Skip to main content

General Mechanisms of Creep

  • Chapter
  • First Online:
Creep in Ceramics

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 241))

Abstract

The general creep mechanism is discussed in this chapter, which is classified as: (i) dislocation slip; (ii) climb; (iii) grain-boundary sliding; and (iv) diffusion flow caused by vacancies. The relevant relations and illustrations are included. These provide the basic understanding of creep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell RL, Langdon TG (1967) J Mater Sci 2:313

    Article  Google Scholar 

  2. Blanchard CR, Chan KS (1993) J Amer Ceram Soc 76:1651

    Article  Google Scholar 

  3. Chan KS, Page KA (1992) J Mater Sci 27:1651

    Article  Google Scholar 

  4. Chang HC, Grant NJ (1956) Trans AIME 206:544

    Google Scholar 

  5. Chen D, Sixta ME, Zhang XF, de Jonghe LC, Ritchie RO (2000) Acta Mater 48:4599

    Article  Google Scholar 

  6. Damask AC, Dienes GJ (1971) Point defects in metals. Gordon and Breach, New York

    Google Scholar 

  7. Gandhi C, Raj R (1981) Met Trans A12:515

    Article  Google Scholar 

  8. Hall EO (1951) Proc Phys Soc London 643:747

    Article  Google Scholar 

  9. Langdon TG (2006) J Mater Sci 41:597

    Article  Google Scholar 

  10. Langdon (1993) Mater Sci Eng A166:67

    Google Scholar 

  11. Mott NF (1951) Proc Phys Soc London B64:729; Phil Mag (1952): 43, 1151; Phil Mag 44, 741 (1953); Proc Roy Soc London (1953): A220, 1

    Google Scholar 

  12. Pelleg J (2014) Mechanical properties of ceramics. Springer, Berlin, p 193

    Book  Google Scholar 

  13. Petch NJ (1953) J Iron Steel Inst 173:25

    Google Scholar 

  14. Raj R (1981) Met Trans A12:1089

    Article  Google Scholar 

  15. Sarfarazi M, Ghosh SK (1987) Eng Fract Mech 27:257

    Article  Google Scholar 

  16. Stroh AN (1957) Adv Phys 6:418

    Article  Google Scholar 

  17. Stroh AN (1955) Proc R Soc London 223A:548

    Article  Google Scholar 

  18. Tan JC, Tan MJ (2003) Mater Sci Eng A339:81

    Article  Google Scholar 

  19. Valiev RZ, Gertsman VYu, Kaibyshev OA (1986) Phys Stat Sol (A) 97:11

    Article  Google Scholar 

  20. Wadsworth J, Ruano J, Sherby OA (2002) Met Mater Trans 33A:219

    Article  Google Scholar 

  21. Wu MS, Zhou H (1996) Int J Fract 78:165

    Article  Google Scholar 

  22. Zener C (1948) Elasticity and anelasticity. University of Chicago Press, Chicago

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Pelleg .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pelleg, J. (2017). General Mechanisms of Creep. In: Creep in Ceramics. Solid Mechanics and Its Applications, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-50826-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50826-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50825-2

  • Online ISBN: 978-3-319-50826-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics