Skip to main content

Enzymes Involved in the Biodegradation of Sugarcane Biomass: Challenges and Perspectives

  • Chapter
  • First Online:
Advances of Basic Science for Second Generation Bioethanol from Sugarcane

Abstract

This chapter introduces the role of enzymes in the biomass degradation, namely sugarcane bagasse and straw, leading to the formation of fermentable sugars and second-generation ethanol. The chapter begins with a retrospective of the structuring of the ethanol production chain and then presents current aspects where the deficit of production and its consequences in business can be seen. Subsequently, we list the role of enzymes involved in the biomass hydrolysis, the commercial cocktails, and the proposal of our laboratory in this context. On the other hand, the efficiency of enzymes on the biomass is increased when the bagasse and straw are pretreated. Thus, some technologies that may facilitate the enzymatic hydrolysis and the formation of fermentable sugars are described. Lastly, recent analytical methods that enable a better analysis of the composition and viewing of fiber in the sugarcane biomass are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • ANFAVEA (n.d.) Associação Nacional dos Fabricantes de Veículos automotores, Brasil. Dados estatísticos disponíveis em http://www.anfavea.com.br

    Google Scholar 

  • Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J (2006) Inhibition of cellulase, xylanase and beta glucosidase activities by softwood lignin preparations. J Biotechnol 125:198–209

    Article  CAS  PubMed  Google Scholar 

  • BNDES (2015) O Déficit de Produção de etanol no Brasil entre 2012 e 2015: determinantes, consequências e sugestões de política. Milanez AY, Nyko D, Garcia JLF, Reis BLSFS. http://www.bndes.gov.br/bibliotecadigital. Accessed Mar 2015

    Google Scholar 

  • Bon EPS, Gírio F, Pereira N Jr (2008) Enzimas na produção de etanol. In: Bon EPS, Ferrara MA, Corvo ML, Vermelho AB, Paiva CLA, Alencastro RB, Coelho RRR (eds) Enzimas em Biotecnologia Produção, Aplicações e Mercado. Editora Interciência, Rio de Janeiro (Chapter 10)

    Google Scholar 

  • Borin GP, Sanchez CC, De Souza AP, Santana ES, Souza AT, Leme AFP, Squina FM, Buckeridge MS, Goldman GH, Oliveira JVC (2015) Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS One 10(6):e0129275

    Article  PubMed  PubMed Central  Google Scholar 

  • Brodeur G, Yau E, Badal K, Collier J, Ramachandran KB, Ramakrishnan S (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res 2011:1–17

    Article  Google Scholar 

  • Buckeridge MS (2010) Seed cell wall storage polysaccharides: models to understand cell wall biosynthesis and degradation. Plant Physiol 154:1017–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckeridge MS, De Souza AP (2014) Breaking the “Glycomic Code” of cell wall polysaccharides may improve second-generation bioenergy production from biomass. Bioenergy Res 7:1065–1073

    Article  CAS  Google Scholar 

  • Buckeridge MS, Santos HP, Tiné MAS (2000) Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 38:141–156

    Article  CAS  Google Scholar 

  • Buckeridge MS, Santos WD, Tiné MS, De Souza AP (2015) The cell wall architecture of sugarcane and its implications to cell wall recalcitrance. In: Lam E, Carrer H, Silva JA (eds) Compendium of bioenergy plants: sugarcane. CRC Press, Boca Raton, p 125

    Google Scholar 

  • Cannella D, Hsieh CW, Felby C, Jørgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5(1):26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  Google Scholar 

  • Cao G, Ximenes E, Nichols NN, Zhang L, Ladisch M (2013) Biological abatement of cellulase inhibitors. Bioresour Technol 146:604–610

    Article  CAS  PubMed  Google Scholar 

  • Carter B, Squillace P, Gilcrease PC, Menkhaus TJ (2011) Detoxification of a lignocellulosic biomass slurry by soluble polyelectrolyte adsorption for improved fermentation efficiency. Biotechnol Bioeng 108:2053–2060

    Article  CAS  PubMed  Google Scholar 

  • Castro MD, Pereira N Jr (2010) Produção, propriedades e aplicação de celulases na hidrólise de resíduos agroindustriais. Quím Nova 33:181–188

    Article  Google Scholar 

  • Caufrier F, Martinou A, Dupont C, Bouriotis V (2003) Carbohydrate esterase family 4 enzymes: substrate specificity. Carbohydr Res 338(7):687–692

    Article  CAS  PubMed  Google Scholar 

  • Crepin VF, Fauld CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63(6):647–652

    Article  CAS  PubMed  Google Scholar 

  • Damasio ARL, Silva TM, Almeida FBDR, Squina FM, Ribeiro DA, Leme AFP, Segato F, Prade RA, Jorge JA, Terenzi HF, Polizeli MLTM (2011) Heterologous expression of an Aspergillus niveus xylanase GH11 in Aspergillus nidulans and its characterization and application. Process Biochem 46:1236–1242

    Article  CAS  Google Scholar 

  • Damasio ARL, Pessela BC, Segato F, Prade RA, Guisan JM, Polizeli MLTM (2012a) Improvement of fungal arabinofuranosidase thermal stability by reversible immobilization. Process Biochem 47(12):2411–2417

    Article  CAS  Google Scholar 

  • Damasio ARL, Polizeli MLTM, Guisan JM, Prade RA, Pessela BC, Mateo C, Segato F (2012b) Immobilization of a recombinant endo-1,5-arabinanase secreted by Aspergillus nidulans strain A773. J Mol Catal B: Enzym 77:39–45

    CAS  Google Scholar 

  • Damasio ARL, Ribeiro LFC, Ribeiro LF, Furtado GP, Segato F, Almeida FB, Crivellari AC, Buckeridge MS, Souza TA, Murakami MT, Ward RJ, Prade RA, Polizeli MLTM (2012c) Functional characterization and oligomerization of a recombinant xyloglucan-specific endo-β-1,4-glucanase (GH12) from Aspergillus niveus. Biochim Biophys Acta 1824:461–467

    Article  CAS  PubMed  Google Scholar 

  • Damasio ARL, Pessela BC, Silva TM, Guimaraes LH, Jorge JA, Guisan JM, Polizeli MLTM (2013) Co-immobilization of fungal endo-xylanase and α-l-arabinofuranosidase in glyoxyl agarose for improved hydrolysis of arabinoxylan. J Biochem 154:275–280

    Article  CAS  PubMed  Google Scholar 

  • De Lucas RC, Cereia M (2016) Mycology: current and future developments. In: Chapter 1. Large scale production of cellulases for biomass degradation. Bentham Science, Sharjah, vol 1, pp 316–328

    Google Scholar 

  • De Paula RG, Antoniêto ACC, Silva RN (2016) Mycology: current and future developments. In: Chapter 1. The panorama for biofuels biotechnology: present and future. Bentham Science, Sharjah, vol 1, pp 3–22

    Google Scholar 

  • De Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation bioethanol production. Bioenergy Res 6:564–579

    Article  Google Scholar 

  • De Souza AP, Grandis A, Leite DCC, Buckeridge MS (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res 7:24–35

    Article  Google Scholar 

  • De Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65(4):497–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd D, Cann IK (2009) Enzymatic deconstruction of xylan for biofuel production. Glob Change Biol Bioenergy 1(1):2–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donohoe BS, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2008) Visualizing lignin coalescence and migration trough maize cell walls following thermochemical pretreatment. Biotechnol Bioeng 101:913–925

    Article  CAS  PubMed  Google Scholar 

  • Driemeier C, Pimenta MTB, Rocha GJM, Oliveira MM, Mello DB, Maziero P, Gonçalvess AR (2011) Evolution of cellulose crystals during prehydrolysis and soda delignification of sugarcane lignocellulose. Cellulose 18:1509–1519

    Article  CAS  Google Scholar 

  • DuPont (2013) Acellerase 1500®: cellulase enzyme complex for lignocellulosic biomass hydrolysis. http://accellerase.dupont.com/fileadmin/user_upload/live/accellerase/documents/DUP-00413_ProdSheet_1500_web.pdf

    Google Scholar 

  • Elabora Consultoria (2014) Renewable fuels and chemicals. Elabora Editora, Sao Paulo

    Google Scholar 

  • Eriksson T, Karlsson J, Tjerneld F (2002) A model explaining declining rate in hydrolysis of lignocellulose substrates with cellobiohydrolase I (Cel7A) and endoglucanase I (Cel7B) of Trichoderma reesei. Appl Biochem Biotechnol 101:41–60

    Article  CAS  PubMed  Google Scholar 

  • Foston M, Ragauskas AJ (2012) Biomass characterization: recent progress in understanding biomass recalcitrance. Ind Biotechnol 8(4):191–208

    Article  CAS  Google Scholar 

  • Furtado GP, Santos CR, Cordeiro RL, Ribeiro LF, de Moraes LAB, Damasio ARL, Polizeli MLTM, Lourenzoni MR, Murakami MT, Ward RJ (2015) Enhanced xyloglucan-specific endo-β-1,4-glucanase efficiency in an engineered CBM44-XegA chimera. Appl Microbiol Biotechnol 99(12):5095–5107

    Article  CAS  PubMed  Google Scholar 

  • Gilkes NR, Henrissat B, Kilburn DG, Miller RC Jr, Warren RAJ (1991) Domains in microbial beta-1-4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev 55:303–315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    Article  PubMed  Google Scholar 

  • He H, Zhang J, Bao J (2016) Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequente ethanol fermentation evaluation. Biotechnol Biofuels 9:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemsworth GR, Taylor EJ, Kim RQ, Gregory RC, Lewis SJ, Turkenburg JP, Parkin A, Davies GJ, Walton PH (2013) The copper active site of CBM33 polysaccharide oxygenases. J Am Chem Soc 135(16):6069–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemsworth GR, Henrissat B, Davies GJ, Walton PH (2014) Discovery and characterization of a new family of lytic polysaccharide monooxygenases. Nat Chem Biol 10(2):122–126

    Article  CAS  PubMed  Google Scholar 

  • Henrissat B, Davies GJ (2000) Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol 124:1515–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Highley TL (1975) Inhibition of cellulases of wood decay fungi. US Forest Service Research Paper FPL 247, 1–8, 1975. http://accellerase.dupont.com/fileadmin/user_upload/live/accellerase/documents/DUP-00413_ProdSheet_1500_web.pdf

    Google Scholar 

  • Hu J, Arantes V, Pribowo A, Saddler JN (2013) The synergistic action of accessory enzymes enhances the hydrolytic potential of a “cellulase mixture” but is highly substrate specific. Biotechnol Biofuels 6(1):112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishizawa CI, Jeoh T, Adney WS, Himmel ME, Johnson DK, Davis MF (2009) Can delignification decrease cellulose digestibility in acid pretreated corn stover? Cellulose 16:677–686

    Article  CAS  Google Scholar 

  • Jing X, Xhang X, Bao J (2009) Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis. Appl Biochem Biotechnol 159:696–707

    Article  CAS  PubMed  Google Scholar 

  • Kallioinen A (2014) Development of pretreatment technology and enzymatic hydrolysis for biorefineries. VTT Technical Research Centre of Finland

    Google Scholar 

  • Kim Y, Ximenes E, Mosier NS, Ladisch MR (2011) Soluble inhibitors/deactivators of cellulase enzymes from lignocellulosic biomass. Enzyme Microb Technol 48:408–415

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kreke T, Hendrickson R, Parenti J, Ladisch MR (2013) Fractionation of cellulase and fermentation inhibitors from steam pretreated mixed hardwood. Bioresour Technol 135:30–38

    Article  CAS  PubMed  Google Scholar 

  • Kjaergaard CH, Qayyum MF, Wong SD, Xu F, Hemsworth GR, Walton DJ, Young NA, Davies GJ, Walton PH, Johansen KS, Hodgson KO, Hedman B, Solomon EI (2014) Spectroscopic and computational insight into the activation of O2 by the mononuclear Cu center in polysaccharide monooxygenases. Proc Natl Acad Sci U S A 111(24):8797–8802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48(8):3713–3729

    Article  CAS  Google Scholar 

  • Kurakabe M, Shinjii O, Komaki T (1997) Transxylosilation of β-xylosidase from Aspergillus awamori K4. Biosci Biotechnol Biochem 6112:2010–2014

    Article  Google Scholar 

  • Larsson S, Reimann A, Nilvebrant NO, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77:91–103

    Article  Google Scholar 

  • Lee K-M, Kalyani D, Tiwari MK, Kim T-S, Dhiman SS, Lee J-K, Kim I-W (2012) Enhanced enzymatic hydrolysis of rice straw by removal of phenolic compounds using a novel laccase from yeast Yarrowia lipolytica. Bioresour Technol 123:636–645

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chomvong K, Yu VY, Liang JM, Lin Y, Cate JH (2015) Cellobionic acid utilization: from Neurospora crassa to Saccharomyces cerevisiae. Biotechnol Biofuels 8:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Lo Leggio L, Simmons TJ, Poulsen JC, Frandsen KE, Hemsworth GR, Stringer MA, von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Harris PV, Soong CL, Dupree P, Tryfona T, Lenfant N, Henrissat B, Davies GJ, Walton PH (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat Commun 6:5961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynd LR, Laser MS, Brandsby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  PubMed  Google Scholar 

  • McClure WR, Chow Y (1980) The kinetics and processivity of nucleic acid polymerases. Methods Enzymol 64:277–297

    Article  CAS  PubMed  Google Scholar 

  • McMillan JD, Jennings EW, Mohagheghi A, Zuccarello M (2011) Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover. Biotechnol Biofuels 4:29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Comb Sci 38:522–550

    Article  CAS  Google Scholar 

  • Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Teixeira JA (2014) Application of lignocellulosic residues in the production of cellulases and hemicellulases from fungi. In: Polizeli MLTM, Rai M (eds) Fungal enzymes. CRC Press, Boca Raton, pp 31–64

    Google Scholar 

  • Michelin M, Ximenes E, Polizeli MLTM, Ladisch MR (2016) Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities. Bioresour Technol 199:275–278

    Article  CAS  PubMed  Google Scholar 

  • Miranda, E.E. (2010) Questões Ambientais (Impactos Locais e Globais) e energéticas: A expansão da Cana de Açúcar e a ocupação das terras no estado de São Paulo.In: Cortez LAB (ed) Bioetanol de Cana-de-açúcar—P&D para produtividade e sustentabilidade. Editora Blucher (Chapter 6)

    Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  CAS  PubMed  Google Scholar 

  • Nacke H, Engelhaupt M, Brady S, Fischer C, Tautzt J, Daniel R (2012) Identification and characterization of novel cellulolytic and hemicellulolytic genes and enzymes derived from German grassland soil metagenomes. Biotechnol Lett 34(4):663–675

    Article  CAS  PubMed  Google Scholar 

  • Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins, obtained from a range of pretreated lignocellulosic substrates, on enzymatic hydrolysis. Biotechnol Bioeng 105(5):871–879

    CAS  PubMed  Google Scholar 

  • Novozymes (2012) Cellulosic ethanol: novozymes cellic Ctec3. http://www.bioenergy.novozymes.com/en/cellulosic-ethanol/Cellic-HTec3/Documents/CE_APP_Cellic_Ctec3.pdf

    Google Scholar 

  • Pakarinen A, Haven MO, Djajadi DT, Várnai A, Puranen T, Viikari L (2014) Cellulases without carbohydrate-binding modules in high consistency ethanol production process. Biotechnol Biofuels 7(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  • Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31:20–31

    Article  CAS  PubMed  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115(3):1308–1448

    Article  CAS  PubMed  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Pollet A, Delcour JA, Courtin CM (2010) Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Crit Rev Biotechnol 30(3):176–191

    Article  CAS  PubMed  Google Scholar 

  • Purich DL (2010) Enzyme kinetics: catalysis & control. Academic Press, London

    Google Scholar 

  • Qing Q, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630

    Article  CAS  PubMed  Google Scholar 

  • Rahikainen J, Mikander S, Marjamaa K, Tamminen T, Lappas A, Viikari L, Kruus K (2011) Inhibition of enzymatic hydrolysis by residual lignins from softwood—study of enzyme binding and inactivation on lignin-rich surface. Biotechnol Bioeng 108(12):2823–2834

    Article  CAS  PubMed  Google Scholar 

  • Rani V, Mohanram S, Tiwari R, Nain L, Arora A (2014) Beta-glucosidase: key enzyme in determining efficiency of cellulase and biomass hydrolysis. J Bioproces Biotech 5(1):8

    Google Scholar 

  • Ribeiro LFC, Lucas RC, Vitcosque GL, Ribeiro LF, Ward RJ, Rubio MV, Damasio ARL, Gregory RC, Walton PH, Jorge JA, Prade RA, Buckeridge MS, Polizeli MLTM (2014) A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnol Biofuels 7:115–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Rocha GJM, Gonçalves AR, Oliveira BR, Olivares EG, Rossella CEV (2011) Steam explosion pretreatment reproduction and alkaline delignification reactions performed on a pilot scale with sugarcane bagasse for bioethanol production. Ind Crop Prod 35:274–279

    Article  Google Scholar 

  • Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YHP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30

    Article  CAS  PubMed  Google Scholar 

  • Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491

    Article  Google Scholar 

  • Santos FA, Queiróz JH, Colodette JL, Fernandes SA, Guimarães VM, Rezende ST (2012) Potencial da palha de cana-de-açúcar para produção de etanol. Quim Nova 35:1004–1010

    Article  CAS  Google Scholar 

  • Segato F, Damasio AR, Gonçalves TA, Murakami MT, Squina FM, Polizeli MLTM, Mort AJ, Prade RA (2012) Two structurally discrete GH7-cellobiohydrolases compete for the same cellulosic substrate fiber. Biotechnol Biofuels 5:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segato F, Damasio ARL, de Lucas RC, Squina FM, Prade RA (2014) Genomics review of holocellulose deconstruction by Aspergilli. Microbiol Mol Biol Rev 78:588–613

    Article  PubMed  PubMed Central  Google Scholar 

  • Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  • Soccol RC, Vandenberghe LPS, Medeiros ABP, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LMF, Ferrara MA, Bon EPS, Moraes LMP, Araújo JA, Torres FAG (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825

    Article  CAS  PubMed  Google Scholar 

  • Souza, G. M., Victoria, R. L., Joly, C. A., Verdade, L. M. (eds) (2015) Bioenergy & sustainability: bridging the gaps. Scientific Committee on Problems of the Environment (SCOPE)

    Google Scholar 

  • Tavares EQP, Buckeridge MS (2015) Do cell walls have a code? Plant Sci 241:286–294

    Article  CAS  PubMed  Google Scholar 

  • Tejirian A, Xu F (2011) Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb Technol 48:239–247

    Article  CAS  PubMed  Google Scholar 

  • Tenkanen M, Siika-Aho M (2000) An alpha-glucuronidase of Schizophyllum commune acting on polymeric xylan. J Biotechnol 78(2):149–161

    Article  CAS  PubMed  Google Scholar 

  • Thomas CA Jr (1956) The enzymatic degradation of desoxyribose nucleic acid. J Am Chem Soc 78:1861–1868

    Article  CAS  Google Scholar 

  • UNICA (2015) from Brazil’s National Institute for Space Research. http://www.unica.com.br/unicadata. Accessed 4 June 2016

    Google Scholar 

  • Vitcosque GL, Ribeiro LF, de Lucas RC, da Silva TM, Ribeiro LF, Damasio ARL, Farinas CS, Gonçalves AZ, Segato F, Buckeridge MS, Jorge JA, Polizeli MLTM (2016) The functional properties of a xyloglucanase (GH12) of Aspergillus terreus expressed in Aspergillus nidulans may increase performance of biomass degradation. Appl Microbiol Technol 100(21):9133–9144. doi:10.1007/s00253-016-7589-2

    Article  CAS  Google Scholar 

  • Vuong TV, Wilson DB (2010) Glycoside hydrolases: catalytic base/nucleophile diversity. Biotechnol Bioeng 107(2):195–205

    Article  CAS  PubMed  Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2010) Inhibition of cellulases by phenols. Enzyme Microb Technol 46:170–176

    Article  CAS  Google Scholar 

  • Ximenes E, Kim Y, Mosier N, Dien B, Ladisch M (2011) Deactivation of cellulases by phenols. Enzyme Microb Technol 48:54–60

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Willies DM, Wyman CE (2006) Changes in the enzymatic hydrolysis rate of avicel cellulose with conversion. Biotechnol Bioeng 94:1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Yang B, Dai Z, Ding S, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2(4):421–450

    Article  CAS  Google Scholar 

  • Zhang YP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  PubMed  Google Scholar 

  • Zhang PYH, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24(5):452–481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, process 2010/52322-3) and Conselho de Desenvolvimento Científico e Tecnológico (CNPq, process 563260-6). This project is also part of National Institute of Science and Technology of the Bioethanol (FAPESP, process 2008/57908-6). Dr. M. L. T. M. Polizeli has a Fellowship of Research Productivity of CNPq. We thank Abilio Borghi for the technical assistance with the English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria de Lourdes T.M. Polizeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

de Lourdes T.M. Polizeli, M., Somera, A.F., de Lucas, R.C., Nozawa, M.S.F., Michelin, M. (2017). Enzymes Involved in the Biodegradation of Sugarcane Biomass: Challenges and Perspectives. In: Buckeridge, M., De Souza, A. (eds) Advances of Basic Science for Second Generation Bioethanol from Sugarcane. Springer, Cham. https://doi.org/10.1007/978-3-319-49826-3_5

Download citation

Publish with us

Policies and ethics