-based wastewater treatment in Brazil: a review. Renew Sust Energ Rev 52:1834–1846

    Article  CAS  Google Scholar 

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18

    Article  CAS  Google Scholar 

  • Konig A, Pearson HW, Silva SA (1987) Ammonia toxicity to algal growth in waste stabilization ponds. Water Sci Technol 19:115–122

    CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  CAS  Google Scholar 

  • Langdon C (1993) The significance of respiration in production measurements based on oxygen. ICES Mar Sci Symp 197:69–78

    Google Scholar 

  • Lardon L, Hellias A, Sialve B (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1997) Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 18:945–951

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wong YS (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:59–66

    Article  CAS  Google Scholar 

  • Lavoie A, De la Noüe J (1985) Hyperconcentrated cultures of Scenedesmus obliquus. A new approach for wastewater biological tertiary treatment. Water Res 19:1437–1442

    Article  CAS  Google Scholar 

  • Le Borgne F, Pruvost J (2013) Investigation and modeling of biomass decay rate in the dark and its potential influence on net productivity of solar photobioreactors for microalga Chlamydomonas reinhardtii and cyanobacterium Arthrospira platensis. Bioresour Technol 138:271–276

    Article  CAS  Google Scholar 

  • Lee SH, Oh HM, Jo BH, Lee SA, Shin SY, Kim HS, Lee SH, Ahn CY (2014) Higher biomass productivity of microalgae in an attached growth system, using wastewater. J Microbiol Biotechnol 24(11):1566–1573

    Article  CAS  Google Scholar 

  • Lee YK (2007) Algal nutrition – heterotrophic carbon nutrition. In: Amos R (ed) Handbook of microalgal culture. Blackwell, Oxford, pp 116–124

    Google Scholar 

  • Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20:280–285

    Article  CAS  Google Scholar 

  • Leite GB, Abdelaziz AE, Hallenbeck PC (2013) Algal biofuels: challenges and opportunities. Bioresour Technol 145:134–141

    Article  CAS  Google Scholar 

  • Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:746–756

    Google Scholar 

  • Li WW, Yu HQ, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 7:911–924

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalgae Chlorella sp. well adapted to highly concentrated municipal wastewater in nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  Google Scholar 

  • Lin YH, Leu JY, Lan CR, Lin PH, Chang FL (2003) Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photobioreactor. Chemosphere 53:779–787

    Article  CAS  Google Scholar 

  • Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, Chen Y, Zhang W, Chen X, Chen L, Gao L, Ji C, Wang H (2013b) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  Google Scholar 

  • Liu X, Saydah B, Eranki P, Colosi LM, Greg Mitchell B, Rhodes J (2013a) Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresour Technol 148:163–171

    Article  CAS  Google Scholar 

  • López Barreiro D, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127

    Article  CAS  Google Scholar 

  • Lü J, Sheahan C, Fu PC (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466

    Article  CAS  Google Scholar 

  • Lundquist T, Woertz I, Quinn N, Benemann JR (2010) A Realistic Technology and Engineering Assessment of Algae Biofuel Production. Energy Biosciences Institute, Berkeley, California, pp. 1–178

    Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  Google Scholar 

  • Martin C, de la Noüe J, Picard G (1985) Intensive cultivation of freshwater microalgae on aerated pig manure. Biomass 7:245–259

    Article  Google Scholar 

  • Martinez ME, Sanchez S, Jimenez JM, El Yousfi F, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • McKinley KR, Wetzel RG (1979) Photolithotrophy, photoheterotrophy, and chemoheterotrophy: patterns of resource utilization on an annual and a diurnal basis within a pelagic microbial community. Microb Ecol 5:1–15

    Article  CAS  Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489

    Article  CAS  Google Scholar 

  • Mezzari MP, Silva MLB, Pirolli M, Perazzoli S, Steinmetz RLR, Nunes EO (2014) Assessment of tannin-based organic polymer to harvest Chlorella vulgaris biomass from swine wastewater digestate phycoremediation. Water Sci Technol 70(5):888–894

    Article  CAS  Google Scholar 

  • Michels MHA, Slegers PM, Vermuë MH, Wijffels RH (2014) Effect of biomass concentration on the productivity of Tetraselmis suecica in a pilot-scale tubular photobioreactor using natural sunlight. Algal Res 4:12–18

    Article  Google Scholar 

  • Molina-Grima E, Acien Fernandez FG, Garcia Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer and scale up. J Biotechnol 70:231–247

    Article  CAS  Google Scholar 

  • Molina-Grima E, Belarbi E, Acién Fernández FG, Robles Medina A, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  CAS  Google Scholar 

  • Molina-Grima E, Sierra E, Acien JM, Fernendez JL, Gonzalez GC (2008) Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J 138:136–147

    Article  CAS  Google Scholar 

  • Morales J, de la Noüe J, Picard G (1985) Harvesting marine microalgae species by chitosan flocculation. Aquac Eng 4(4):257–270

    Article  Google Scholar 

  • Moreno-Garrido I (2008) Microalgae immobilization: Current techniques and uses. Bioresour Technol 99:3949–3964

    Article  CAS  Google Scholar 

  • Muir J, Green FB, Bernstone L, Lundquist TJ, Tresan RB (1995) Methane fermentation, submerged gas collection, and the fate of carbon in advanced integrated wastewater pond systems. Water Sci Technol 31:55–65

    Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede-Westhead E (2008) Treatment of dairy manure effluent using freshwater algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    Article  CAS  Google Scholar 

  • Mulbry W, Westhead EK, Pizarro C, Sikora L (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458

    Article  CAS  Google Scholar 

  • Mulbry WW, Wilkie AC (2001) Growth of benthic freshwater algae on dairy manures. J Appl Phycol 13:301–306

    Article  Google Scholar 

  • Munoz R (2005) Algal-bacterial photobioreactors for the degradation of toxic organic pollutants. Ph.D Thesis Lund University.

    Google Scholar 

  • Munoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: A review. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Munoz R, Guieysse B (2008) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815

    Article  CAS  Google Scholar 

  • Nurdogan Y, Oswald WJ (1996) Tube settling of high-rate pond algae. Water Sci Technol 33:229–241

    Article  CAS  Google Scholar 

  • Ogbonna JC, Tanaka H (1996) Night biomass loss and changes in biochemical composition of cells during light/dark cyclic culture of Chlorella pyrenoidosa. J Ferment Bioeng 82:558–564

    Article  CAS  Google Scholar 

  • Oh HM, Lee SJ, Park MH, Kim HS, Kim HC, Yoon JH, Kwon GS, Yoon BD (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol Lett 23:1229–1234

    Article  CAS  Google Scholar 

  • Olguín E, Galicia S, Camacho R, Mercado G, Pérez T (1997) Production of Spirulina sp. in sea water supplemented with anaerobic effluents in outdoor raceway under temperature climatic conditions. Appl Microbiol Biotechnol 48:242–247

    Article  Google Scholar 

  • Olguin EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  CAS  Google Scholar 

  • Olguin EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30(5):1031–1046

    Article  CAS  Google Scholar 

  • Oswald WJ (1988) In: Borowitzka MA, Borowitzka LJ (eds) Micro-algae and waste-water treatment. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Oswald WJ (1995) Ponds in the twenty-first century. Water Sci Technol 31:1–8

    Article  CAS  Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 11:223–242

    Article  Google Scholar 

  • Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548

    Article  CAS  Google Scholar 

  • Park JBK, Craggs R, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, De-Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  CAS  Google Scholar 

  • Pescod MB, Mara DD (1985) Design, operation and maintenance of wastewater stabilization ponds. In: Pescod MB, Arar A, editors. NewYork: FAO, p 93–115.

    Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefin 3:431–440

    Article  CAS  Google Scholar 

  • Piligaev AV, Sorokina KN, Bryanskaya AV, Peltek SE, Kolchanov NA, Parmon VN (2015) Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production. Algal Res 12:368–376

    Article  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  CAS  Google Scholar 

  • Pizarro C, Mulbry W, Blersch D, Kangas P (2006) An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecol Eng 26:321–327

    Article  Google Scholar 

  • Poelman E, De Pauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of microalgae. Resour Conserv Recycl 19:1–10

    Article  Google Scholar 

  • Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels – a process view. J Biotechnol 142:64–69

    Article  CAS  Google Scholar 

  • Przytocka-Jusiak M, Baszczyk M, Kosinska E, Bisz-Konarzewska A (1984) Removal of nitrogen from industrial wastewaters with the use of algal rotating disks and denitrification packed bed reactor. Water Res 18:1077–1082

    Article  CAS  Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57(3):287–293

    Article  CAS  Google Scholar 

  • Ramadan H, Ponce VM (1999) Design and performance of waste stabilization ponds. http://stabilizationponds.sdsu.edu. Accessed 30 Sept 2015

  • Ramadan H, Ponce VM (2015) Design and performance of waste stabilization ponds. In stabilizationponds.sdsu.edu. [accessed 7.01.16].

    Google Scholar 

  • Ramos de Ortega A, Roux JC (1986) Production of Chlorella biomass in different types of flat bioreactors in temperate zones. Biomass 10:141–156

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103:444–467

    Article  CAS  Google Scholar 

  • Richardson JW, Johnson MD, Lacey R, Oyler J, Capareda S (2014) Harvesting and extraction technology contributions to algae biofuels economic viability. Algal Res 5:70–78

    Article  Google Scholar 

  • Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451

    Article  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15:139–155

    Article  CAS  Google Scholar 

  • Ruiz-Marin A, Mendoza-Espinosa LG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64

    Article  CAS  Google Scholar 

  • Ryther J, Guillard R (1962) Studies of marine planktonic diatoms: III. Some effects of temperature on respiration of five species. Can J Microbiol 8:447–453

    Article  CAS  Google Scholar 

  • Salim S, Bosma R, Vermue MH, Wijffels RH (2010) Harvesting of microalgae by bioflocculation. J Appl Phycol 23:849–855

    Article  Google Scholar 

  • Samson R, Leduy A (1985) Multistage continuous cultivation of bluegreen alga Spirulina maxima in the flat tank photobioreactors. Can J Chem Eng 63:105–112

    Article  CAS  Google Scholar 

  • Sawayama S, Minowa T, Dote Y, Yokoyama S (1992) Growth of the hydrocarbon- rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 38:135–138

    Article  CAS  Google Scholar 

  • Scott JE, Michael HH (2015) The dark side of algae cultivation: Characterizing night biomass loss in three photosynthetic algae, Chlorella sorokiniana, Nannochloropsis salinaand Picochlorum sp. Algal Res 12:470–476

    Article  Google Scholar 

  • Sekar R, Venugopalan VP, Satpathy KK, Nair KVK, Rao VNR (2004) Laboratory studies on adhesion of microalgae to hard substrates. Hydrobiologia 512:109–116

    Article  Google Scholar 

  • Sharma KK, Garg S, Li Y, Malekizadeh A, Schenk PM (2013) Critical analysis of current microalgae dewatering techniques. Biofuels 4:397–407

    Article  CAS  Google Scholar 

  • Shelef G, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review. Technion Research and Development Foundation, Haifa

    Book  Google Scholar 

  • Shen Y, Yuan W, Pei ZJ, Wu Q, Mao E (2009) Microalgae mass production methods. Trans ASABE 52:1275–1287

    Article  Google Scholar 

  • Shi J, Podola B, Melkonian M (2007) Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. J Appl Phycol 19:417–423

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  CAS  Google Scholar 

  • Silva SA, Mara DD (1979) Tratamento biológicos de águas residuárias: lagoas de estabilização (biological treatment for wastewater: stabilization ponds). ABES, Rio de Janeiro

    Google Scholar 

  • Sing SF, Isdepsky A, Borowitzka MA, Moheimani NR (2011) Production of biofuels from microalgae. Mitig Adapt Strateg Glob Chang 18:47–72

    Article  Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production: a review. Renew Sust Energ Rev 16(4):2347–2353

    Article  CAS  Google Scholar 

  • Skoronski E, Niero B, Fernandes M, Alves MV, Trevisan V (2014) Estudo da aplicação de tanino no tratamento de água para abastecimento captada no rio Tubarão, na cidade de Tubarão, SC (study of tanin application on water treatment for water supply of Tubarao city). Santa Catarina State Ambiente Água. doi:10.4136/ambi-agua.1303

    Google Scholar 

  • Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res 45:3351–3358

    Article  CAS  Google Scholar 

  • Su Y, Mennerich A, Urban B (2012) Coupled nutrient removal and biomass production with mixed algal culture: Impact of biotic and abiotic factors. Bioresour Technol 118:469–476

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58:19–34

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (1990) The comparison of growth and nutrient removal efficiency of Chlorella pyrenoidosa in settled and activated sewages. Environ Pollut 65:93–108

    Article  CAS  Google Scholar 

  • Tampion J, Tampion MD (1987) Immobilized cells: principles and applications. Cambridge University Press, Cambridge UK, p. 257

    Google Scholar 

  • Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68:954–979

    Article  CAS  Google Scholar 

  • Terry KL, Raymond LP (1985) System-design for the autotrophic production of microalgae. Enzym Microb Technol 7:474–487

    Article  Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Torpey WN, Heukelekian H, Kaplovsky AJ, Epstein R (1971) Rotating disks with biological growths prepare wastewater for disposal or reuse. J Water Pollut Control Fed 43:2181–2188

    CAS  Google Scholar 

  • Torzillo G, Sacchi A, Materassi R, Richmond A (1991) Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. J Appl Phycol 3:103–109

    Article  Google Scholar 

  • Travieso L, Benitez F, Weiland P, Sánchez E, Dupeyrón R, Domínguez AR (1996) Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresour Technol 55:181–186

    Article  CAS  Google Scholar 

  • Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the italian experience in the development of reactors for the mass cultivation of phototrophic microorganisms. J Appl Phycol 4:221–231

    Article  Google Scholar 

  • Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  Google Scholar 

  • Udom I, Zaribaf BH, Halfhide T, Gillie B, Dalrymple O, Zhang Q (2013) Harvesting microalgae grown on wastewater. Bioresour Technol 139:101–106

    Article  CAS  Google Scholar 

  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2:012701

    Article  CAS  Google Scholar 

  • Venkataraman LV, Madhavi Devi K, Mahadevaswamy M, Mohammed Kunhi AA (1982) Utilisation of rural wastes for algal biomass production with Scenedesmus Acutus and Spirulina platensis in India. Agric Waste 4:117–130

    Article  Google Scholar 

  • Venteris ER, Skaggs RL, Wigmosta MS, Coleman AM (2014) A national-scale comparison of resource and nutrient demands for algae-based biofuel production by lipid extraction and hydrothermal liquefaction. Biomass Bioenergy 64:276–290

    Article  CAS  Google Scholar 

  • Victoretti BA (1964) Contribuição ao emprego de lagoas de estabilização como processo de depuração de esgotos domésticos (contribution of stabilization ponds as domestic wastewater depuration). CETESB, SãoPaulo

    Google Scholar 

  • Voltolina D, Cordero B, Nieves M, Soto LP (1999) Growth of Scenedesmus sp.in artificial wastewater. Bioresour Technol 68(3):265–268

    Article  CAS  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162(4):1174–1186

    Article  CAS  Google Scholar 

  • Wei Q, Hu Z, Li G, Xiao B, Sun H, Tao M (2008) Removing nitrogen and phosphorus from simulated wastewater using algal biofilm technique. Front Environ Sci Eng China 2:446–451

    Article  Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  CAS  Google Scholar 

  • Whitford LA (1960) The current effect and growth of fresh-water algae. Trans Am Microsc Soc 79(3):302–309

    Article  Google Scholar 

  • Whitford LA, Schumacher GJ (1961) Effect of current on mineral uptake and respiration by a fresh-water alga. Limnol Oceanogr 6(4):423–425

    Article  Google Scholar 

  • WHO: (2015) Guidelines for the safe use of wastewater, excreta and grey water 〈http://www.who.int/water_sanitation_health/wastewater/gsuww/en/index.html〉 [accessed 7.01.16].

  • Wiley PE, Brenneman KJ, Jacobson AE (2009) Improved algal harvesting using suspended air flotation. Water Environ Res 81:702–708

    Article  CAS  Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  CAS  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135(11):1115–1122

    Article  CAS  Google Scholar 

  • Wrigley TJ, Toerien DF (1990) Limnological aspects of small sewage ponds. Water Res 24:83–90

    Article  CAS  Google Scholar 

  • Wuertz S, Bishop PL, Wilderer PA (2003) Biofilms in wastewater treatment: an interdisciplinary approach. IWA Publishing

    Google Scholar 

  • Xiao L, Young EB, Berges JA, He Z (2012) Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production. Environ Sci Technol 46:11459–11466

    Article  CAS  Google Scholar 

  • Xiao L, Young EB, Grothjan JJ, Lyon S, Zhang H, He Z (2015) Wastewater treatment and microbial communities in an integrated photo-bioelectrochemical system affected by different wastewater algal inocula. Algal Res 12:446–454

    Article  Google Scholar 

  • Xu H, Miao X, Wu Q (2004) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  • Yanyan S (2012) PhD Thesis, Settleable algal-bacterial culture for municipal wastewater treatment, Faculty of Environmental Sciences and Engineering, Institute of Ecology and Environmental Chemistry, Leuphana University of Lueneburg, Lueneburg, Germany.

    Google Scholar 

  • Yen HW, Hu IC, Chen CY, Chang JS (2014) Chapter 2: design of photobioreactors for algal cultivation. In: Biofuels from algae. Elsevier B V, pp 23–45

    Google Scholar 

  • Yoo JJ, Choi SP, Kim JY, Chang WS, Sim SJ (2013) Development of thin-film photo-bioreactor and its application to outdoor culture of microalgae. Bioprocess Biosyst Eng 36:729–736

    Article  CAS  Google Scholar 

  • Zhang ED, Wang B, Wang QH, Zhang SB, Zhao BD (2008) Ammonia-nitrogen and orthophosphate removal by immobilized Scenedesmus sp isolated from municipal wastewater for potential use in tertiary treatment. Bioresour Technol 99:3787–3793

    Article  CAS  Google Scholar 

  • Zhang F, Jacobson KS, Torres P, He Z (2010) Effects of anolyte recirculation rates and catholytes on electricity generation in a liter-scale upflow microbial fuel cell. Energy Environ Sci 3:1347–1352

    Article  CAS  Google Scholar 

  • Zhang J, Hu B (2012) A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol 14:529–535

    Article  CAS  Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561

    Article  CAS  Google Scholar 

  • Zhang X (2015) Microalgae removal of CO2 from flue gas. IEA Clean Coal Centre, UK

    Google Scholar 

  • Zhao Q, Wang B (1996) Research note-evaluation on pilot-scale attached-growth pond system treating domestic wastewater. Water Res 30:242–245

    Article  CAS  Google Scholar 

  • Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, Hussain F, Peng P, Xie Q, Li Y, Shi J, Meng J, Ruan R (2014) Environment-enhancing algal biofuel production using wastewaters. Renew Sust Energ Rev 36:256–269

    Article  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R (2011) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol 102:6909–6919

    Article  CAS  Google Scholar 

  • Zhou W, Min M, Li Y, Hu B, Ma X, Cheng Y, Liu YH, Chen P, Ruan R (2012b) A heterophotoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol 110:448–455

    Article  CAS  Google Scholar 

  • Zhou WG, Cheng Y, Li Y, Wan Y, Liu Y, Lin X, Ruan R (2012a) Novel fungal pelletization assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167(2):214–228

    Article  CAS  Google Scholar 

  • Zhu Y, Albrecht KO, Elliott DC, Hallen RT, Jones SB (2013) Development of hydrothermal liquefaction and upgrading technologies for lipid-extracted algae conversion to liquid fuels. Algal Res 2:455–464

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudheer Kumar Shukla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shukla, S.K., Thanikal, J.V., Haouech, L., Patil, S.G., Kumar, V. (2017). Critical Evaluation of Algal Biofuel Production Processes Using Wastewater. In: Gupta, S., Malik, A., Bux, F. (eds) Algal Biofuels. Springer, Cham. https://doi.org/10.1007/978-3-319-51010-1_10

Download citation

Publish with us

Policies and ethics