Skip to main content
Log in

Denuded zones, diffusional creep, and grain boundary sliding

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The appearance of denuded zones following low stress creep in particle-containing crystalline materials is both a microstructural prediction and observation often cited as irrefutable evidence for the Nabarro-Herring (N-H) mechanism of diffusional creep. The denuded zones are predicted to be at grain boundaries that are orthogonal to the direction of the applied stress. Furthermore, their dimensions should account for the accumulated plastic flow.

In the present article, the evidence for such denuded zones is critically examined. These zones have been observed during creep of magnesium, aluminum, and nickel-base alloys. The investigation casts serious doubts on the apparently compelling evidence for the link between denuded zones and diffusional creep. Specifically, denuded zones are clearly observed under conditions that are explicitly not diffusional creep. Additionally, the denuded zones are often found in directions that are not orthogonal to the applied stress.

Other mechanisms that can account for the observations of denuded zones are discussed. It is proposed that grain boundary sliding accommodated by slip is the rate-controlling process in the stress range where denuded zones have been observed. It is likely that the denuded zones are created by dissolution of precipitates at grain boundaries that are simultaneously sliding and migrating during creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.D. Sherby and P.M. Burke: Progr. Mater. Sci., 1967, vol. 13, p. 325.

    Google Scholar 

  2. W.D. Cao, X.-P. Lu, A.F. Sprecher, and H. Conrad: in Superplasticity in Aerospace II, T.R. McNelley and H.C. Heikennen, eds., TMS, Warrendale, PA, 1990, p. 269.

    Google Scholar 

  3. B. Burton: in Diffusional Creep of Polycrystalline Materials, Trans Tech Pub, Aedermannsdorf, Switzerland, 1977.

    Google Scholar 

  4. J.P. Poirer: Creep of Crystals, Cambridge University Press, Cambridge, United Kingdom, 1985.

    Google Scholar 

  5. J. Wolfenstine, O.A. Ruano, J. Wadsworth, and O.D. Sherby: Scripta Metall. Mater., 1993, vol. 29, p. 515.

    Article  CAS  Google Scholar 

  6. O.A. Ruano, O.D. Sherby, J. Wadsworth, and J. Wolfenstine: Scripta Mater., 1998, vol. 38, p. 1307.

    Article  CAS  Google Scholar 

  7. J. Wadsworth, O.A. Ruano, and O.D. Sherby: in Creep Behavior of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K.L. Murty, eds., TMS, Warrendale, PA, 1999, pp. 425–39.

    Google Scholar 

  8. F.R.N. Nabarro: in Creep Behavior of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K.L. Murty, eds., TMS, Warrendale, PA, 1999, pp. 391–95.

    Google Scholar 

  9. P. Greenfield, C.C. Smith, and A.M. Taylor: Trans. AIME, 1961, vol. 221, p. 1065.

    CAS  Google Scholar 

  10. R.L. Squires, R.T. Weiner, and M. Philips: J. Nucl. Mater., 1963, vol. 8, p. 77.

    Article  CAS  Google Scholar 

  11. V.J. Haddrell: J. Nucl. Mater., 1966, vol. 18, p. 231.

    Article  CAS  Google Scholar 

  12. W. Vickers and P. Greenfield: J. Nucl. Mater., 1967, vol. 24, p. 249.

    Article  CAS  Google Scholar 

  13. B.W. Pickles: J. Inst. Met., 1967, vol. 95, p. 333.

    CAS  Google Scholar 

  14. Walter A. Backofen, Francis J. Azzarto, G.S. Murty, and Stanley W. Zehr: in Ductility, ASM Seminar, Oct. 14–15, 1967, ASM, Metals Park, OH, 1967, pp. 279–310.

    Google Scholar 

  15. A. Karim, D.L. Holt, and W.A. Backofen: Trans. AIME, 1969, vol. 245, p. 2421.

    CAS  Google Scholar 

  16. A. Karim, D.L. Holt, and W.A. Backofen: Trans. AIME, 1969, vol. 245, p. 1131.

    CAS  Google Scholar 

  17. A. Karim: in Ultrafine-Grain Metals, J.J. Burke and V. Weiss, eds., Syracuse University Press, Syracuse, NY, 1970, p. 295.

    Google Scholar 

  18. K.R. McNee: Ph.D. Dissertation, Sheffield University, Sheffield, United Kingdom, 2000.

    Google Scholar 

  19. F.R.N. Nabarro: Report of a Conference on the Strength of Solids (Bristol), The Physical Society, London, 1948, pp. 75–90.

    Google Scholar 

  20. C. Herring: J. Appl. Phys., 1950, vol. 21, p. 437.

    Article  Google Scholar 

  21. L.E. Raraty: J. Nucl. Mater., 1966, vol. 20, p. 344.

    Article  CAS  Google Scholar 

  22. J.E. Harris and R.B. Jones: CEGB Report No. RD/B/R. 144, Berkeley Laboratories, Berkeley, England, July 1963.

  23. J.E. Harris and R.B. Jones: J. Nucl. Mater., 1963, vol. 10, p. 360.

    Article  CAS  Google Scholar 

  24. J.E. Harris: Met. Sci. J., 1973, vol. 7, p. 1.

    Article  CAS  Google Scholar 

  25. P. Greenfield and W. Vickers: J. Nucl. Mater., 1967, vol. 22, p. 77.

    Article  CAS  Google Scholar 

  26. L.E. Raraty, R. Baggott, and E.G. Wilson: J. Inst. Met., 1964, vol. 93, p. 134.

    CAS  Google Scholar 

  27. J. Herenguel: Mater. Res., 1962, vol. 1, p. 65.

    CAS  Google Scholar 

  28. M.F. Ashby and I.G. Palmer: Acta Metall., 1967, vol. 15, p. 420.

    Article  CAS  Google Scholar 

  29. F. Garofalo, W.F. Domis, and F. von Gemmingen: Trans. AIME, 1964, vol. 230, p. 1460.

    CAS  Google Scholar 

  30. T.H. Alden: Trans. ASM., 1968, vol. 61, p. 559.

    Google Scholar 

  31. S.A. Shei and T.G. Langdon: Acta Metall., 1978, vol. 26, p. 639.

    Article  CAS  Google Scholar 

  32. T. Yamane, N. Genma, and Y. Takahashi: J. Mater. Sci., 1984, vol. 19, p. 263.

    Article  CAS  Google Scholar 

  33. B. Burton: Scr. Metall., 1969, vol. 3, p. 247.

    Article  CAS  Google Scholar 

  34. D.K. Matlock and W.D. Nix: Metall. Trans., 1974, vol. 5, pp. 961–63.

    CAS  Google Scholar 

  35. O.A. Ruano, A.K. Miller, and O.D. Sherby: Mater. Sci. Eng., 1981, vol. 51, p. 9.

    Article  CAS  Google Scholar 

  36. O.A. Ruano, J. Wadsworth, and O.D. Sherby: Mater. Sci., 1985, vol. 20, p. 3735.

    Article  CAS  Google Scholar 

  37. A. Ball and M.M. Hutchison: Met. Sci. J., 1969, vol. 3, p. 1.

    Article  Google Scholar 

  38. T. Yamane, N. Genma, and Y. Takahashi: J. Mater. Sci., 1984, vol. 19, p. 3171.

    Article  Google Scholar 

  39. R.C. Gifkins: Mater. Characterization, 1994, vol. 32, p. 59.

    Article  CAS  Google Scholar 

  40. M.J. Mills, J.C. Gibeling, and W.D. Nix: Acta Metall., 1985, vol. 33, p. 1503.

    Article  CAS  Google Scholar 

  41. O.D. Sherby and J. Wadsworth: Progr. Mater. Sci., 1989, vol. 33, p. 169.

    Article  CAS  Google Scholar 

  42. J. Herenguel and P. Lelong: Rev. Metallurgie Paris, 1958, vol. 55, p. 1057.

    Google Scholar 

  43. J.D. Whittenberger: Metall. Trans., 1984, vol. 15A, pp. 1753–62.

    CAS  Google Scholar 

  44. B. Fazan, O.D. Sherby, and J.E. Dorn: Trans. AIME, 1954, vol. 200, p. 919.

    Google Scholar 

  45. T.B. Gibbons: Mater. Sci., 1972, vol. 6, p. 13.

    CAS  Google Scholar 

  46. J.D. Whittenberger: Metall. Trans. A, 1977, vol. 8A, pp. 1155–63.

    CAS  Google Scholar 

  47. J.D. Whittenberger: Metall. Trans. A, 1977, vol. 8A, pp. 1863–70.

    CAS  Google Scholar 

  48. R. Timmins and E. Artz: Scripta Metall., 1988, vol. 22, p. 1353.

    Article  CAS  Google Scholar 

  49. J.A. Wert and A. Varloteaux: in Aluminum Alloys: Their Physical and Mechanical Properties, E.A. Starke and T.H. Sanders, eds., EMAS, Warley, United Kingdom, 1986, vol. II, pp. 1255–67.

    Google Scholar 

  50. Ursula Koch: in Superplasticity in Aerospace, H.C. Heikkenen and T.R. McNelley, eds., TMS, Warrendale, PA, 1988, pp. 115–32.

    Google Scholar 

  51. D.H. Shin, K.S. Kim, D.W. Kum, and S.W. Nam: Metall. Trans. A, 1990, vol. 21A, pp. 2729–37.

    CAS  Google Scholar 

  52. C.H. Hamilton, C.C. Bampton, and N.E. Paton: in Superplastic Forming of Structural Alloys, N.E. Paton and C.H. Hamilton, eds., TMS-AIME, Warrendale, PA, 1982, pp. 173–89.

    Google Scholar 

  53. J.M. Belzunce: Engineer’s Dissertation, Stanford University, Stanford, CA, 1983.

    Google Scholar 

  54. M.K. Rao and A.K. Mukherjee: Mater. Sci. Eng., 1986, vol. 80, p. 181.

    Article  CAS  Google Scholar 

  55. H.E. Addabo, G. Gonzalez-Doncel, O.A. Ruano, J.M. Belzunce, and O.D. Sherby: J. Mater. Res., 1989, vol. 4, p. 587.

    Google Scholar 

  56. M.G. Zelin: J. Mater. Sci., 1997, vol. 32, p. 1075.

    Article  CAS  Google Scholar 

  57. W. Bang, T.K. Ha, and Y.W. Chang: in Superplasticity in Advanced Materials, Materials Science Forum, Namas Chandra, ed., Trans. Tech. Publications, Switzerland, 2001, vols. 357–359, pp. 171–76.

    Google Scholar 

  58. C.R. Barrett, J.L. Lytton, and O.D. Sherby: Trans. AIME, 1967, vol. 239, p. 170.

    CAS  Google Scholar 

  59. C.L. Meyers Jr., J.C. Shyne, and O.D. Sherby: J. Aus. Inst. Met., 1963, vol. 8, p. 171.

    CAS  Google Scholar 

  60. J. Lin and O.D. Sherby: Res. Mechanica, 1981, vol. 2, p. 251.

    CAS  Google Scholar 

  61. R.D. Kane and L.J. Ebert: Metall. Trans. A, 1976, vol. 7A, pp. 133–37.

    CAS  Google Scholar 

  62. R.W. Lund and W.D. Nix: Acta Metall., 1976, vol. 24, p. 469.

    Article  CAS  Google Scholar 

  63. J.J. Stephens and W.D. Nix: Metall. Trans. A, 1985, vol. 16A, pp. 1307–24.

    CAS  Google Scholar 

  64. O.D. Sherby and E.M. Taleff: Mater. Sci. Eng. A, 2001, in press.

  65. T.G. Langdon: Scripta Mater., 1996, vol. 35, p. 733.

    Article  CAS  Google Scholar 

  66. G.W. Greenwood: in Creep Behavior of Advanced Materials for the 21st Century, R.S. Mishra, A.K. Mukherjee, and K.L. Murty, eds., TMS, Warrendale, PA, 1999, pp. 413–24.

    Google Scholar 

  67. K.R. McNee, G.W. Greenwood, and H. Jones: Scripta Mater., 2001, vol. 44, p. 351.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the workshop entitled “Mechanisms of Elevated Temperature Plasticity and Fracture,” which was held June 27–29, 2001, in Dan Diego, CA, concurrent with the 2001 Joint Applied Mechanics and Materials Summer Conference. The workshop was sponsored by Basic Energy Sciences of the United States Department of Energy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wadsworth, J., Ruano, O.A. & Sherby, O.D. Denuded zones, diffusional creep, and grain boundary sliding. Metall Mater Trans A 33, 219–229 (2002). https://doi.org/10.1007/s11661-002-0084-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0084-7

Keywords

Navigation